Chiral theories of class Sr

Kazunobu Maruyoshi (Imperial College London)

w/A. Hanany 1505.05053, w/F. Benini (in progress)

YITP Workshop, November 12th, 2015

Introduction

Recently, it has been found that a large class of 4d N=2 gauge theories is obtained from 6d (2,0) theory compactified on a Riemann surface, which is called "class S" [Gaiotto]

One of the most remarkable features of the construction is that it includes various SCFTs, which are used as building blocks of the class of N=2 gauge theories.

6d (2,0) theories are classified by ADE group..... It is known that there are various theories in 6d with (1,0) supersymmetry. [Blum-Intriligator, Hanany-Zaffaroni] [Del Zotto-Heckman-Tomasiello-Vafa, Heckman-Morrison-Vafa...]

What kind of theories is obtained by compactification to 4d?

We consider here simpler examples: orbifold of A_{N-1} (2,0) theory (a world volume theory on M5-branes proving the C²/ Γ singularity)

- > N=1 in 4d, chiral
- > SCFTs with chiral nature?

Non-trivial SCFT $a,c \sim |\Gamma|^2 N^3$

More generally we can consider the orbifold of (2,0) theory of type G: (1,0) theory (G,G')

(A, A): [Gaiotto-Razamat, Franco-Hayashi-Uranga, Hanany-KM] (D, A): [Kanno's poster]

6d (I,0) theories of type Γ

is the world volume theory on **N M5-branes proving the orbifold** singularity C^2/Γ_G , where Γ_G is the orbifold of type G = SU(k), SO(2k), E_6 , E_7 and E_8

from 6d point of view on this domain wall, the theory has G x G flavor symmetry

Global symmetry:

 $SU(2)_R \times G^2$ (\times U(1) only for A-type)

Compactification on T²

By taking $x^{6,10}$ direction as T^2 and reducing x^{10} to type IIA, we get N D4-branes on C^2/Γ_G

	0123	45	6	78	9	10
N M5						
C ² / Г						

	0123	45	6	78	9
ND4					
C ² / Г					

It is known that theories on D4's (with nonzero B field) are 4d N=2 quiver theories with affine G shape: [Douglas-Moore, Johnson-Myers] 121-2-3-2-11-2-3-2-11-2-3-4-3-2-13

Compactification on Cg

Since C_g has SO(2) holonomy we twist this with U(1)_R in SU(2)_R symmetry:

 $A_{U(1)_R} + \omega_{C_g} = 0$

This preserves N=I supersymmetry in 4d.

The global symmetry in 4d theory is (with B-field)

$U(I)_R \ge U(I)^{2r} (\ge U(I) \text{ for A type})$

Additionally we can add nontrivial flux of global non-R symmetry. Thus the theories are classified by

 $S[\Gamma_G, N, C_g; F_i]$

Compactification on Cg,n

We now include punctures on Riemann surface. The classification of the punctures of this class of theories have not yet been done. Instead we here consider a simple class of punctures:

A type orbifold

IR property and duality

The theory flows to IR fixed point.

Exactly marginal deformations

$$\dim_{\mathbb{C}} \mathcal{M}_{C_{0,n}} = n - 3$$
$$\dim_{\mathbb{C}} \mathcal{M}_{C_{1,n}} = k + gcd(k, n) + n$$

Punctures of A type theories

• maximal puncture (coming from D6's)

labeled by sign σ , color n, and has flavor symmetry SU(N)^k (the sign σ is related to D6 or D6')

• other punctures can be obtained by Higgsing

minimal puncture (coming from NS5) has a U(1) symmetry (the sign σ is related to NS5 or NS5')

Conclusion

We considered 4d N=1 SCFT obtained from N M5-branes on C^2/Γ (but mostly Γ =A case) compactified on a Riemann surface.

Outlook

- Classification of punctures?
- \bigcirc how can we study strongly coupled theories associated to $C_{0,3}$?
- Sinsertion of half-BPS surface defect [Mori's poster]
- relation to brane-tiling, and integrable systems [work in progress]
- Coulomb phase and orbifolded Hitchin system?
- ✿ orbifolded version of 6=3+3 and 6=2+4 correspondences?