Anomaly-free Multiple Singularity Enhancement in F-theory Theory Center, KEK Shun'ya Mizoguchi in collaboration with: Taro Tani SM,Tani arXiv:1508.07423 SM JHEP 1407(2014) 018 arXiv:1403.7066 #### The Standard Model – Why is it as it is? - One of the biggest challenges that we face in string theory is to explain why nature is as it is - Why is the top quark so heavy? Why are the lepton-flavor mixing angles large? And in the first place, why are there three generations of quarks and leptons in nature? - The conventional approaches to string compactification cannot answer to these questions #### "Family Unification" - Family unification is the idea that the quarks and leptons are the fermionic partners of the scalars of some coset supersymmetric non-linear sigma model Buchmuller, Peccei, Yanagida; Kugo, Yanagida; Irie, Yasui; Ong; Bando, Kuramoto, Maskawa, Uehara; Itoh, Kugo, Kunitomo... - Remarkably, E₇/(SU(5) × U(1)³) model automatically realizes precisely three non-universal generations of matter fields needed for the SU(5) GUT Kugo, Yanagida $E7/(SU(5) \times U(1)^3)$ #### "F-theory" Family Unificationsm - Last year, in YITP workshop 2014, it was pointed out that such a coset spectrum may be realized by a set of localized matter multiplets near a "multiple" singulary on 7-branes in 6D Ftheory - The key observation was that, in 6D, the representation of chiral matter localized at an enhanced (split-type) singularity is labeled by some homogeneous Kähler manifold, corresponding to the space of string junctions near the singularity Tani #### Four essential aspects of F-theory Instead of considering a configuration of the IIB complex scalar, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa #### IIB complex scalar as a modulus $$\sqrt{-g_4}R_4 = \sqrt{-g}\left(R - \frac{1}{2}g^{\mu\nu}\frac{\partial_{\mu}\tau\partial_{\nu}\tau}{\mathrm{Im}\tau^2} - \frac{1}{2}(\partial_{\mu}\log\rho)^2\right)$$ (shape) complex structure Kahler structure (size) $$\mathcal{L}_{IIB} = \sqrt{-g} \left(R - \frac{1}{2} g^{\mu\nu} \frac{\partial_{\mu} \tau \partial_{\nu} \tau}{\text{Im} \tau^2} \right)$$ At each point in 10d, one considers a 2-torus with its shape (modulus) varying from point to point "elliptic fiberation" #### Four essential aspects of F-theory - 1. Instead of considering a configuration of the IIB complex scalar, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa - 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular #### Monodromy around a singular torus SL(2,Z)Modular transformation $\sim SL(2,Z)$ S-duality #### Four essential aspects of F-theory - Instead of considering a configuration of the IIB complex scalar, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa - 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular - 3. Singularities of elliptic fiberations were classified according to their types investigated by Kodaira Kodaira # Collapsible set of 7-branes are classified: Kodaira's classification | Fiber type | Singularity type | 7-branes | Brane type | |------------|------------------|--------------------------------|------------| | In | An-1 | A ⁿ | An-1 | | II | A0 | AC | Но | | III | A1 | A ² C | H1 | | IV | A2 | A ³ C | H2 | | 10* | D4 | A ⁴ BC | D4 | | ln* | Dn+4 | A ⁿ⁺⁴ BC | Dn+4 | | * | E8 | A ⁷ BC ² | E8 | | * | Е7 | A ⁶ BC ² | E7 | | IV* | E6 | A ⁵ BC ² | E6 | #### Four essential aspects of F-theory - Instead of considering a configuration of the IIB complex scalar, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa - 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular - 3. Singularities of elliptic fiberations were classified according to their types investigated by Kodaira Kodaira - 4. The Kodaira singularities are described by joining/parting of 7-branes, which involves not only D-branes but general (p,q) branes DeWolfe, Hauer, Iqbal, Zwiebach #### String junction: (p,q) analogue of open string (-1,1) and (-1,-1) strings are pulled out when the string crosses over the B and C branes #### Matter from string junction Gives a perfectly consistent picture # Kugo-Yanagida model via F-theory Family Unification SM, JHEP 1407(2014) 018, arXiv:1403.7066 [hep-th] Implementing this mechanism, it was argued that the E₇/ (SU(5)xU(1)³) Kugo-Yanagida coset appears at a multiple singularity enhancement from SU(5) to E7 #### The aim of this talk - is to prove that this is correct by an anomaly consideration - We clarify whether one can realize a Kahler coset of the form G/(HxU(1)^r) with r≥2 as a local matter spectrum without conflicting anomaly cancellation - We will show that such a coset spectrum can indeed be realized at certain points in the moduli space of a 6D F-theory compactification on an elliptic CY3 over a Hirzebruch surface SM,Tani arXiv:1508.07423 #### Plan - 1. Introduction - 2. Anomaly analysis - 3. Conclusions and discussion # 2. ANOMALY ANALYSIS #### F-theory on an elliptic CY3 over Fn F theory on an elliptic fibration over Fn Morrison, Vafa $$y^{2} = x^{3} + x \sum_{i=0}^{8} z^{i} f_{8+(4-i)n}(z')$$ $$+ \sum_{i=0}^{12} z^{i} g_{12+(6-i)n}(z')$$ - Dual to heterotic on K3 BIKMVS - 12+n of 24 instantons embedded in one of E8 #### Unbroken SU(5) curve $$y^2 = x^3 + x \sum_{i=0}^{8} z^i f_{8+(4-i)n}(z')$$ $$+\sum_{i=0}^{12} z^i g_{12+(6-i)n}(z')$$ We take the coefficient functions f's and g's to be of the particular form They are so arranged that the discriminant starts with z⁵ SU(5) singularity $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$g_{4n+12} = 12h_{n+2}^2(2H_{n+4}^2 - h_{n+2}q_{n+6}),$$ $$g_{3n+12} = -f_{n+8}h_{n+2}^2 + 24h_{n+2}H_{n+4}q_{n+6} - 16H_{n+4}^3,$$ $g_{2n+12} = -f_8 h_{n+2}^2 + 2f_{n+8} H_{n+4} + 12q_{n+6}^2$ #### Independent polynomials $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$g_{4n+12} = 12h_{n+2}^2(2H_{n+4}^2 - h_{n+2}q_{n+6}),$$ $$g_{3n+12} = -f_{n+8}h_{n+2}^2 + 24h_{n+2}H_{n+4}q_{n+6} - 16H_{n+4}^3,$$ $$g_{2n+12} = -f_8h_{n+2}^2 + 2f_{n+8}H_{n+4} + 12q_{n+6}^2$$ They are parameterized by the five functions $$h_{n+2}$$, H_{n+4} , q_{n+6} , f_{n+8} and g_{n+12} • The total degrees of freedom is $$(n+3) + (n+5) + (n+7) + (n+9) + (n+13) - 1 = 5n+36,$$ #### Discriminant $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$g_{4n+12} = 12h_{n+2}^2(2H_{n+4}^2 - h_{n+2}q_{n+6}),$$ $$g_{3n+12} = -f_{n+8}h_{n+2}^2 + 24h_{n+2}H_{n+4}q_{n+6} - 16H_{n+4}^3,$$ $$g_{2n+12} = -f_8h_{n+2}^2 + 2f_{n+8}H_{n+4} + 12q_{n+6}^2$$ • The singularity gets enhanced wherever either of h_{n+2} and P_{3n+16} vanishes The discriminant becomes $$\Delta = 108z^5 h_{n+2}^4 P_{3n+16} + \cdots,$$ $$P_{3n+16} \equiv -2f_8h_{n+2}^2H_{n+4} - 2f_{n+8}h_{n+2}q_{n+6} + f_{8-n}h_{n+2}^4 + g_{n+12}h_{n+2}^2 - 24H_{n+4}q_{n+6}^2$$ ### Locus of h_{n+2} : 10 representation $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$g_{4n+12} = 12h_{n+2}^2(2H_{n+4}^2 - h_{n+2}q_{n+6}),$$ $$g_{3n+12} = -f_{n+8}h_{n+2}^2 + 24h_{n+2}H_{n+4}q_{n+6} - 16H$$ $$g_{2n+12} = -f_8h_{n+2}^2 + 2f_{n+8}H_{n+4} + 12q_{n+6}^2$$ The matter localized here is SO(10)/(SU(5) × U(1)) = 10 representation It turns out that the order of the discriminant becomes 7 SO(10) singularity ## Locus of P_{3n+16}: 5 representation $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$P_{3n+16} \equiv -2f_8h_{n+2}^2H_{n+4} - 2f_{n+8}h_{n+2}q_{n+6} + f_{3-n}$$ $$g_{3n+12} = -J_{n+8}n_{n+2} + 24n_{n+2}n_{n+4}q_{n+6} - 10h_{n+2}q_{n+6}$$ $$g_{2n+12} = -f_8h_{n+2}^2 + 2f_{n+8}H_{n+4} + 12q_{n+6}^2$$ The order of the discriminant = 6 SU(6) singularity $$h_{2} + g_{n+12}h_{n+2}^2 - 24H_{n+4}q_{n+6}^2$$ $SU(6)/(SU(5) \times U(1))$ = 5 representation #### Matter for a generic SU(5) curve $$(n+2)$$ **10**, $(3n+16)$ **5**, $(5n+36)$ **1**. - Dual to K3 compactication of E₈xE₈ heterotic string with instanton numbers (12 – n, 12 + n) - Anomaly free # What happens when $h_{n+2} = P_{3n+16} = 0$? $$\Delta = 108z^5 h_{n+2}^4 P_{3n+16} + \cdots,$$ $$P_{3n+16} \equiv -2f_8 h_{n+2}^2 H_{n+4} - 2f_{n+8} h_{n+2} q_{n+6} + f_{8-n} h_{n+2}^4 + g_{n+12} h_{n+2}^2 - 24H_{n+4} q_{n+6}^2$$ H_{n+4} or q_{n+6} has a common zero with h_{n+2} - H_{n+4} has a common zero \rightarrow E6 - q_{n+6} has a common zero \rightarrow D6 = SO(12) ### Common locus of h_{n+2} and q_{n+6} $$f_{4n+8} = -3h_{n+2}^4,$$ $$f_{3n+8} = 12h_{n+2}^2H_{n+4},$$ $$f_{2n+8} = 12\left(h_{n+2}q_{n+6} - H_{n+4}^2\right),$$ $$g_{6n+12} = 2h_{n+2}^6,$$ $$g_{5n+12} = -12h_{n+2}^4H_{n+4},$$ $$g_{4n+12} = 12h_{n+2}^2(2H_{n+4}^2 - h_{n+2}q_{n+6}),$$ $$g_{3n+12} = -f_{n+8}h_{n+2}^2 + 24h_{n+2}H_{n+4}q_{n+6} - 16H_{n+4}^3,$$ $$g_{2n+12} = -f_8h_{n+2}^2 + 2f_{n+8}H_{n+4} + 12q_{n+6}^2$$ - The orders of f and g do not change - The order of discriminant = 8 SO(12) singularity The localized matter will be $$SO(12)/(SU(5) \times U(1)^2)$$ = 10(SO(10))+10(SU(5))= 10+5+5 plus 1 from Cartan $$\Delta = 108z^5 h_{n+2}^4 P_{3n+16} + \cdots,$$ $$P_{3n+16} \equiv -2f_8h_{n+2}^2H_{n+4} - 2f_{n+8}h_{n+2}q_{n+6} + f_{8-n}h_{n+2}^4 + g_{n+12}h_{n+2}^2 - 24H_{n+4}q_{n+6}^2$$ The localized matter will be n+2 SO(10), 3n+16 SU(6) $$SO(12)/(SU(5) \times U(1)^2)$$ - = 10(SO(10))+10(SU(5))= 10+5+5 plus 1 from Cartan - Let us suppose (maximally degenerate case) $$q_{n+6} = h_{n+2}q_4$$ for some q_4 In this case the discriminant becomes $$\Delta = 108z^5 h_{n+2}^6 P_{n+12} + \cdots,$$ $$P_{n+12} \equiv -2q_4 f_{n+8} + g_{n+12} - 24q_4^2 H_{n+4}$$ n+2 SO(12) singularities, n+12 SU(6) singularities #### Common locus of h_{n+2} and q_{n+6} The localized matter will be $$SO(12)/(SU(5) \times U(1)^2)$$ $$= 10(SO(10))+10(SU(5))= 10+5+5$$ plus 1 from Cartan Maximally degenerate case $$q_{n+6} = h_{n+2}q_4$$ n+2 SO(12) singularities, n+12 SU(6) singularities Independent polynomials $$h_{n+2}$$, H_{n+4} , q_4 , f_{n+8} and g_{n+12} , $$(n+3) + (n+5) + 5 + (n+9) + (n+13) - 1 = 4n + 34$$ $$(n+2)(\mathbf{5} \oplus \mathbf{5} \oplus \mathbf{10} \oplus \mathbf{1}) \oplus (n+12)\mathbf{5} = (n+2)\mathbf{10} \oplus (3n+16)\mathbf{5} \oplus (n+2)\mathbf{1},$$ in all $$(n+2)$$ **10**, $(3n+16)$ **5**, $(5n+36)$ **1**. Anomaly free! #### Where does the extra matter come from? q_{n+6} locus, SU(6)singularity # Pairwise degeneration SU(5)→SO(12) Shade Shade Shade Shade Shade Shade Sha Shade Shade Shade Sha B Shade Shade Shade Shade Shade Shade Sha #### Enhancement to other singularities - SU(5)→ D6 (SO(12)) is a special case because loci of 5 always pairwise coalesce with a locus of 10 - $SU(5) \rightarrow E6$: there are two cases - A Single 10 and a single 5 join ⇒ Does not form $E6/(SU(5)xU(1)^2)$ - Two 10's and a single 5 join \Rightarrow E6/(SU(5)xU(1)²) is realized # Pairwise degeneration(E₆) #### Enhancement to other singularities - SU(5)→ D6 (SO(12)) is a special case because loci of 5 always pairwise coalesce with a locus of 10 - $SU(5) \rightarrow E6$: there are two cases - A Single 10 and a single 5 join ⇒ Does not form E6/(SU(5)xU(1)²) - Two 10's and a single 5 join \Rightarrow E6/(SU(5)xU(1)²) is realized - SU(5) \rightarrow E7 : E7/(SU(5)xU(1)³) is realized when and only when three 10's and four 5's coalesce - SU(5) \rightarrow E8 : E8/(SU(5)xU(1)⁴) is realized when and only when five 10's and ten 5's coalesce Such points indeed exist in the moduli space ### 3. CONCLUSIONS AND DISCUSSION #### Conclusions - We have proved, by an anomaly analysis, that Kugo-Yanagidatype Kahler coset spaces are indeed realized as matter spactra of localized hypermultiplets near multiple singularities in 6D F-theory compactified on a CY3 over Fn - A multiple enhancement H→G does not always imply localized matter G/(HxU(1)^r) but only at some special points in the moduli space where enough number of matter curves simultaneously intersect #### Discussion - To generalize it to 4D F-theory we need to introduce G-fluxes SM,Tani in progress - To consider the multiple singularity enhancement in F-theory has at least three virtues: - 1. In general, a special point in the moduli space can be an end point of whatever flow in the moduli space after the supersymmetry is broken and potentials are generated - 2. The multiple singularity may occur, in principle, in any elliptic Calabi-Yau manifold. Since the structure is universal, it may offer a potential ubiquitous mechanism for generating three generations of flavors in the framework of F-theory - 3. The homogeneous Kahler structure of the spectrum of the multiple singularity is naturally endowed with conserved U(1)charges