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Brief summary
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/What? L

1. Developed a new method to construct 3pt. function

How?
1. Map the theory to spin chain problem.

2. Derived non-trivial identities (monodromy relations), which is a manifestation of integrability.

Q. Construct a vertex which correctly produces the Wick contraction using PSU(2,2|4) symmetry.
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s in N=SYM @weak coupling.
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1. Introduction

Correlation functions are fundamental observables in AdS/CFT.
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To reveal the underlying mechanism of AdS/CFT, it is of importance
to study these observable in detail.

In particular, in AdS./CFT,, integrablity plays a quite important role.
[Beisert et al’10]

Study 3pt. functions using integrability!

<. Spectrum and spin chain

PSU(2,2|4) symmetry
N=SYM has superconformal PSU(2,2|4) symmetry:
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Oscillator representation
We can express them using the following bosonic/fermionic oscillators:
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The field of N=4 SYM can be represented by oscillators as well:
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All the fields carry the zero central charge: C = §(Na — Ny + N, — 2)

Dilatation op. and spin chain Hamiltonian

1-loop dilatation op. was identified to a integrable spin chain Hamitonian
[Minahan,Zarembo’02, Beisert’02]
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We can map the single tr. op.s to eigenstates of the Hamiltonian!
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3. Tailoring of three-point functions

®Tree-level 3pt. functions are obtained by summing all possible planar
Wick contractions.

® It involves complicated combinatorics since we need to prepare 1-loop

eigenstates of the dilatation operator. (degenerate perturbation theory)

“Tailoring™ gives an efficient method. [Escobedo,Gromov,Sever,Vieira’09]
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4. Construction of vertex

We wish to find the tree-level 3pt. vertex of the form:
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Wick contraction and singlet

Since the building block is the Wick contraction at tree-level, we first
consider an elementary vertex.

fundamental fields

L
FiF2 = (o|(|F1) ® | F2))  Fit sin=asyMm
Idea: Use the Ward identity of PSU(2,2|4)
0 = ((JF1)F2) + (F1(JF2))
0 = (o|(J1 + J2)(|F1) ® | F2))
It must be a singlet of PSU(2,2|4):

Ji ~ Generator of
" PSU(2,2]4)
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Using the oscillator representation, it turns out that the singlet is given
by the fOllOWing form: Similar expression is given in [Jiang,Kostov,Petrovskii,Serban’14]
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Note: It is an element of tensor product of HW and LW module.

Crossing relation

Using the following relation for each oscillator, we can see that
the correct Wick contractions are reproduced.
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Three-point vertex

Using the singlet, we can express 2 and 3-point vertex.
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By construction, they satisfy the Ward identity.
0= <V12‘(J1 —+- JQ) 0= <V123‘(J1 + Jo + Jg)

5. Monodormy relation

Motivation
Classical monodormy matrix plays essential role at strong coupling.
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Due to the flatness condition, it does not depend on the world sheet.
www)» generates a family of conserved charges.
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_ monodromy relation
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Combined with the analyticity, the monodromy relation determines

semiclassical 3-point function uniquely! Vanik,Wereszczynskii1]
[Kazama,Komatsu’11,’12,’13]

Q: What is a weak coupling analogue of this relation?

Definition of monodormy
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Monodormy relation@ weak copling
Using the property of singlet and definition of the Lax operator, we find
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With these relations, we can derive the following monodormy relation.
[Jiang,Kostov,Petrovskii,Serban’14] [Kazama,Komatsu,T.N.”14,’15]
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®Expanding the relation in power of 1/u around u=eo, we find the Ward
identity at the leading order.

®Higher order terms of 1/u expansion give non-trivial identities for
various 3-point functions. mmm) ~Ward identities” of Yangians.

Harmonic R-matrix

We can also derive another variant of the monodormy relation
using so-called the harmonic R-matrix. [kazam,komatsu, T.N."15]
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@It is important to note that the 1-loop dilatation operator (Hamiltonian)
is closely related to the harmonic R-matrix:
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[Beisert,Staudacher’04]
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® The harmonic R-matrix is used to construct building blocks for the
scattering amplitude as Yangian invariant. [Chicherin,Kirschner’13]

[Ferro,Lukowski,Meneghelli,Plefka,Staudacher,’13] [Broedel,de Leeuw,Rosso‘14]

6. Outlooks

1. Use of monodormy relation.

® Semi-classical three-point functions from Landau-Lifshitz model.

[Kazama,Komatsu,T.N. to appear]

® Application to Chern-Simons vector models. [Kiryu,Komatsu,T.N. in progress]

2. 1-|oop correction. [Komatsu,T.N. in progress]
It would be nice to detrmine the 1-loop correction using symmetry:
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Hamiltonian insertion? Relation to scattering amplitude?

| ntegra ble deformation? [Ferro,Lukowski,Meneghelli,Plefka,Staudacher,‘13]
[Bargheer,Huang,Loebbert,Yamazaki’14]

3. Relation to recent non-perturbative approach.

® SFT vertex (form factor) [Bajnok,Janik’15]
® Hexagon form factor [Basso,komatsu,Vieira’15]

\§~~
- —
L
_________
———————

Theme of Komatsu’s talk!



