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Introduction

« Conformal symmetry is powerful enough to constrain possible forms of correlation
functions.

« Indeed, up to overall normalization factors, two- and three-point functions are
completely fixed by SO(2, d) conformal symmetry in any spacetime dimension d > 1
[Polyakov ’70]:

CAlAz
<(9A1(xl)(9A2(x2)> = 5A1A2 |x, — x2|A1+A2

CA1A2A3

|x1 — x2|A1+A2_A3 |x2 — x3|A2+A3—A1 x3 _ xl A3+A1_A2

<(9A1 (x4 )OAz (x2)0A3 (x3)> =

« Conformal constraints work well in coordinate space.

« Then, what about conformal constraints in momentum space?
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Introduction

Correlation functions in momentum space are directly related to physical observables.

o Example: imaginary part of retarded two-point function = spectral density

« So it would be desirable to understand how conformal symmetry constrains the possible
forms of momentum-space correlators.

 In principle, momentum-space correlators are just obtained by Fourier transforms of
position-space correlators.

« However, Fourier transforms of position-space correlators are generally hard.

« Indeed, in spite of its simplicity in coordinate space, three-point functions in momentum
space are known to be very complicated.

o In fact, Fourier transform of three-point functions in finite-temperature CFT, was
first computed in 2014 ! [Becker-Cabrera-Su ’14]

o The study of conformal constraints in momentum space is still ongoing
[Coriano-Delle Rose-Mottola-Serino ’13] [Bzowski-McFadden-Skenderis *13].
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Introduction

« Today I will present a simple algebraic approach to compute finite-temperature CFT
two-point functions in momentum space.

« For the sake of simplicity I shall focus on finite-temperature CFT) .

« The keys to my approach are:

o 1d conformal algebra 80(2, 1) in the basis in which the SO(1, 1) generator becomes
diagonal; and

o Killing vectors of AdS, black hole.
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AdS, Black Hole
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AdS, black hole

« The AdS, black hole 1s a portion of AdS,; it is just a single Rindler wedge of AdS, and
described by the following metric:

g2 = — (1) a2+ 9" R
Sads, = T ﬁ_ t+r2/R2—1’ r € (R, )

o AdS, is topologically an infinite strip.

o The AdS, black hole covers only a
part of the whole AdS,.

r = R: Rindler horizon

r = 00: AdS, boundary
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AdS, black hole

The AdS, black hole is a portion of AdS,; it is just a single Rindler wedge of AdS, and
described by the following metric:

g2 = — (1) a2+ 9" R
Sads, = T ﬁ_ t+r2/R2—1’ r € (R, )

« For the following discussions it is convenient to introduce a new coordinate system (z, x)
via
r = Rcoth(x/R), x € (0,)
in which the metric becomes conformally flat:

2 —dtz + dx2
dSAdS = 2
> sinh“(x/R)

« Below I will work in the units R = 1.
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AdS, and SO(2,1)

« The one-dim’l conformal group SO(2, 1), which 1s the isometry of AdS,, contains three
distinct one-parameter subgroups:

o compact rotation group SO(2)
o noncompact Euclidean group E(1)

o noncompact Lorentz group SO(1, 1)

« Correspondingly, there exist three distinct classes of static AdS, coordinate patches in

which time-translation Killing vectors generate these one-parameter subgroups SO(2),
E(1) and SO(1, 1).

« In Lorentzian signature, these coordinate patches are given by the global, Poincaré and
Rindler coordinates, respectively.

e time-translation group frequency spectrum
Lorentzian Euclidean | Lorentzian Euclidean
global SOQ2) SO(1,1) discrete continuous
Poincaré E(1) E(1) continuous continuous
Rindler SO(1,1) SOQ2) continuous discrete
(Matsubara frequency)
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1d conformal algebra: S O(2) diagonal basis

The one-dim’l conformal algebra 8o(2, 1) 1s spanned by the three generators {J,, J,, J5}
that satisfy the commutation relations

[J, Ll =id5, [, 3]l =—idy, [J3, 0] =—id,
o In the Cartan-Weyl basis {J;,J, := —J, £ iJ,} the commutation relations become
(/5. I 1 ==xJ,, [J,J_]=-2J;
« The quadratic Casimir of the Lie algebra 80(2, 1) is
C=-J-T+2=LUzx)-J_J,
- Let |A, ®) be a simultaneous eigenstate of C and J; that satisfies
ClA,w) =A(A - 1D|A,w) and J;|A, 0) =ow|A, o)

Then the state J_|A, w) satisfies J3J_ |A, w) = (0 + 1)J,|A, @), which implies the
ladder equations

J, A, 0) « [A o+ 1)

10/17



1d conformal algebra: SO(1,1) diagonal basis

« Let us next consider the following hermitian linear combinations
A=J, A, =J,%xJ;
which satisfy the commutation relations
[A, Al =+iA,, [A,,A_]=2iA,
« The quadratic Casimir of the Lie algebra 80(2, 1) is
C=-J - +J.=-A/(A i) — A_A,
« Let |A, w) be a simultaneous eigenstate of C and A, that satisfies
Cl|A,w) =A(A-1D|A,w) and A||A, 0)=w|A, ®)

Then the state A, |A, w) satisfies A|A_|A, w) = (w +i)A_|A, w), which implies the
ladder equations

A A 0) x |A, o + i)
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1d conformal algebra: SO(1,1) diagonal basis

In the AdS, black hole problem, the SO(2, 1) generators (Killing vectors) are given by

the following first-order differential operators:

— et [sinh x(id,) + cosh x(iat)]

A

=+

The quadratic Casimir gives the d’Alembertian on the AdS, black hole:

C=A(A xi)—A_A, = sinh” x <_at2 * ai)

The eigenvalue equations reduce to the Schrodinger equation:

A A, 0) = w|A, o)

C|A, w) = AA - DA, 0) < <—a§ +

The ladder equations are

S 10D, (1, x) = 0D, (1, X)

AA - 1)

sinh” x

A D

+

Ao & D,

0+l

> D, 1t x) =0’ D, (1, x)
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1d conformal algebra: SO(1,1) diagonal basis

 Finite-temperature CFT, lives on the boundary x = 0. To analyze this, let us consider
the asymptotic near-boundary limit x — 0 of the Killing vectors

A} :=1lim A, =9,

x—0

A? :=lim A, =e* (ix0, % i0,)

* x—>0 —

« The quadratic Casimir near the boundary is
C’ = A)(A) i) — ALA] = x?0]
« The eigenvalue equations are

i0,®, (1, x) = 0@ (1, %)

A(A — 1
<—a§ + %) @) (1,x)=0
x ,

which are easily solved with the result
D, (1,x) = Ay(@)x°e™ + By(w)x' e

where A, (w) and B, (w) are integration constants which may depend on A and w.
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Correlator recurrence relations

: 0 O 0
« The ladder equations A_®,  x ®, . become

(A £ 0) A\ (@)x e + (i(1 — A) £ w) By (w)x' 2=
x  Ap(@=+i)xte O 4 B, (w =+ i)x' e @t
from which we get

(IA £+ w)A\(w) x Ap(0 £ i)
(i(l = A) + w)B,(w) x By(w + i)

« According to the real-time prescription of AAS/CFT correspondence, two-point
functions of dual CFT, are given by the ratio [Igbal-Liu *09]

G.(@) = QA — 1) 2al@)
: B, ()
which satisfies the recurrence relations
—1+A+iw
@)= — =Gy
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Correlator recurrence relations

« The recurrence relations

—1+A+iw

Gal@) = —A+iw

Gy(w i)

are easily solved by iteration. Minimal solutions are

I'(A +iw)

A/R
Td_Azio)s &

Gy (w) =

where g4/R(A) are w-independent normalization factors.

« Restoring R via w — @R, we get the advanced/retarded two-point functions for a scalar
primary operator of scaling dimension A:

A/R I'a+ %) A/R
G R(w) = __gM/R(A)
I'l—A+ %—T)

where T' is the Hawking temperature given by

T = ——
27 R
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Summary & outlook

Summary

« SO(2,1)1sometry of the AdS, black hole induces the recurrence relations for
finite-temperature CFT, two-point functions:

—-1+A+iw

G @)= e

Gy(w i)

« The minimal solutions to the recurrence relations give the advanced/retarded two-point
functions in frequency space.

Outlook

 Generalizations to finite-temperature CFT ;. The simplest approach would be to consider
the Rindler-AdS ., described by the metric

it =—(Z _1)ar i 2d H?
Sads, T~ T\ R2 T +r2/R2—1+r d-1

where d H,_, stands for the line element of (d — 1)-dim’1 hyperbolic space H~!.
(The case d = 2 has been done in the previous work arXiv:1312.7348.)

17/17


http://arxiv.org/abs/1312.7348

	Introduction
	Introduction
	Introduction
	Introduction

	AdS2 Black Hole
	Correlator Recurrence Relations
	Summary & Outlook

