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O: INTRODUCTION

<» It is well known that instantons in gauge theories play important roles in the study of non-
perturbative effects. The gauge instantons in four dimensions are defined by configurations
such that the gauge field strength 2-form F'satisfies the self-duality relation F = + %4 F,
where #*;1s the Hodge dual operator in R A salient feature of the self-dual instantons in
four dimensions is its systematic construction of solutions, known as ADHM construction.

O ADHM construction in R*
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In higher dimensions, these are two types of generalization of the ASD equations in R*

First type 1s called as “secular type'", and second type 1s called as "“self-dual type".

In this poster, we define the eight dimensional instantons” such that the field strength
satisfies the self-duality relation in R3. Furthermore, we expect that the eight dimensional
instanton has non-zero topological charge given by the 4th Chern number C® = f FAFAFAF.
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© The generalization of the ASD equations in R*
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We establish the general scheme to construct the self-dual gauge field configuration
FAF =xF ANF, sowe will call this scheme the eight dimensional "ADHM construction”.
In this poster, we show that ADHM construction in R® and reproduces the known one-
Instanton solution. Furthermore, we find explicit ‘t Hooft type solutions for topological charge

k=2andk=3.

[: THE EIGHT DIMENSIONAL ADHM CONSTRUCTION

The first step of constructing the ADHM construction in R® is to find appropriate algebra
basis e, which constructing ~"ASD tensor” Zﬁ)in R®. Here an ““ASD tensor" means that a
tensor 1s satisfying the ASD equations, and "ASD algebra basis" means algebra basis which

construct the ASD tensor.
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In eight dimension, x* are the standard

coordinates on R® and indices
w,v,---=1,2,...,8and 1, j,---=1,2,...,7.
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In four dimension, x* are the standard

coordinates on R* and indices
w,v,---=1,2,3,4and i,j,---=1,2,3.
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where indices in square brackets [ ] are to be
antisymmetrized(ex: ) = %(auv —dyy) ).

[-1: ASD tensor

By analogy of the ASD tensor in R* (i.e.’t Hooft

. 4 .
ASD tensor in R* 1s tensor), we define
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‘t Hooft tensor: ’“’) K 1; Y }; ASD tensor: g ;: ' : (1)
nfw = euey, —eve, wa) = eue, —ee,

and the ASD tensor Zi need satisfy the eight
dimensional ASD equations
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and ‘t Hooft tensor nﬁ) satisfy the four
dimensional ASD equations
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Now we can find eight dimensional ASD algebra
basis with reference to construction of quaternion.
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It 1s well known that four dimensional
ASD algebra 1s quaternion.

© ASD algebra basis in R8:

ASD algebra basis in R*: /
o

. S T T oo s e, . =0,81g —io,:1';, e :=0d,1g+1i0,:];
ey = 0ualy — 16,0, e, = 0Oualy + 00,0 H H HIt T Fp H HitJ
where I'; are defined by
and 0 ; are Pauli matrices. - . .
I's := 023, I'g:=—020, 17:=0300.

where o ;= 0; ® 0; ® o and 0 = 12./

\_

Some properties of ASD algebra basis €.,
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and ASD tensor 1, ,

Trn(é)ngj) = +4Trl, = £8,
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Now we was got the eight dimensional ASD tensor Z,(ﬁ). So next step 1s to construct eight
dimensional ADHM construction and we introduce the eight dimensional ADHM constraints.

[-ii: ADHM construction in R®

First we 1ntroduce the eight dimensional Weyl operator

Weyl operator : A := Cx + D,

(x means x ® 1,. However usually 1; omite from equations.)

where Cand D are (k + 1) X kK matrices with basis from €, , k 1s instanton charge and x 1s

x:=x'e, = Zf;,) anti-self dual. (x := x”e;ﬂ = Zf; self dual.)
A scheme of to obtain the eight dimensional instanton's gauge field from Weyl
operator 1s analogy by four dimensional ones. So
Weyl equations : A'V(x) = 0
where V(x) is (k + 1) column vector with basis from €u . V(x) satisfy

normalization : V'V = 1.

We obtain the gauge field A,(x) of eight dimensional instantons as

gauge field : A,(x) = VI (x)0,V(x) = =0,V (x)V(x). 3)

Introduce ADHM constraint in R®

Next we calculate field strength F,»v from Eq.(3) to introduce the eight dimensional
ADHM constraint.

Fu = 0,A, +AA, —(u < V)
=0,V'o,V-0,ViVVoV-(uev)y o).V V=-0,VV
=3,V (1-VV')a,V - (u o v) (4)

Here we use the completeness relation 1 — VV' = A(ATA)"'AT, Eq. (4) can write as

Fu = 0,VIAATA)TAO,V - (u o v)

= VI, AATA0,ATV — (u & v) ). ATV =0
= V' Ce (ATA)'elCTV — (u & v) ). A=Cx+D. (5)
Here, we demand the next condition
e (ATA) = (ATA) e, (6)
Then Eq.(5) is
Fy=V'CATA) (eue] — €,e))CTV
= V'C(A'A)'E)CTV *).(1) (7)

Substitute Eq.(7) into eight dimensional ASD equations

1

FiwFpr) = _EgquMﬁﬁF aplys

= (Vic@'ay 'z ctv)(vics T )

1

=~ qmpeasys (VICWATECTV) (VICETATA)TCTY). @)

Example R*.

In four dimension, Eq.(8) is

1
Fuy = _Z_!SﬂVPO'FPO'

1 1 1 (- :
= (VIC@A ™D '15)CTV) = — g0 (ViC@ATA '9ICTV). (8")
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So four dimensional ADHM constraint 1s

ANA=1,®E. (= e, (AN =(A"A)"e,.)



Since Eq.(2), &

Here we require that commutativity of X' with CTVVTC, that is

e, (CTVVIC) = (CTVVIC)e,

and then Eq.(8) is

FywFpe) = — 1 EuvporapysFaplys

= Vic@™n)! (z)) civvic@atay ety
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is anti-self dual tensor. Therefore £, which is constructed from
the eight dimensional ADHM construction satisfies the ASD equation.

From the above, we was required two conditions Eq.(6) and Eq.(9). These conditions
correspond with the four dimensional ADHM constraint, so we called these conditions
“the eight dimensional ADHM constraint®. We are able to more simplify Eq.(9). Eq.(9)
include V, so we rewrite Eq.(9) using completeness relation 1 — VV' = A(ATA) AT,

Eq.9) & ¢,(C"(1-AQATA)AT)C) = (CT(1 - AATA)'AT)C) e,

{eucfc

= CTCeﬂ,

ey (CTAATA)TTATC) = (CTAATA)TATC) ¢

e (ATA) T = (ATA) e, &= A'A=13QE

ATA = (" ® 1,)CT + D) (C(x® 1) + D)
=X 1)CTCx®1)+(xX'®1,)C'D+D'C(x®1,)+ D'D

=
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| > eMCTA = CTAeM
e, C'C = C'Ce,

The eight dimensional ADHM constraint:

ADHM constraintinR® : A'A=(1L,®1,®1,)QFE =1, ®E.

C = (0[81><[8k]

Lk )[8+8k]><[8k]

1, @ EO 1

The first condition €,CC = C"Ce,, is included condition Eq.(6), so we omit this condition.

On the other hand, second condition is able to simplify using Eq.(6) to ¢,C'A = C"Ae,, . And
this condition is also include condition Eq.(6).

~

13 ® E©

Therefore, we find that it is enough to just demand only one condition Eq.(6).

where E 1s k X kK matrix.

The eight dimensional ADHM data C,D are canonical form, such that

The eight dimensional ADHM equations with canonical form

where [ ]| means matrix size.

D = [ 5 sixisk _ [ Ssixisu
AT ey T
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We assume that Sgjxsk = €, ® S l[ll]x[k]
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T3 —iT® 0
then,

Ss Se S Sz )

0 T3 —iT® -T?+i7°> -T'-iT?
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R® ADHM-eq. : A'A = s @ Ejy

[T2,T5] - [T?, T%] + % (Siss-sis1) =0,

(73,71 - [T', T*] + % (SIS4-83S5)=0, [T, T1-[T%T°]+ % (S1S4-51835)=0.
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[I: THE EIGHT DIMENSIONAL ADHM DATA

In the eight dimensions, instanton charge Q 1s 4th Chern number

O=N

1
Tr(FAFAFAF)=N f d®x Tr(—'gwpmﬁwFWFWFaﬁFyé) = N f xQ.
R3 R8 8 R3S

where N 1s normalization constant. However it is difficult to use this equations directly

for calculation of charge density. So we use formula to calculate the charge density form
ADHM data.

4
Formula to calculate charge density : Q = +16Tr (VTC(ATA)_ICJr V) :

[TI-1: BPST type 1-instanton

We extend the four dimensional BPST instanton ADHM data to the eight
dimensional ones
A= (/1}8)
X

{0 [ A1
S S

where A € R 1s size moduli, X := (¥ —a")e, and a" € R 1is position moduli.

Since AT = (113 '), indeed this ADHM data satisfy the eight dimensional ADHM

constraints

ATA = (/118 55*) (/1;8

2 ~112
): 1s ® (2 + ||7/)
where ||%]? := %% = &% = (& — ¢*) (%, — @) and ¥ = (¢ — a)e], .

Weyl-eq. : ATV =0 = (/118 )’ZT) V=0

— zeromode : V = L x where o = 1> + |||
NP \Alg)’ g |
1 X¥-4a A2
auge field : A, = ——= >)  field strength : F,,, = >,
gaug u g M (A2 + ||F|P)2 ™

22+ |IX|]F
This gauge field and field strength are identified as Grossman’s 1-instanton [1].

[1] B. Grossman, T. W. Kephart and J. D. Stasheff, “Solutions to Yang-Mills Field Equations in Eight-dimensions
and the Last Hopf Map," Commun. Math. Phys. 96 (1984) 431 [Erratum-ibid. 100 (1985) 311].

Instanton charge is

2
_ 3 (5) 5 (=) ()5 (=)
Q=N | d' ((/12 " 552)2) Tr (22555 0)
00 7
_ X ()5 (=) 5 (=) 5o(-)
=N | deO dx 5 +x2)8Tr(212 55 5)
27t 1 167*
=N - (=128) = - N——.
I'(4) 280 ( ) 105
L . 105
Therefore the normalization constant Nis N := o — 0 = -1.
T

[1-1i: 't Hooft type k-instanton
't Hooft type ADHM data are

c:( 0

Y S=18®(/11 Ar
18®1k)’ D_(e#@)Tﬂ

T = diag_, (—a‘“ )

) , where /lk) ,

P

Here, k is instanton charge, aﬁ € R are position moduli and 4, € R are size moduli.

Therefore zero mode V 1s

1 —13 a
V= Nz ((e); ® (x*1, + Tﬂ))_1 S#J where ¢ := 1+;

't Hooft k-instanton's gauge field is

2
/lp

1%,11°

and X, := (x—d))e,,.
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O 't Hooft 2,3-instanton’s charge density are O 2,3-instanton’s charge
A (numerical calculations)
BNl + BN+ 323 (15112 + 1% - 2% %
Q(kzz) _ —128[ 1 2 1 2( . 1 2) Q(kzz) _ ngx Q(kzz) ~ 2,
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(k=3) — r‘d8x Q(k:3) ~ 3
Q) = —128[y(/1%||x2||4||i3||4 + B (1517 + 157 - 255%;) < J |

4
21~ 1én= 14 22n= 14 (= n2 ~ 112 ~H ~ 21~ ndn~ n4 22~ 14 (u=1u2 , n=1n2 ~U ~
+ BlIE I+ 38100 (%P + 1517 - 28 %) + Bl + 3801500 (1% + 1% —2x’;x’;))].
1

~ ~ ~ ~ ~ ~ ~ ~ ~ 2.
(/ﬁll)@llzllxsll2 + Bl IPIZIP + Bl P1E2P + ||x1IIZIIX2||2||x3||2)

where y :=

O Visualization of the charge densities. (x1-x2 plane)
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[1I: SUMMARY AND FUTHER WORKS

<, We have established the general scheme to construct the eight dimensional instantons, i.e. eight
dimensional ADHM construction.

.

<> We have also shown the explicit form of the higher charge solutions based on the 't Hooft
ansatz.

> Is there the eight dimensional generalization of the Osborn’s formula?

> Can we establish the eight dimensional noncommutative ADHM construction?

> Can we establish the seven/eight dimensional Nahm construction of monopole/caloron?
> Can we establish more general dimensional ADHM construction?

> How to relate between the eight dimensional ADHM and D-brane systems? etc...



