# Exotic Brane Junctions from F-theory

JHEP 05 (2016) 060 arXiv:1602.08606

Tetsuji KIMURA

Keio University

- What is exotic brane?
- How can we use exotic branes?

## What is exotic brane?

#### Exotic brane is

- from standard brane via string dualities in lower dim
- ✓ vortex-like (codim 2)

Obers and Pioline: hep-th/9809039

Eyras and Lozano: hep-th/9908094

de Boer and Shigemori: arXiv:1209.6056

etc..

Exotic  $b_n^c$ -brane has a tension

$$rac{R_1 R_2 \cdots R_b \, (R_{b+1} \cdots R_{b+c})^2}{g_s^n \, \ell_s^{b+2c+1}}$$

### Performing string dualities, the tension is transformed:

### **Example** duality chain of 5-branes:

#### Exotic brane is

- from standard brane via string dualities in lower dim
- ✓ vortex-like (codim 2)

Obers and Pioline: hep-th/9809039

Eyras and Lozano: hep-th/9908094

de Boer and Shigemori: arXiv:1209.6056

etc..

NOTE

D7-brane is an object of codim 2 in 10D.

D7-brane physics has been studied for 20 years: F-theory

Vafa: hep-th/9602022

Sen: hep-th/9605150

etc..

D7-brane:

$$ho(z) \; \equiv \; C^{(0)} + \mathrm{i}\mathrm{e}^{-\phi} \; = \; rac{ heta}{2\pi} + rac{\mathrm{i}}{2\pi} \log\left(rac{\Lambda}{r}
ight) \hspace{0.5cm} (z = x^8 + \mathrm{i} x^9 = r\,\mathrm{e}^{\mathrm{i} heta})$$

When  $\rho$  moves around D7-brane counterclockwise  $\theta \to \theta + 2\pi$ ,

it receives a magnetic "charge" of D7-brane (monodromy) :  $\rho \rightarrow \rho + 1$ 



There exists a branch cut in z-plane.

defect NS5-brane: (transverse a, b directions are smeared)

$$ho_{ extsf{NS5}}(z) \; \equiv \; B_{ab}^{(2)} + \mathrm{i}\mathrm{e}^{+2\phi} \; = \; rac{ heta}{2\pi} + rac{\mathrm{i}}{2\pi} \log\left(rac{\Lambda}{r}
ight) \hspace{0.5cm} (z = x^8 + \mathrm{i} x^9 = r\,\mathrm{e}^{\mathrm{i} heta})$$

When  $\rho$  moves around NS5-brane counterclockwise  $\theta \to \theta + 2\pi$ ,

it receives a magnetic "charge" of NS5-brane (monodromy) :  $ho_{\rm NS5} 
ightarrow 
ho_{
m NS5} + 1$ 



In this case, we can identify  $\rho_{\rm NS5}$  + 1  $\simeq \rho_{\rm NS5}$  by B-field gauge transformation.

Exotic  $5_2^2$ -brane : ( $T_{ab}$ -dualized from defect NS5-brane)



monodromy : 
$$\frac{1}{\rho_{\rm E}} \to \frac{1}{\rho_{\rm E}} - 1$$
 where  $\rho_{\rm E} = -\frac{1}{\rho_{\rm NS5}}$ 

We cannot identify this monodromy change by  $\left\{ egin{array}{ll} B ext{-field gauge transformation} \\ ext{coordinate transformations} \end{array} 
ight.$ 

52-brane's property is from that of defect NS5-brane

via 
$$SL(2,\mathbb{Z}) \in SO(2,2;\mathbb{Z})$$
 $\mathbf{T}_{ab}$ -duality

## How can we use exotic branes?

Consider an NS5-brane crossing the branch cut of D7-brane from the left. If D7-brane goes across NS5-brane, a new 5-brane and a junction appear (Hanany-Witten effect).



Note: D7-brane(1234567), D5(1234X), NS5(1234Y),  $X, Y \in z$ -plane

This is a brane junction in F-theory.

Gaberdiel and Zwiebach: hep-th/9709013 DeWolfe and Zwiebach: hep-th/9804210

etc..

Perform the  $T_{34}$ - and S-duality of the system of NS5-brane with D7-brane.

We obtain a config. that a new "3-brane" with exotic  $5_2^2$ -brane :



We find that D5(1234Y)-brane wrapped on  $T_{34}^2$  ( $\equiv$  wD5) is ending on  $5_2^2$ -brane.

## 5D theory on 5-branes with 5 D7-branes:



| IIB                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9           |
|--------------------|---|---|---|---|---|---|---|---|----|-------------|
| 5 D7               | _ | _ | _ | _ | _ | _ | _ | _ |    | i<br>i<br>i |
| D5                 |   | _ | _ | _ | _ |   |   |   | _  | i<br>i<br>i |
| NS5                | _ | _ | _ | _ | _ |   |   |   |    |             |
| (1,1) <sub>5</sub> |   | _ | _ | _ | _ |   |   |   | an | gle         |



Aharony and Hanany: hep-th/9704170

DeWolfe, Hanany, Iqbal and Katz: hep-th/9902179

Gaiotto and Witten: arXiv:0804.2902, 0807.3720

Benini, Benvenuti and Tachikawa: arXiv:0906.0359

## 3D theory on "3-branes" with 5 exotic $5^2_2$ -branes :





mirror of 3D  $T_3$  theory

star-shaped quiver

 $5_2^2$ -brane yields mirror of 3D  $T_3$  theory.

Benini, Tachikawa and Xie: arXiv:1007.0992

## 3D theory on "3-branes" with 5 exotic $5_3^2$ -branes :



 $5_3^2$ -brane gives 3D  $T_3$  theory.

Exotic branes also play a role in generating (non-)Lagrangian theories.

## Summary and Discussions

- Exotic brane has a monodromy (charge) with branch cut.
- When D3-brane cross the branch cut of  $5_2^2$ -brane, it jumps to D3 + "D5 wrapped on two-torus".

- Exotic 5-branes are the building blocks of 3D  $T_3$ -theory and its mirror theory.
- They correctly provide 3D theory even when spacetime is compactified.

ullet Non-Lagrangian theory from non-geometric background



## 4D theory on "4-branes" with 5 exotic $6^1_3$ -branes :



| IIA                           | 0 | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8  | 9    |
|-------------------------------|---|---|---|---|----|---|---|---|----|------|
| 5 6 <sub>3</sub> <sup>1</sup> | _ | _ | _ | _ | •2 | _ | _ | _ |    | <br> |
| wNS5                          | _ | _ | _ | _ | _  |   |   |   | _  |      |
| D4                            | _ | _ | _ | _ |    |   |   |   |    | _    |
| $(1,1)_4$                     | _ | _ | _ | _ |    |   |   |   | an | gle  |



4D  $T_3$  theory can be realized.

Uplift to M-theory : dD6 
$$\to$$
 KK6,  $6^1_3 \to$  KK6; D4  $\to$  M5, wNS5  $\to$  M5  $g_s\ell_s=R_{\natural},\ g_s\ell_s^3=\ell_{\mathtt{P}}^3$ 

dD6

Gaiotto: arXiv:0904.2715

## **Thanks**

## **Appendix**

## 3D theory on "3-branes" with 5 defect D5-branes:



3D  $T_3$  theory is realized.

Benini, Tachikawa and Xie: arXiv:1007.0992

## 3D theory on "3-branes" with 5 defect NS5-branes:



Mirror of 3D  $T_3$  theory is realized.

Benini, Tachikawa and Xie: arXiv:1007.0992

### 4D theory on "4-branes" with 5 defect D6-branes:



| IIA       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9   |
|-----------|---|---|---|---|---|---|---|---|----|-----|
| 5 dD6     | _ | _ | _ | _ |   | _ | _ | _ |    |     |
| D4        | _ | _ | _ | _ |   |   |   |   | _  |     |
| wNS5      | _ | _ | _ | _ | _ |   |   |   |    | _   |
| $(1,1)_4$ | _ | _ | _ | _ |   |   |   |   | an | gle |



4D  $T_3$  theory can be realized.

Uplift to M-theory : dD6 
$$o$$
 KK6,  $6^1_3$   $o$  KK6; D4  $o$  M5, wNS5  $o$  M5  $g_s\ell_s=R_{\natural},\ g_s\ell_s^3=\ell_{\mathtt{P}}^3$ 

Gaiotto: arXiv:0904.2715

## 2D theory on "2-branes" with 5 defect D4-branes:



| IIA       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9   |
|-----------|---|---|---|---|---|---|---|---|----|-----|
| 5 dD4     | _ | - |   |   |   | _ | _ | _ |    |     |
| D2        | _ | _ |   |   |   |   |   |   | _  |     |
| wNS5      | _ | _ | _ | _ | _ |   |   |   |    | _   |
| $(1,1)_2$ | _ | _ |   |   |   |   |   |   | an | gle |



2D  $T_3$  theory can be realized.

Uplift to M-theory :  $dD4 \rightarrow M5$ ,  $4^3_3 \rightarrow 5^3$ ;  $wNS5 \rightarrow M5$ ,  $D2 \rightarrow M2$ 

## 2D theory on "2-branes" with 5 exotic $4_3^3$ -branes :



| IIA                           | 0 | 1 | 2  | 3  | 4  | 5 | 6 | 7 | 8  | 9   |
|-------------------------------|---|---|----|----|----|---|---|---|----|-----|
| 5 4 <sup>3</sup> <sub>3</sub> | _ | _ | •2 | •2 | •2 | _ | _ | _ |    |     |
| wNS5                          | _ | _ | _  | _  | _  |   |   |   | _  |     |
| D2                            | _ | _ |    |    |    |   |   |   |    | _   |
| (1,1)2                        | _ | _ |    |    |    |   |   |   | an | gle |



2D  $T_3$  theory can be realized.

Uplift to M-theory :  $dD4 \rightarrow M5$ ,  $4^3_3 \rightarrow 5^3$ ;  $wNS5 \rightarrow M5$ ,  $D2 \rightarrow M2$ 

F-string: couple to  $B_{(2)}$ 

D-string : couple to  $C_{(2)}$ 

$$\rho(z) = \frac{\mathrm{i}}{2\pi} \log\left(\frac{\Lambda}{z}\right) = \frac{\theta}{2\pi} + \frac{\mathrm{i}}{2\pi} \log\left(\frac{\Lambda}{r}\right)$$

D7(1234567): couple to  $ho(z)=C+\mathrm{i}\mathrm{e}^{-\phi}$   $(z=x^8+\mathrm{i}x^9=r\,\mathrm{e}^{\mathrm{i}\theta})$ 



$$(1,0)$$
-string = F1

$$(1,0)$$
-string = F1  $[1,0]$  7-brane = D7(1234567)

$$(0,1)$$
-string = D1

$$(0,1)$$
-string = D1  $[0,1]$  7-brane =  $7_3(1234567)$ 

Open D-string is ending on  $7_3(1234567)$ .

This is a setup in F-theory. We perform  $ST_{67}$ -duality and reduce 67-directions.

D-string: couple to  $C_{(2)}$ 

D3-brane : couple to  $C_{(4)}$ 

$$ho(z) = rac{\mathrm{i}}{2\pi}\log\left(rac{\Lambda}{z}
ight) = rac{ heta}{2\pi} + rac{\mathrm{i}}{2\pi}\log\left(rac{\Lambda}{r}
ight)$$

NS5(12345): couple to 
$$ho(z) = B_{67}^{(2)} + \mathrm{i} \mathrm{e}^{+2\phi}$$
  $(z = x^8 + \mathrm{i} x^9 = r\,\mathrm{e}^{\mathrm{i}\theta})$ 

$$(z = x^8 + ix^9 = r e^{i\theta})$$



$$(1,0)$$
-string = D1

$$[1,0]_{s5}^{T}$$
-brane = NS5(12345)

$$(0,1)$$
-string = D3 wrapped on  $T_{67}^2$   $[0,1]_{s5}^T$ -brane =  $5_2^2(12345,67)$ 

$$[0, 1]_{s5}^{T}$$
-brane =  $5_{2}^{2}(12345,67)$ 

Open D3-brane wrapped on  $T_{67}^2$  is ending on exotic  $5_2^2$ (12345,67).



$$ho \, o \, 
ho + \mathsf{1} \, = \, rac{a 
ho + b}{c 
ho + d} \, \equiv \, M_{[\mathsf{1}, \mathsf{0}]} \cdot 
ho \, , \quad \, M_{[\mathsf{1}, \mathsf{0}]} \, = \, \left( egin{array}{c} \mathsf{1} & \mathsf{1} \ \mathsf{0} & \mathsf{1} \end{array} 
ight) \, \in \, SL(\mathsf{2}, \mathbb{Z})$$

or

$$K_{[1,0]}\cdot(\rho+1) = \rho\,, \quad K_{[1,0]} = (M_{[1,0]})^{-1} = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right)$$

 $M_{[p,q]}$ : moving around the 7-brane

 $K_{[p,q]}$  : going across the branch cut

By  $SL(2,\mathbb{Z})$ , the monodromy matrix for general [p,q] 7-brane is given as

$$K_{[p,q]} \ = \ g \, K_{[1,0]} \, g^{-1} \ = \ \left( egin{array}{ccc} 1 + pq & -p^2 \ q^2 & 1 - pq \end{array} 
ight) \ g \in SL(2,\mathbb{Z})$$

ex) monodromy  $K_{[0,1]}$  for  $7_3$ -brane :  $K_{[0,1]}=\begin{pmatrix}1&0\\1&1\end{pmatrix}$ 



$$ho_{\mathsf{E}} \, = \, -rac{\mathsf{1}}{
ho_{\mathsf{D7}}}$$

Consider an (r, s)-string crossing the branch cut of [p, q] 7-brane from the left.

The string charge is jumped by monodromy.

If the 7-brane goes across the string, the string is no longer crossing the branch cut.

Further, a new string and a junction appear (Hanany-Witten effect).



Note: 7-brane is stretched in 1234567-directions.

This is a string junction in F-theory.

Consider a D-string crossing the branch cut of D7-brane from the left.

A new string and a junction appear by Hanany-Witten effect.



Note: D7-brane is stretched in 1234567-directions.

This is a string junction in F-theory.

Gaberdiel and Zwiebach: hep-th/9709013

DeWolfe and Zwiebach: hep-th/9804210

etc..

Consider a D3-brane wrapped on  $T_{ab}^2$  (wD3) and defect NS5-brane (dNS5). If dNS5 goes across wD3,

a new D-string and a junction appear by Hanany-Witten effect.



Consider a D-string and  $5_2^2$ -brane.

D-string charge is jumped by monodromy.

If 5<sub>2</sub><sup>2</sup>-brane goes across D-string,

a new wD3 and a junction appear (Hanany-Witten effect).



• defect NS5-brane and D5-brane wrapped on  $T_{ab}^2$ :



• 5<sup>2</sup><sub>2</sub>-brane and D3-brane :





| IIB         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9        |
|-------------|---|---|---|---|---|---|---|---|----|----------|
| <i>n</i> D7 | _ | _ | _ | _ | _ | _ | _ | _ |    | ;<br>    |
| D5          | _ | _ | _ | _ | _ |   |   |   | _  | <br>     |
| NS5         | _ | _ | _ | _ | _ |   |   |   |    | <u> </u> |
| $(1,1)_5$   | _ | _ | _ | _ | _ |   |   |   | an | gle      |

color :  $N_c$  D5 between 2 NS5 =  $SU(N_c)$  gauge symmetry

flavor :  $N_f$  D5 outside 2 NS5 =  $N_f$  flavors

coupling :  $rac{1}{g_{
m YM}^2} \simeq rac{L}{g_s \, \ell_s^2}$  (This can be derived from Dirac-Born-Infeld action of D5-brane.)



| IIB         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9           |
|-------------|---|---|---|---|---|---|---|---|----|-------------|
| <i>n</i> D7 |   |   |   |   |   |   |   |   |    | 1           |
|             |   |   |   |   |   |   |   |   |    | !<br>!<br>! |
| D5          | _ | _ | _ | _ | _ |   |   |   | _  | <br>        |
| NS5         | _ | _ | _ | _ | _ |   |   |   |    | <u> </u>    |
| $(1,1)_5$   | _ | _ | _ | _ | _ |   |   |   | an | gle         |

color :  $N_c$  D5 between 2 NS5 =  $SU(N_c)$  gauge symmetry

flavor :  $N_f$  D5 outside 2 NS5 =  $N_f$  flavors

coupling :  $rac{1}{g_{
m YM}^2} \simeq rac{L}{g_s \, \ell_s^2}$  (This can be derived from Dirac-Born-Infeld action of D5-brane.)



| IIB         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9      |
|-------------|---|---|---|---|---|---|---|---|----|--------|
| <i>n</i> D7 | _ | _ | _ | _ | _ | _ | _ | _ |    | ;<br>  |
| D5          | _ | _ | _ | _ | _ |   |   |   | _  | <br>   |
| NS5         |   | _ | _ | _ | _ |   |   |   |    | :<br>- |
| $(1,1)_5$   | _ | _ | _ | _ | _ |   |   |   | an | gle    |

color :  $N_c$  D5 between 2 NS5 =  $SU(N_c)$  gauge symmetry

flavor :  $N_f$  D5 outside 2 NS5 =  $N_f$  flavors

coupling :  $rac{1}{g_{
m YM}^2} \simeq rac{L}{g_s \, \ell_s^2}$  (This can be derived from Dirac-Born-Infeld action of D5-brane.)



| IIB         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9    |
|-------------|---|---|---|---|---|---|---|---|----|------|
| <i>n</i> D7 | _ | _ | _ | _ | _ | _ | _ | _ |    | <br> |
| D5          | _ | _ | _ | _ | _ |   |   |   | _  | <br> |
| NS5         | _ | _ | _ | _ | _ |   |   |   |    | _    |
| $(1,1)_5$   | _ | _ |   | _ | _ |   |   |   | an | gle  |

This config. indicates 5D SU(2) gauge symmetry with n flavors on 01234-directions.

In the  $L \propto 1/g_{
m YM}^2 
ightarrow 0$  limit, this gauge theory flows to SCFT with  $E_{n+1}$  symmetry.

(UV fixed point)

5D  $\mathcal{N}=1$  SU(2) gauge theory with n flavors on D5-brane can be illustrated as



Without changing the 5D gauge theory on D5-brane, semi-infinite (p, q) 5-branes are terminated by [p, q] 7-branes.

5D  $\mathcal{N}=1$  SU(2) gauge theory with n flavors on D5-brane can be illustrated as



Moving B- and C-branes along the (p,q) 5-branes and going inside the "box", the (p,q) 5-branes are annihilated by the Hanany-Witten effect.

Further, the "box" becomes "loop" by back reaction of  $A^n$ -, B-, C-, B-, and C-branes.

(skipped drawing the branch cuts.)

5D  $\mathcal{N}=1$  SU(2) gauge theory with n flavors on D5-brane can be illustrated as



Perform the re-ordering of 7-branes with branch cuts.

When a 7-brane goes across another's branch cut, its monodromy is modified.

$$A^nBCBC \rightarrow A^nBCCX_{[3,1]}$$
 with  $X_{[3,1]}$ -brane  $\equiv [3,1]$ -brane

5D  $\mathcal{N}=1$  SU(2) gauge theory with n flavors on D5-brane can be illustrated as



Perform the small loop limit  $L \to 0$ . This implies the strong coupling limit  $g_{YM} \to \infty$ . There exists a non-trivial UV fixed point of 5D gauge theory  $\to$  CFT.

 ${\bf A}^n$ -,  ${\bf B}$ -, and  ${\bf C}^2$ -branes are collapsed to  ${\bf E}_{n+1}$ -brane.

 $\mathbf{X}_{[3,1]}$ -brane is gone far away from  $\mathbf{E}_{n+1}$ -brane.

Open string ending on 5-brane loop and  $\mathbf{E}_{n+1}$ -brane provides  $\mathbf{E}_{n+1}$  symmetry.

We argued 5D SUSY gauge theory and its strong coupling limit by brane construction.



| IIB         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9           |
|-------------|---|---|---|---|---|---|---|---|----|-------------|
| <i>n</i> D7 | _ | _ | _ | _ | _ | _ | _ | _ |    | i<br>i<br>i |
| D5          | _ | _ | _ | _ | _ |   |   |   | _  | <br>        |
| NS5         | _ | _ | _ | _ | _ |   |   |   |    | <u> </u>    |
| $(1,1)_5$   | _ | _ | _ | _ | _ |   |   |   | an | gle         |

 $ST_{67}$ -dual  $\rightarrow$  5D

Perform string dualities :  $ST_{47}$ -dual ightarrow 4D

 $ST_{34}$ -dual  $\rightarrow$  3D

## ${ m ST}_{ m 34} ext{-dualized system}$ :



| IIB       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9   |
|-----------|---|---|---|---|---|---|---|---|----|-----|
| n NS5     | _ | _ | _ |   |   | _ | _ | _ |    |     |
| D3        | _ | _ | _ |   |   |   |   |   | _  |     |
| "D5"      |   | _ | _ | 1 | _ |   |   |   |    | _   |
| $(1,1)_3$ | _ | _ | _ |   |   |   |   |   | an | gle |

We can see 3D SU(2) gauge symmetry with n flavors on 012-directions.

There exits IR fixed point.

## ${ m ST}_{ m 34} ext{-dualized system}$ :



| IIB       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9        |
|-----------|---|---|---|---|---|---|---|---|----|----------|
| n NS5     | _ | _ | _ |   |   | _ | _ | _ |    | <br>     |
| D3        |   | _ | _ |   |   |   |   |   | _  | <br>     |
| "D5"      | _ | _ | _ | _ | _ |   |   |   |    | <u> </u> |
| $(1,1)_3$ | _ | _ | _ |   |   |   |   |   | an | gle      |

A-brane:  $[1,0]_{s5}^T$ -brane = NS5

B-brane:  $[1,-1]_{s5}^T$ -brane

C-brane:  $[1,1]_{s5}^T$ -brane

3D  $\mathcal{N}=4$  SU(2) gauge with n flavors  $\rightarrow$  SCFT with  $E_{n+1}$  symmetry



3D gauge coupling is given by Dirac-Born-Infeld action of D3-brane:

$$rac{1}{g_{
m YM}^2} \simeq rac{L}{g_s}$$

Then the strong coupling limit is given by