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Atiyah-Patodi-Singer index theorem

Index on a manifold with boundary,
il)ﬁD)
2
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[Atiyah-Patodi-Singer 1975]



APS index In topological insulator

Witten 2015 : APS index is a key to understand
bulk-edge correspondence in symmetry protected
topological insulator:

fermion Zedge X exp(—iﬂn(iDgD)/Q) T-anomalous

path integrals .

Zbulk X exp (iﬂ' 327‘(‘2 L4>0 d4xeu,/potr[FﬂVFPa]>
T-anomalous

1 'DSD
/ d4xe“,,pgtr[FWFp"] i )
32772 x4 >0 2

[Related works: Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16&18,
Freed-Hopkins 16, Witten 16, Yonekura 16&19 ...]
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What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).

3. No edge-localized modes allowed.

4. No “physicist-friendly” description in the literature

[except for Alvarez-Gaume et al. 1985 but boundary
condition is obscure.]
— We launched a study group reading original APS
paper and it took 3 months to translate it into “physics
language”, and we reached an alternative expression.



Difficulty with boundary

If we impose local and Lorentiz (rotation)
invariant boundary condition, + and —
chirality sectors do not decouple any more.

- . [ | angular momentum is
N conserved

ni+, n— and the index do not make sense.



Atiyah-Patodi-Singer boundary

COnditiOn [Atiyah, Patodi, Singer 75]
Gives up the locality and rotational symmetry

but keeps the chirality.
Eg. 4 dim x* > 0 A, =0 gauge

D =y%04 +y'D; = y*(04 + y*y'D;) } 4

|

They impose a non-local 4 e
b.cC.
A+ |A =20
(A+ 14D Lo Beautiful!
> But physicist-

Index = Ny —nN— | nfriendly.
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Locality >> chirality for physicists

Locality (=causality) 1s essential.

We cannot accept APS condition even If 1t Is
beautiful.

<=
non-local nit!
boundary iInformation propagates

faster than speed of light.

INformation




Locality >> chirality for physicists

Locality (=causality) is essential.
We cannot accept APS condition even if it i1s beautiful.

— need to give up chirality and consider L/R mixing
(massive case)

1 'DSD
T =y | dbseupotel e
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Locality >> chirality for physicists

Locality (=causality) Is essential.
We cannot accept APS condition even If It is beautiful.

— need to give up chirality and consider L/R mixing
(massive case) 3D
Mn_ _ / d4:1:ewpatr[F“”Fp“]—n(2D )

Can we still make a fermionic integer (even if it is ugly)?

Our answer is “Yes, we can’.
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Atiyah-Singer(AS) index

from massive Dirac operator
H = v5(D + M)

/ero-modes of D = still eigenstates of H:

Hoog =5 Moo = =M o
Non-zero modes make + pairs
Hop; =N Np; HD@; = —-DH¢o; = —\iDo;

n(H) =) sgn\

1

= # of +M — # of —M = AS index!




n(H) always jumps by 2. _

H =~5(D+ M) : paired
To Increase + modes, !
we have to borrow
one from - (UV) modes.

Good regularizations
(e.g. Pauli-Villars, lattice)
respect this fact.

> 1

Index (D) = in(H)




Pel"turbative “pI‘OOf” (in physics sense)

using Pauli-Villars regulator

. | H = ~5(D + M)
Sn(H)Y™ = = () = n(Hpv)l- o pen), As

H 1 2
H) = Iim Tr — —/ dtt— 12Ty He tH
n(H) = lim VI Ve

D / >
\/_/ dt't'~ 1/2Trfy5 (M | M> g—t'D'D/M? —t ;
Fujikawa- method/ ™

does not contribute.
/d4a: €0 potTc FHY FP7 + O(l/MZ).

<t'=M2>
1
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More physical set-up?
In physics,
1. Any boundary has “outside”. manifold +

boundary — domain-wall.

2. Boundary should not preserve helicity but keep
angular-mom: massless — massive (in bulk)

3. Boundary condition should not be put by hand
— put automatically chosen.

4. Edge-localized modes play the key role.



Domain-wall Dirac operator

| et Us consider [Jackiw-Rebbi 1976,
arvery 1985,

992 ]

Callan-+
Dyp + Me(xs), €(x4) = sgnry “apan’

on a closed manitold
with sign flipping mass,
without assuming any
boundary condition

(we expect it dynamically given.).




“neW” APS indeX [F-Onogi-Yamaguchi 201 7]

1

S1(35(D + M))"™? = AS Index -
$

1

5”(75(D + M€(334)))r69 0

1 °D3D
= / dize,, o tr[Fv g~ 10D )
327T2 z4>0 2

which can be shown by Fujikawa-method.
See our paper or my talk slide in 2007.



Complete set in the free case

Solutions to
{75(D"*® + Me(z4))} ¢ = [—05 + M*>—2M~40(x4)] ¢ = N¢

W 1 1WT 4 —1WT4
£z — € — € 9
901,0( 4) \/E ( )
“ (xy) = iw F M)e™®al 4 (jw+ M e—%wlml) ,
gpfge(m): VMe Mlzal  mmmp  Edge mode appears !

w,edge |

Here, w:\/p2+M2—)\§lD and 74%0::,8/0 __J’O::,e/o




“Automatic” boundary condition

We didn’t put any boundary condition by hand.
But

0 - w,edge W
a.. - ME(ZE4) Sp:t,,edg (374) =0, SD:I:,O(:BZL — O) = 0.

x4=0

Is automatically satisfied due to the domain-
wall. This condition is LOCAL and PRESERVES
angular-momentum in x4 direction but DOES

NOT keep chirality.
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Overview

. 1

v 3272
1

]nd(DAps)

with physicist-unfriendly
boundary condition [APS 1975]

/ d4:z;ew,pgtr[FWFp"] Ul
xq4>0

|

iDSD)
2

CONJECTURE from
perturbation
theory in 4D flat space

1

577(HDW)

with physicist-friendly
set-up (topological insulator)
[FOY 201 7]

This work = THEOREM

(on any even-dim. curved manifold)
[F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita, 2019]




Theorem 1:
APS index = index with infinite cylinder

In original APS paper, they showed

<)@

Index w/ APS b.c. = Index with infinite
cylinder attached to the original boundary
(w.r.t. square integrable modes).

* On cylinder, gauge fields are constant in the extra-direction.



Theorem 2:
Localization (& product formula)

By giving position-dependent "mass”, we can
localize the zero modes to "massless” lower-
dimensional surface and the index is given by

the product:

face

Ind(vs(D% 4 05 + ivs M (s))) =
Ind(D%) x Ind(v,0s + M(s))

= generalization of domain-wall fermion



Theorem 3:
In odd-dim, APS index = boundary eta-invariant

exists only in even-dim.

Ind(chgiS—dzm) _ [U(Dboundaryl) . n(DboundaryZ)]

1
2



5-dimensional Dirac operator
we consider

5D _ 0 05 + 15(D*P + m(z4, x5))
=05 +v5(D*P (x4, z5)) 0
where M forzy >0& x5 >0
m(xy,T5) = 0 forxy=0&z5=0
e A,u 'S — M, otherwise

Independent of Ty .

* The following proof iIs valid for any 2n+1 dimension.



On X4D x R,

S — Xy

we compute
Ind(D°")
In two different
~* ways:

1. localization

2. eta-inv. at
| Ly — +1.




Localization

Theorem 2 tells us

L4

Ind(D")| a0ty —00 = Ind(D2A? ) x IndD}>

m=0surface normal

N———
and on the massless surface =!

theorem 1 Indicates
X4D
Ind(Dx> ) = Ind(D,p&")

m=0surface




Boundary eta

Invariants
Theorem 1 tells us

5D\ 5D
ITLCZ(D ) o Ind(DAPS b.C.atS::ZI)

and from theorem 3, we obtain

1

]nd(Di‘?PS b.C.atsz::l) — 5 [n(D‘A;El) N U(D‘A;E_l)]

— % [77(%(D4D + Me(xyq)) — 77(75(D4D — Mz)] = %Upvreg'(75(D4D + Me(zy))

therefore,

1
Iﬂd(D5D) = ]nd(DAPS) — in(HDW) Q ED
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We don’t need any boundary
condition by hand.

0

The Kink structure automatically
chooses a local and rotationally
symmetric boundary condition,

and extension from AS index Is simple:

1 1

577(75(19 M)) — 577(75(1) Me(r)))




massive fermion = chiral
symmetry is NOT important.

The lattice fermion “knew” this fact:

1 D, 1 H
Ind(D,,) = §Tm5 (1 - > ) Doy = - (1+W5 i )

Vv Hyy
1. Hy 1
— —§TT #H%V — _577(75(DW — M))!
If the original AS index were given by
1
—-n(vs(D — M))

2
we should have known the lattice index theorem

much before Hasenfratz or Neuberger 1998.



Massless vs. massive

iIndex theorem with massless Dirac op.

AS
APS

continuum

lattice

Ty e~ D7 /M

Try° (1 — aDyy /2

N—"

Tr75e_D2/M2W/ APS b.c.

not known.

iIndex theorem with massive Dirac op.

AS
APS

continuum

lattice

1

—577(%(19 — M))

1

—577(75(Dw — M))

1

- on(s(D = Me()))




Massless vs. massive

iIndex theorem with massless Dirac op.

AS
APS

continuum

lattice

Ty e~ D7 /M

Try° (1 — aDyy /2

N—"

Tr75e_D2/M2W/ APS b.c.

not known.

iIndex theorem with massive Dirac op.

AS
APS

continuum

lattice

1

—577(%(19 — M))

—%n(%(Dw — M))

1

- on(s(D = Me()))

1

—51(15(Dw — Me(2)))?




Massless vs. massive

iIndex theorem with massless Dirac op.
continuum lattice

AS Tr~y e~ D7/M" MryP(1 — aDoy /2)
APS Trye M/ APS be) NOT KNOWN.
iIndex theorem with massive Dirac op.

continuum lattice
AS 25D = M) | —Zn((Dw — M)
1
APS on(5(D — Me(@))-5n0s(Dw - Me(@)?

¥

Next talk by Kawal
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Summary Ind(Daps) = %U(HDW)

1. APS index describes bulk-edge
correspondence of topological insulators.

2. APS (as well as AS) index can be reformulated
by the eta-inv. of massive domain-wall operator.

3. We have given a mathematical proof for
general cases through the 5D index.

4. eta-invariant of massive operator unifies the
index theorems (including their lattice version).



Backup slides



Example : 1+1d bulk + O+1d edge
Majorana fermion coupled to gravity

APS Index tells
-
Z XX exp (zﬁlg)

consistent with Zs classification

of Kitaev's interacting Majorana
chain.



Eta invariant = Chern Simons term +
integer (non-local effect)

77(7;1;313) — gf - Integer
CS = 417T B tr, {e,,p(, (AV@PA% 3A”APA“>}

= surface term.
1 'DSD
— / dize o te[ P o] 1D )
327T z4>0 2

Q



