ABJM Matrix Model and two-dimensional Toda Lattice Hierarchy

Purpose

We clarify the relation between ABJM matrix model and integrable system.

ABJM matrix model 1-point function 2-point function

ABJM Theory

 $3D \mathcal{N} = 6$ Superconformal Chern-Simons theory with gauge group $SU(N)_k \times SU(N + M)_{-k}$

Integrable system

mKP hierarchy

2D Toda Lattice hierarchy

(k:Chern-Simons level)

Tomohiro Furukawa (Osaka City University) collaborator : Sanefumi Moriyama (OCU, NITEP)

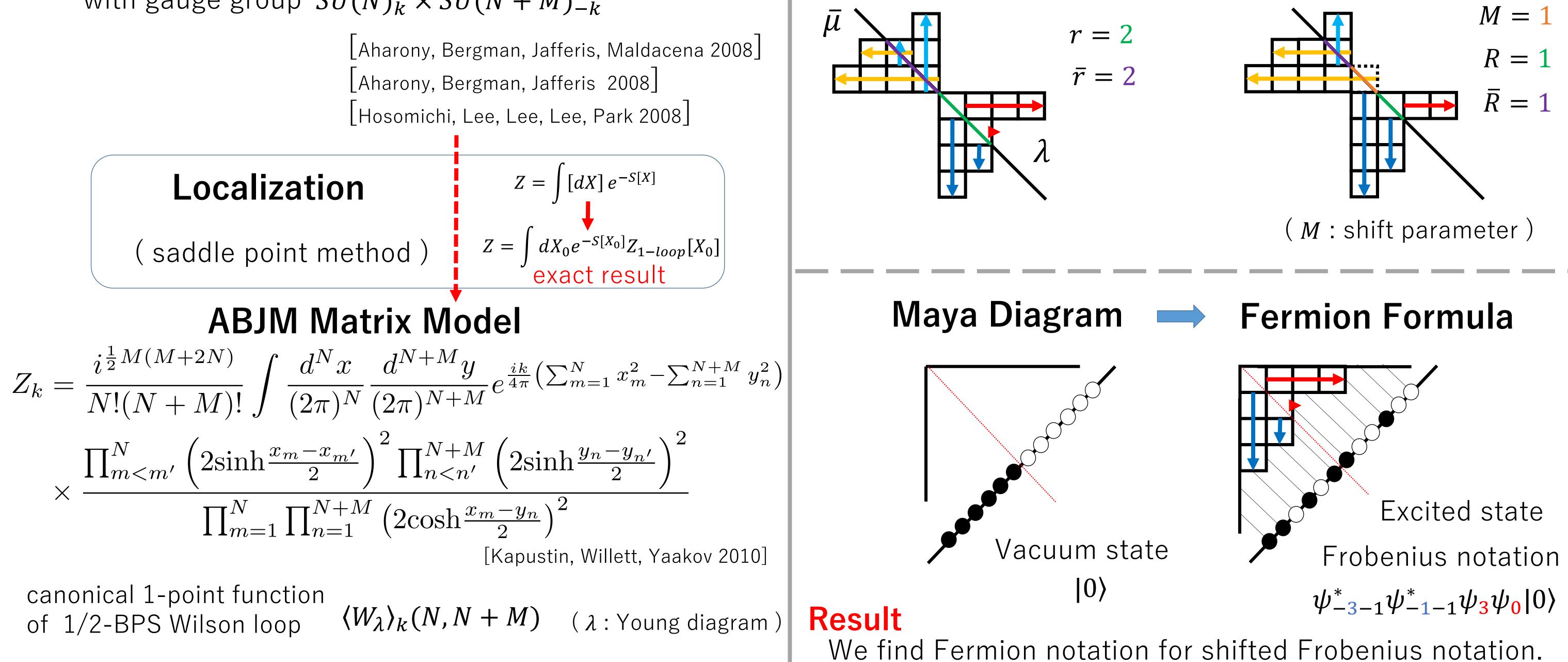
JHEP **1903**, 197 (2019), [arXiv:1901.00541 [hep-th]]

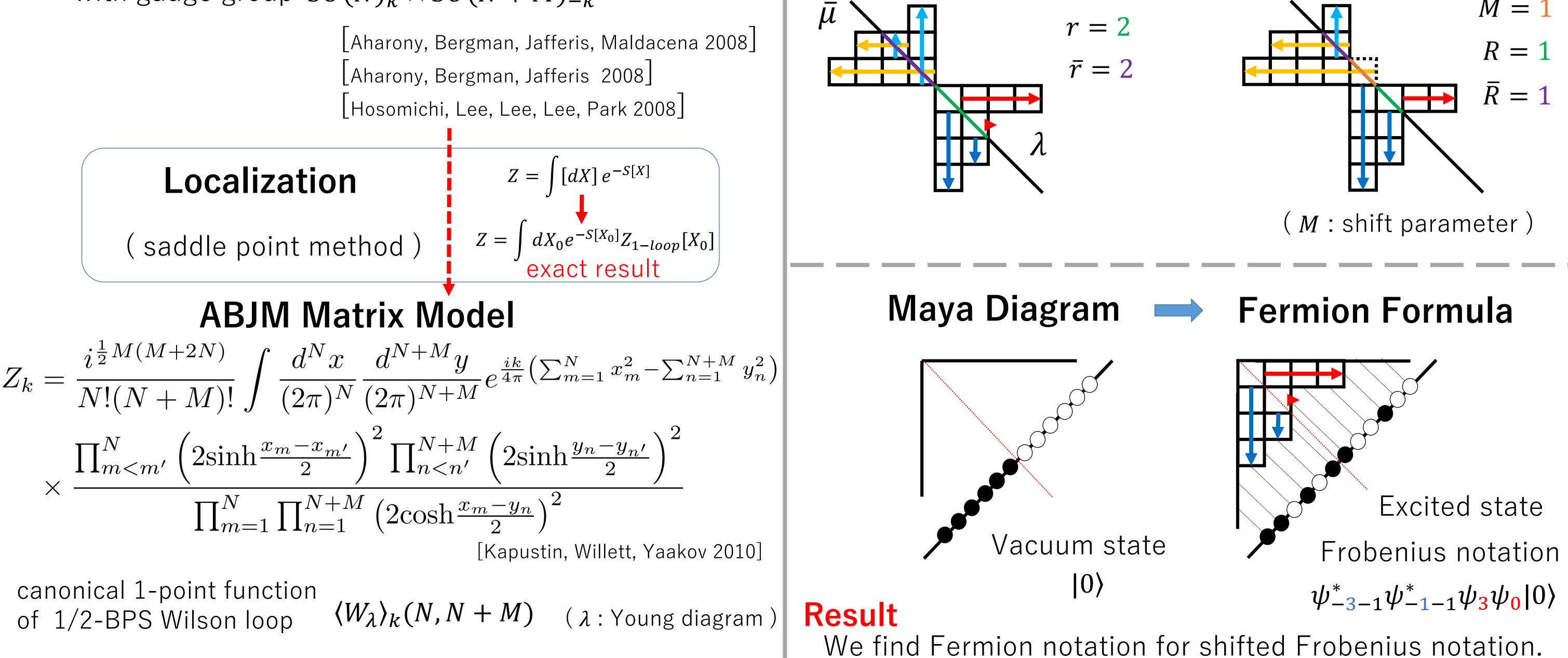
Young Diagram

- Convenient to use two Young diagrams.
- Represent to rank difference *M* also.

Frobenius Notation

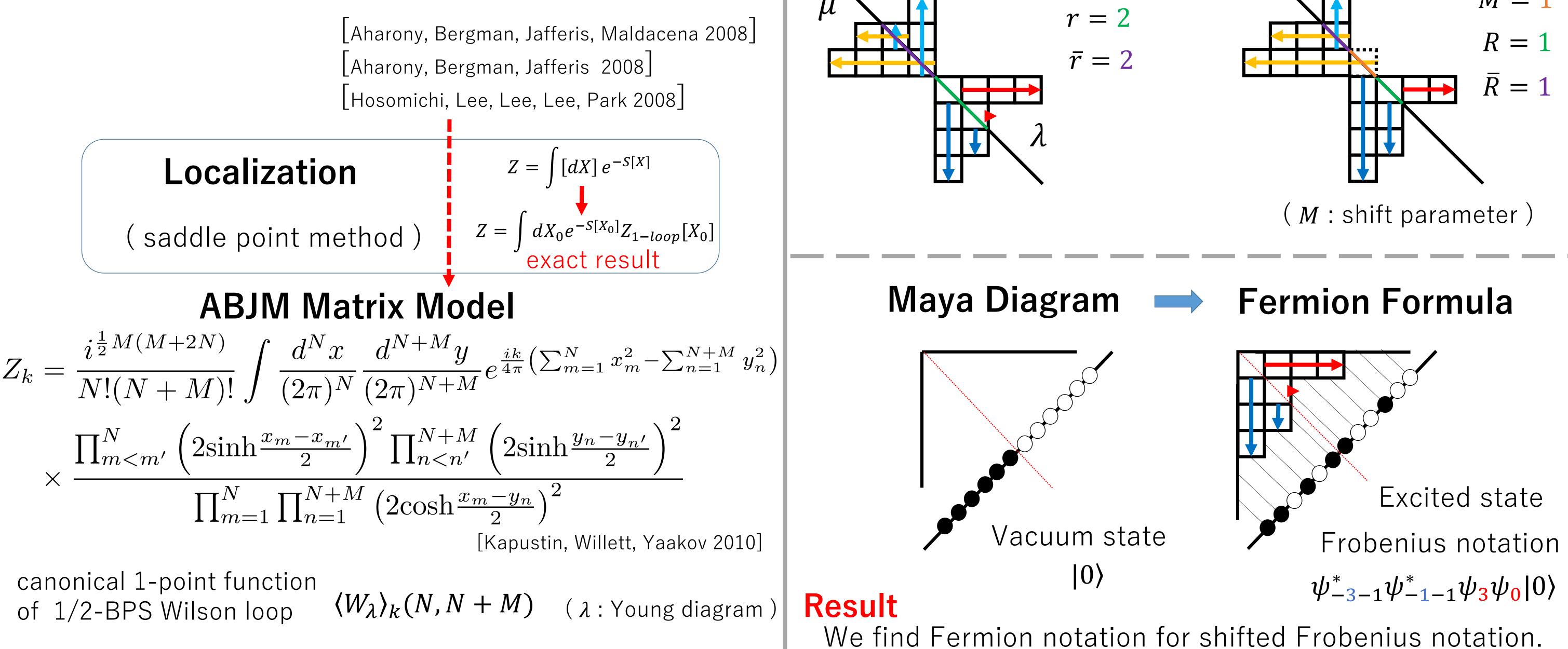
$\lambda \bar{\mu} = (3, 0, -2, -4 | 3, 1, -1, -3)$





Shifted Frobenius Notation

 $\lambda \bar{\mu} = (2, -3, -5 | 4, 2, -2)$



In ABJM theory, Wilson loop

grand canonical 1-point function of 1/2-BPS Wilson loop

Generalize to 2-point function (**not** obtained by Localization)

[Kubo, Moriyama 2018]

$$\langle W_{\lambda} \rangle_{k,M}^{GC} = \sum_{N=0}^{\infty} z^{N} \langle W_{\lambda} \rangle_{k} (N, N + M)$$

$$(z: \text{fugacity})$$

$$\langle W_{\lambda} \overline{W}_{\mu} \rangle_{k,M}^{GC} = \sum_{N=0}^{\infty} z^{N} \langle W_{\lambda} \overline{W}_{\mu} \rangle_{k}$$

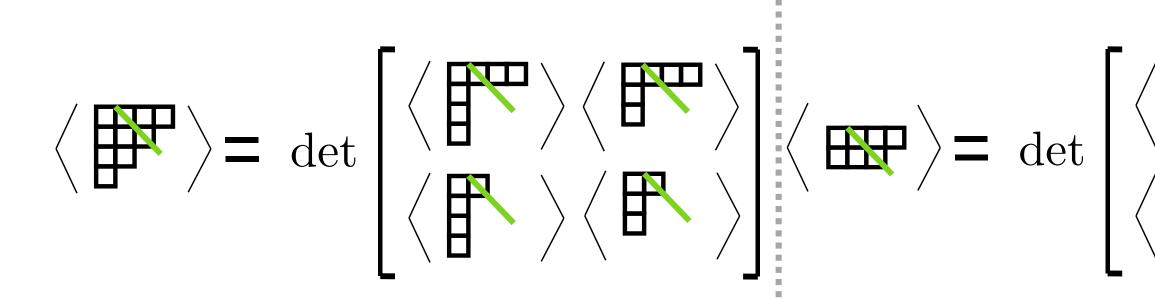
 $W_{\lambda} = W_{\lambda}(e^{x}|e^{y})$

$$W_{\lambda}\overline{W}_{\mu} = W_{\lambda}(e^{x}|e^{y})W_{\mu}(e^{-x}|e^{-y})$$

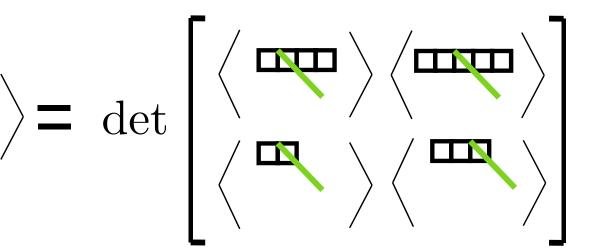
for $M \ge 0$

For normalized 1-point functions $S_{\lambda}^{M} = \langle W_{\lambda} \rangle_{k,M}^{GC} / \langle 1 \rangle_{k,0}^{GC}$

Giambelli Identity



[S. Matsuno, S. Moriyama 2016]



Jacobi-Trudi Identity

[T. Furukawa, S. Moriyama 2017]

These identities also appear in integrable system.

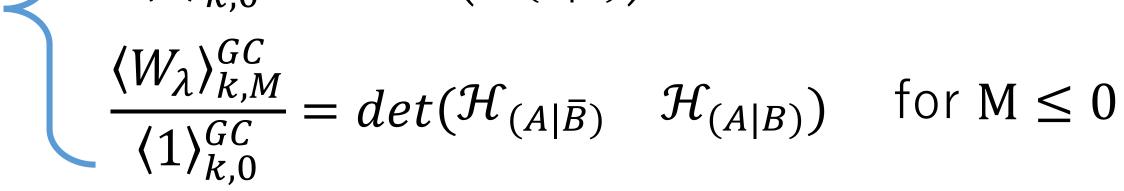
Why do we consider 2-point function?

For 1-point functions, shifted Giambelli identity

$$\frac{\langle W_{\lambda} \rangle_{k,M}^{GC}}{\langle 1 \rangle_{k,0}^{GC}} = det \begin{pmatrix} \mathcal{H}_{(\bar{A}|B)} \\ \mathcal{H}_{(A|B)} \end{pmatrix}$$

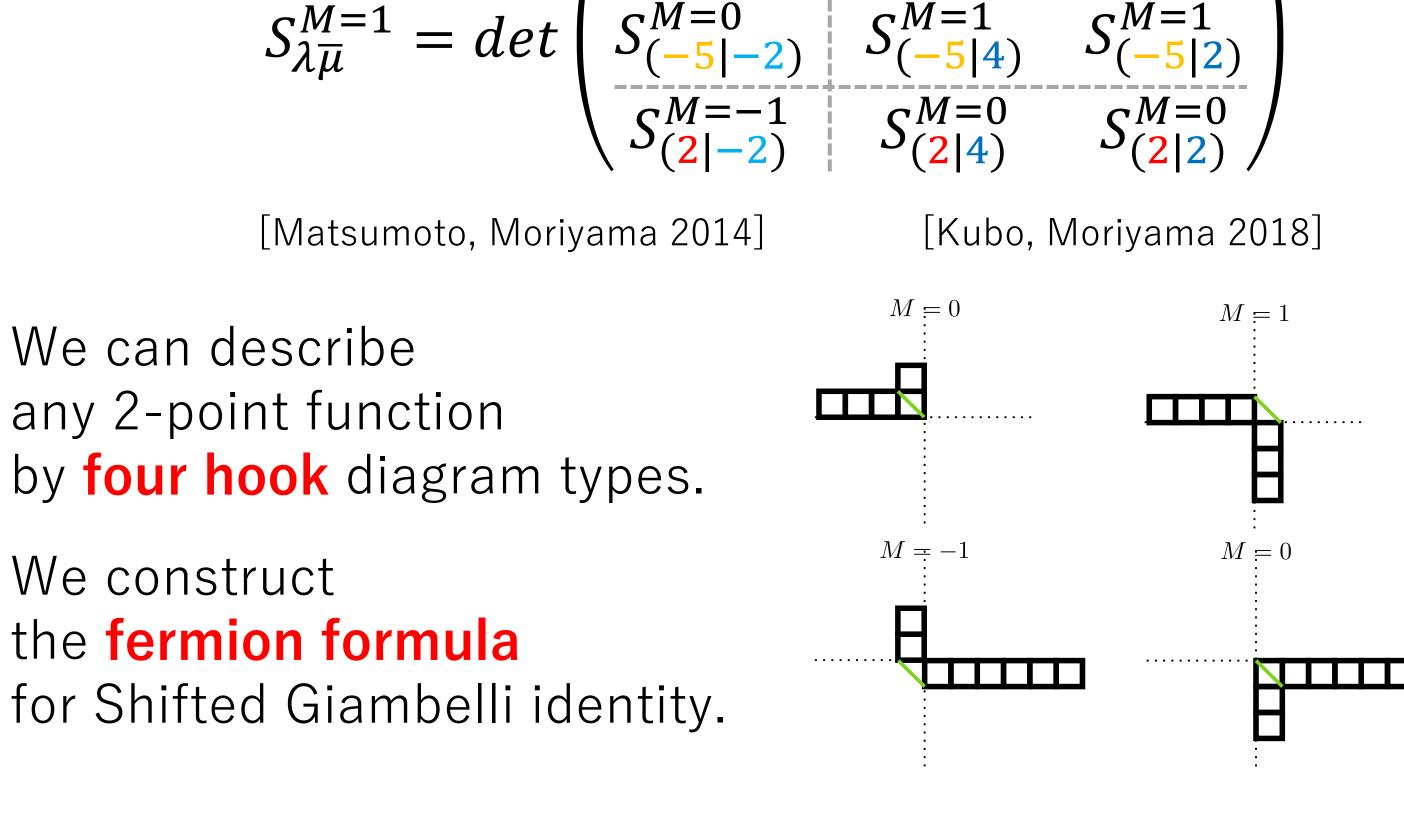
For normalized 2-point functions $S_{\lambda \overline{\mu}}^{M} = \langle W_{\lambda} \overline{W}_{\mu} \rangle_{kM}^{GC} / \langle 1 \rangle_{k,0}^{GC}$ Shifted Giambelli Identity

$$\begin{pmatrix} S_{(-3|-2)}^{M=0} & S_{(-3|4)}^{M=1} & S_{(-3|2)}^{M=1} \\ M=0 & M=1 \end{pmatrix}$$



- Component $\mathcal{H}_{(-|-)}$ does **not** appear.
- We can **not** write down components \mathcal{H} with 1-point functions.
- We can **not** represent shifted Giambelli identity as one formula.

We can solve these unsatisfactory points by generalization to 2-point function.

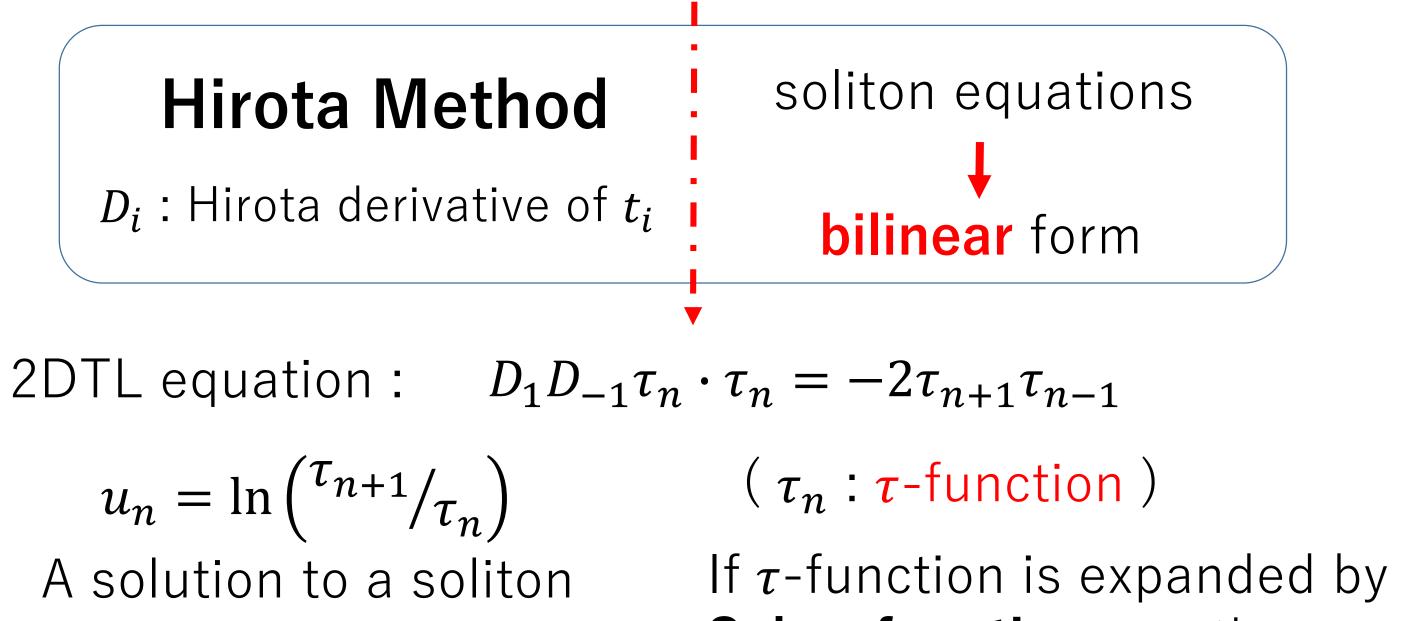


2D Toda Lattice Hierarchy (2DTL)

2DTL equation : $\frac{\partial^2 u_n}{\partial t_1 \partial t_{-1}} = e^{u_n - u_{n-1}} - e^{u_{n+1} - u_n}$

 $u_n = u_n(\cdots, t_{-2}, t_{-1}, t_1, t_2, \cdots) = u_n(t_+; t_-)$ $n \in \mathbb{Z}$

hierarchy : a set of infinite symmetries of soliton equation



ABJM/2DTL correspondence Main Result We construct the correspondence between ABJM and 2DTL not to break shifted Giambelli identity. **ABJM Matrix Model** Integrable system 2-point function \rightarrow 2DTL Hierarchy $\mu \rightarrow \phi$ $\mu \rightarrow \phi$ 1-point function \longrightarrow mKP Hierarchy ABJM/2DTL

hierarchy is written only by one function. $(\tau - function)$ $\tau_n(t_+;t_-) = \sum C_{\lambda\overline{\mu}}(n) s_{\lambda}(t_+) s_{\mu}(-t_-)$ $(\phi : trivial Young diagram)$ $2\mathsf{DTL} \longrightarrow \mathsf{mKP}$

Schur functions s_{λ} , then the coefficients $C_{\lambda \overline{\mu}}$ satisfy the **Plücher relations.**

> [Kyoto School], and see also [Alexandorov, Kazakov, Leurent, Tsuboi, Zabrodin 2012] for recent reviews.

2DTL becomes another hierarchy (mKP) by taking the trivial diagram.

Fermion Formula in 2DTL

 $\{\psi_i, \psi_i^*\} = \delta_{ij}, \{\psi_i, \psi_j\} = \{\psi_i^*, \psi_i^*\} = 0, \text{ for } i, j \in \mathbb{Z}$

 $gl(\infty)$ act to fermions :

$$\int G_{1} dy_{i} G^{-1} = \sum (R^{-1}) y_{i} dy_{i} + \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \psi_{i} \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \psi_{i} \psi_{i} \int G_{1} dy_{i}^{*} \psi_{i} \psi_{i} \psi_{i} \psi_{i} \psi_{i} \psi_{i} \int G_{1} dy_{i} \psi_{i} \psi_{i$$

We construct the 2-point functions in terms of vacuum expectation values of fermion.

$$ABJM \qquad 2DTL$$

$$S_{(A|\overline{B})}^{M=0} = \frac{\langle 0|G\psi_{\overline{A}}^{*}\psi_{-\overline{B}-1}|0\rangle}{\langle 0|G|0\rangle} \qquad S_{(A|B)}^{M=1} = \frac{\langle 0|\psi_{-B-1}G\psi_{\overline{A}}^{*}|0\rangle}{\langle 0|G|0\rangle}$$

$$S_{(A|\overline{B})}^{M=-1} = \frac{\langle 0|\psi_{A}^{*}G\psi_{-\overline{B}-1}|0\rangle}{\langle 0|G|0\rangle} \qquad S_{(A|B)}^{M=0} = \frac{\langle 0|\psi_{A}^{*}\psi_{-B-1}G|0\rangle}{\langle 0|G|0\rangle}$$

$$ABJM \qquad 2DTL$$

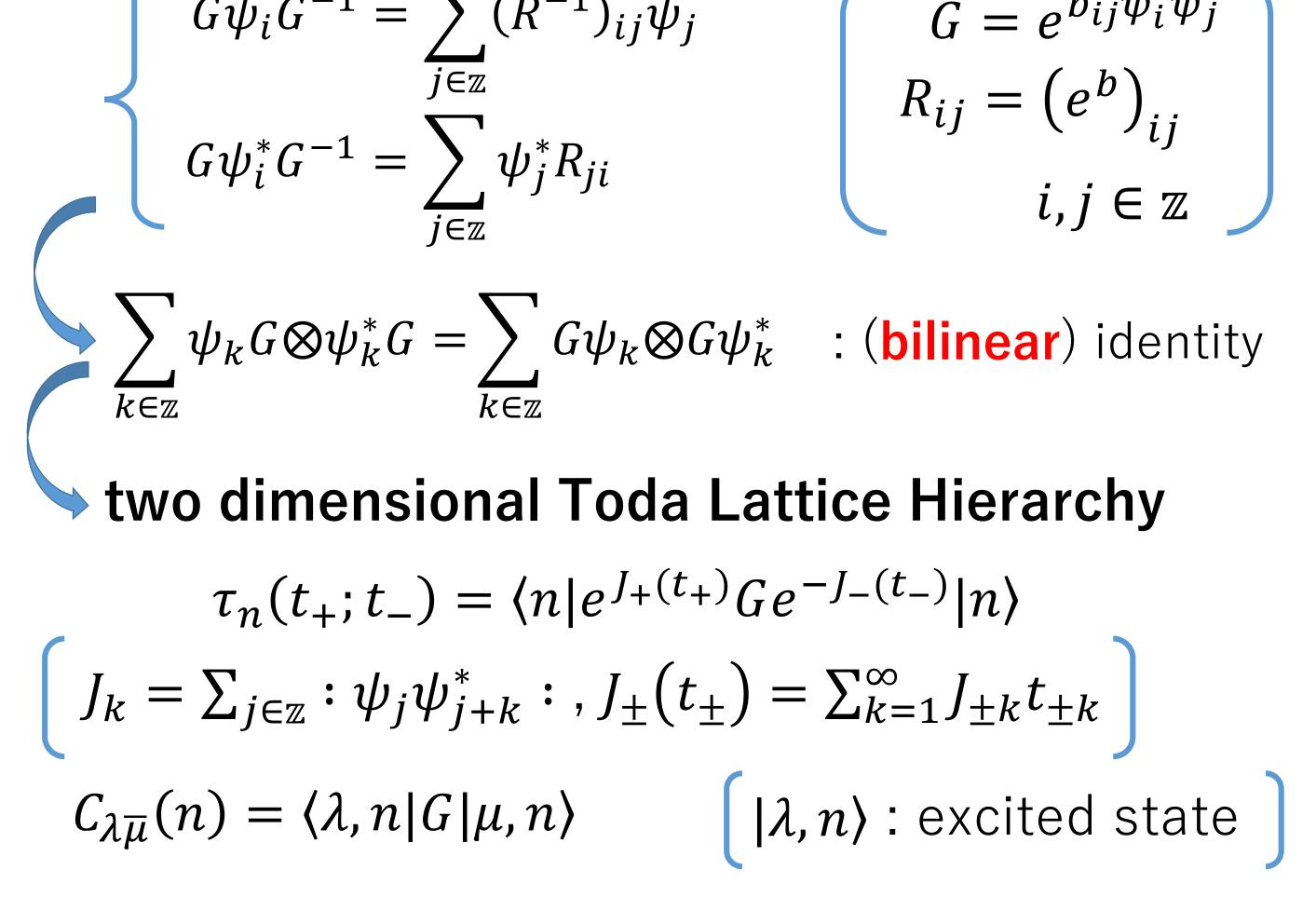
$$R_{--} = \mathcal{H}_{--}(1 + \sqrt{(\mathcal{H}_{--})^{-1}\mathcal{H}_{-+}(\mathcal{H}_{++})^{-1}\mathcal{H}_{+-}})$$

$$R_{-+} = -\mathcal{H}_{-+}(\mathcal{H}_{++})^{-1}$$

$$R_{+-} = (\mathcal{H}_{-+})^{-1}\mathcal{H}_{--}\sqrt{(\mathcal{H}_{--})^{-1}\mathcal{H}_{-+}(\mathcal{H}_{++})^{-1}\mathcal{H}_{+-}}}$$

$$R_{++} = -(\mathcal{H}_{++})^{-1}$$

$$\left(R_{ij}\right) = \begin{pmatrix} R_{--} & R_{-+} \\ R_{+-} & R_{++} \end{pmatrix} \int_{-\infty}^{-\infty} \begin{pmatrix} S_{(\overline{A}|\overline{B})}^{M=0} & S_{(\overline{A}|B)}^{M=1} \\ S_{(\overline{A}|\overline{B})}^{M=-1} & S_{(\overline{A}|B)}^{M=0} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{--} & \mathcal{H}_{-+} \\ \mathcal{H}_{+-} & \mathcal{H}_{++} \end{pmatrix}$$



Summary

In ABJM/2DTL correspondence,

Wick theorem

Generalize from [Alexandorov, Kazakov, Leurent, Tsuboi, Zabrodin 2012]

We can obtain many identities from Wick theorem!

• Shifted Giambelli identity for $C_{\lambda \overline{\mu}}(-M)$

 $\begin{cases} \left\langle W_{\lambda} \overline{W}_{\mu} \right\rangle_{k,M}^{GC} = C_{\lambda \overline{\mu}} (-M) & : \text{ABJM/2DTL} \\ \text{correspondenc} \\ \left\langle W_{\lambda} \right\rangle_{k,M}^{GC} = C_{\lambda} (-M) & : \text{ABJM/mKP} \end{cases} \end{cases}$

correspondence correspondence

Giambelli identity for 2-point functions

the generationg function of 2-point functions is τ -function.

In ABJM matrix model, the generalization to 2-point function matches the integrable structure well.

In ABJM matrix model, we found the fermionic structure for vacuum expectation values.

Future Work

We don't know the correspondence for partition function.

Does our study relate to Painvele [Bonelli, Grassi, Tanzini 2018]?

• We don't understaund the condition to parameters b_{ii} .

(New identity)

• Giambelli identity for 1-point functions

Jacobi-Trudi identity for 1-point functions

Result

Result

The Wick theorem allows us to prove above identities simply.

The ABJM/2DTL correspondence is consistent with shifted Giambelli identity.