5d Dirac fermion on quantum graph Tomonori Inoue (Kobe U) arXiv:1904.12458 [hep-th] Collaborator: Y. Fujimoto (NIT, Oita College) / M. Sakamoto, I. Ueba (Kobe U) / K. Takenaga (Kumamoto Health Sci. U)

This BC contains

• Dirichlet BC • Neumann BC • Periodic BC ...etc.

incoming current outgoing current $\sum_{n=1}^{N} j(L_a - \varepsilon) = \sum_{a=1}^{N} j(L_{a-1} + \varepsilon)$

(ε is an infinitesimal positive constant)

Quantum graph can realize all of our requirements !

$$(U \in U(2N), \quad U^2 = I_{2N})$$

What quantum graph?

A graph constructed by any edges and any vertices, and equipped with a Hermitian differential operator (Hamiltonian).

Setup

 $-j(L_2 + \varepsilon)$

We consider 5d Dirac fermions on the rose graph as an extra dimension.

Action :

$$S = \int d^4x \sum_{a=1}^{N} \int_{L_{a-1}}^{L_a} dy \,\overline{\Psi}(x, y) [i\gamma^{\mu}\partial_{\mu} + \gamma^5\partial_y + M] \Psi(x, y)$$

integral over the Rose graph

Kaluza-Klein expansion :

Sum of the degeneracy of n-th KK mode Sum of KK modes

• The rose graph contains various graphs :

Eigenvalue equations :

4d mass $(-\partial_y^2 + M^2)f_n^{(i)}(y) = m_n^2 f_n^{(i)}(y)$ $(-\partial_v^2 + M^2)g_n^{(i)}(y) = m_n^2 g_n^{(i)}(y)$

Solving the generation problem

Degeneracy of zero

mode solutions

The number of zero modes

 $\psi_{\mathrm{R},0}$ $\psi_{\mathrm{L},0}$

 $N_{\rm R} = N_{\rm L}$

Witten index

 \mathcal{M}

Generation problem

Boundary condition

(A) Type (N - 3, N + 3)

Why does nature provide three

copies of quarks and leptons?

 $U = V \begin{pmatrix} I_{N-3} & 0\\ 0 & -I_{N+3} \end{pmatrix} V^{\dagger}$

 $(V \in U(2N))$

Solving the rest problems

$$S = \int d^4x \sum_{i,j=1}^{[3]} \left[m_{ij} \overline{u_{iL}} u_{jR} + (m_{ij})^{\dagger} \overline{u_{jR}} u_{iL} + \widetilde{m}_{ij} \overline{d_{iL}} d_{jR} + (\widetilde{m}_{ij})^{\dagger} \overline{d_{jR}} d_{iL} \right]$$

Three generations of 4d chiral fermion

Mass matrix :

$$\mathscr{D}_{\text{singlet}} \xrightarrow{\text{BC of (B)}} d_{\text{R}}, s_{\text{R}}, b_{\text{R}}$$

Three generations are realized !

How to solve the rest problems

Generation problem was solved above, then we tackle the rest problems.

Flavor mixing

Overlap integrals between different generations are non-vanishing.

The mass matrices can get off-diagonal elements.

The flavor mixing is realized !

CP phase

Boundary conditions depend on unitary matrix U_{\perp} Zero mode solutions can be genuine complex functions. The mass matrices contain a CP phase !

Fermion mass hierarchy

Why are fermion masses different exponentially ?

The origin of flavor mixing

Where does the flavor mixing

Future work

• We have to analyze our model numerically whether the

Zero mode solutions are genuine complex functions.

model can produce experimental values or not.

• Since the rose graph has rich and non-trivial geometry, it would be of great interest to study non-abelian Berry phase, extended quantum-mechanical SUSY, ... etc.