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Introduction



Motivations

Gravity in higher dimensions and AdS spacetime

Non-uniqueness and various black holes

Instabilities and dynamics of such black holes



Superradiance
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Rotational superradiance: Waves can be amplified
by a rotating BH.

(cf. charged superradiance by a charged BH)



Superradiant instability
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In AdS, superradiance repeats, and the growth of
the wave giveS rise to an inStabllity. [Kunduri-Lucietti-Reall]



New solution with a helical Killing vector
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New solutions with less isometries will bifurcate

from the onset of the instability. . i1 Lcietti-Reall



Black resonators

Black holes with a single Killing vector field:
black resonators

Oscar J. C. Dias,! * Jorge E. Santos,> T and Benson Way?:*
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We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that
contain only a single Killing vector field. These solutions, which we coin black resonators, link

arXiv:1505.04793 [hep-th]

Time-periodic black holes were constructed in
AdSs and named black resonators.




This talk

The first black resonators were obtained by solving

PDEs in 4D AdS. [Dias-Santos-Way]
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In 5D, we can write a simple metric and obtain

a class of black resonators by solving ODEs.
[TI-Murata]



Geons

This term was coined by Wheeler as
"gravitational and electromagnetic entities."

Geons are self-gravitating horizonless geometries.

In the limit of zero horizon size, black resonators
smoothly reduce to geons.
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Myers-Perry AdS BH with

equal angular momenta



Setup

5D pure Einstein gravity (AdS radius L=1)
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Isometries of 5D black holes

Schwarzschild: R; x SO(4) = R; x SU(2) x SU(2)

ds® = —F(r)dt* 1 - - r2dQ)s
F(r)

General Myers-Perry: R; x U(1) x U(1)
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Myers-Perry with equal angular momenta:
R xU(2)=R; xU(1) x SU(2)

= broken to a helical Killing vector



MPAdSs with equal angular momenta

ds® = —F(r)dr> A - — o7 + 05 + B(r)(o5 + 2H (r)dT)?]
S2 St fiber

SU(2) invariant 1-forms (8,0,x: Euler angles of S3)
01 = — sin xdf + cos x sin 0do

09 = cosxdl + sin y sin 6dg¢
o3 = dx + cos 0do

U(1) isometry: v — v + ¢
(No y-dependence in dQ2 = o2 + o2 = d6? + sin6d¢?)



Superradiant instability



SU(2)-preserving U(1)-breaking perturbation

To break the U(1), we unbalance o7 + 05.

For technical reasons, we work in the rotating
frame at infinity in which H(co) = Q and H(r,) =0

In this frame, the perturbation we consider is
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View as a time periodic perturbation

We can go to the non-rotating frame by
dt =dr, dy = dy + 200dt
so that H(r) = H(r) — Q with H(oco) = 0.

o transform as oy = e™?*%5,.. oL = (01 Fios)/2

In this frame, hence, the perturbation is time periodic
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Onset of superradiant instability

As () is increased, the perturbation induces an instability.

New solutions bifurcate from the onset of the instability.
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Black resonators and geons



Cohomogeneity-1 metric ansatz
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ds® = — (1 +7%) f(r)dr?* 1

In the non-rotating frame, the ansatz is time periodic.
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Isometries: R, x SU(2)
helical
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Einstein equations
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Einstein equations

Coupled ODEs for (f',g',h",a"","").

Boundary conditions for the ODEs:
1) Asymptotically AdS with h|r=.=Q
2) Geon: regular at r=0

Black resonator: horizon at r=rn




(E,J) diagram for MPAdSs
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(E,J) diagram for black resonators

Black resonators extend to the (E,J) region
where no regular MPAdS BHs exist.
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unstable MPAdS evolves into a black resonator.



Implications to AdS/CFT

The black resonators constructed so far have (O>1,
and in fact, BH with (O>1 are small BH.
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What are dual (unstable) states to black resonators?



Application



Instability of black resonators

There is a theorem: a BH with (O>1 is always

unstable (against some perturbations).
[Green-Hollands-Ishibashi-Wald]

By using the cohomogeneity-1 metric, it is doable
to study perturbations of black resonators.

We find instabilities against general perturbations

which include SU(2) breaking modes.
[TI-Murata-Santos-Way, to appear]



Adding matter fields

We can add matter fields to the cohomogeneity-1
black resonators.

Coupling to a Maxwell field, we can obtain black
resonators dressed with photons.

[TI-Murata, to appear]



Conclusion

We constructed black resonators and geons with
a cohomogeneity-1 metric in 5D AdS

They bifurcate from the superradiant instability of
MPAdS BH with equal angular momenta and
have a helical Killing vector and a SU(2) isometry.

We can use of this metric to study properties of
black resonators including instability.



