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S 1. Introduction

*We study classical and quantum noncommutative cosmology with
a Liouville-type scalar degree of freedom.

*The noncommutativity is imposed on the minisuperspace variables
through a deformation of the Poisson algebra.

*We investigate the effects of noncommutativity of
minisuperspace variables on the accelerating behavior of the
cosmic scale factor.

*The probability distribution Iin noncommutative quantum
cosmology is also studied and we propose a novel candidate for
Interpretation of the probability distribution In terms of
noncommutative arguments.
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8 2. The model

The Liouville scalar model
S:/dﬂﬁyﬁ—g [R— !
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"Cosmological™ effective Lagrangian
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where

z(t) = V2(D - 1)(D - 2) (a+ Dci 1@) Cy(t)=® +2(D —2)aa

AE\X b-! U=x.V, S=1-2a22 72

2(D —2)

This "Cosmological" effective Lagrangian can also be

obtained from various theories, including f(R) theory,

higher-dim. theory with compactification (with flux, or
cosmological const., or Ricci-non-flat int. space,).
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§ 3. Classical dynamics

Commutative Case

Lagrangian Hamiltonian
1-2 1-2 U 2Ax 1 2 1 2 U 2Ax
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We are considering a ""cosmological™ model, so
Remember the Hamiltonian constraint! H 0O

*solution*
y(t) = P(t —ty) + v .
2
e U >0 z(t) = % tn [J sinh? fp(t — o)
eU<0 a(t)==—1 "

X U cosiZ AP(t —tg)

(P, t,, y, are constants)
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Noncommutative Case

1 y 1 P "IT AN
Hamiltonian: He = —gnfr + 51y + e

Poisson brackets: {X,IIxy} =1, {Y.Ily}=1, {X. Y} =4

Hamilton's equations:
X ={X Hp} =-lx, Y ={Y Hp} =1y — 0 U,
ﬁ}; — {H}:.} Hg} — —)\L‘TEEAX y f[}* — {H} Hg} =0,
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*solution* satisfying the constraint He 0O

o /=10

X(t) = l [n -PE ., Y(t) =Pt —ty) +yo + 0P coth APt —t,),
‘ 2N Usinh? AP(t — ta) ’ ‘ ‘ “

o /<0

X(t) = l [n P . Y(t) =Pt —tg) + yo + 0P tanh APt — ty)
‘ 2X U] cosh* AP(t —tg) ‘ ‘ ’

which is originally found by
G. D. Barbosa and N. Pinto-Neto, Phys. Rev. D70 (2004) 103512
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Noncommtativity from Commutative variables
Let us identify:

0 — f
X =x— 'Dfry? Y =y + +pfr1., Iy =m,, Iy =m,
p :an arbitrary constant.
L, 1, U 2A[z—(0—p)my /2]
Then, Hy = —5Te T 5Ty + e Py
Hamilton's equations

_ — T _ _ _ L P2l (0—p)my /2]
. o, e Y om, Ty 2 ‘ ’

oo 0o\ pee—0-pma . OHo

x b dy ’

recovers the same equations for X, Y, N ., I ,, and the same
solutions, for any p .
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8§ 4. Accelerating universe

ds* = —di’ + S*(n)dx", S(n) = e, dy=+e!P " dt = £ dt
dS _pdS_ 1 dS*P S 1 g pd'S*T

dny dt — D—-2 dt ' dpf D-2 dez

I A(t)

dt?

A(t)

red curves: ¢ — (.1.0.2.0.3.0.4, 0.5, blue curves: g — —0.1. -0.2. —0.3

_§P-2(1) £ 2® 50, expansion is accelerating.
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8 5. Wave function of the Universe

To obtain Wheeler-DeWitt equation (for the minisuperspace),

replace momenta as T, — —iZ and T, = —ix.

Express WDW eq. in Noncommutative case by commutative variables:

- O—p 0 . O4+p 0
X—=>X=zx+1 > oy Y Y =y—i e

h . f~ L d
HX%’H}{:—?-a, H}f’—}H}’:—?-a—y.

EX: Confirm [X.IIx] =i, [Y.IIy]=i. [X,Y]=i0 !

Note that If p 0,Y vy !
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Now, WDW eq. of Noncommutative Quantum Cosmology becomes:

0?0 0—p d
— | — i} ) f—
{8:1:9 s + Uexp [J’u (T +i— 83_;)] } Uz, y) =0

The solution of the WDW eq.

Wiz, y) = f dv A, U, (z,y) = f dv A, 1, (z) V=W

=0 —o0

where 4, (z) = c; Fy n (VU PR N | 0y Gy (VT SEFER2 1)) - (U > 0)

With Fo2) = 5o () +J(2) s Gule) = g

and 4, (z) = es Ky (/|U]?E7EA2 0 (U < 0)

J(2) = J-u(2)

We are interested in ¥(X.Y), instead of ¥(z,y) !
(We want to see some correspondence with class. sol.)
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If p ©,Y y ~common variable both for C & NC
then 11,0, = v, .
Thus, for a wave packet peaking aroundvy P,
we can regard X ~ ¢ — P approximately.
Hereafter, we consider

A =T (P-T/2<v<P+T/2), and A, =0 (v<P-T/2, P+T/2<v)
Ay
T Y
T T T
P-1/2 P P+T/2

(rectangular amplitude)
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0 =0 6 =0.1 0 =-0.1
bold curves indicate classical solutions!
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§ 6. Wigner function of the Universe

For a wave function ¢(q), the Wigner function is defined as:

[ N u U\ o
Wan =5 [ dug(a=5)o(a+3)e
properties: f_ dpW(g.p) = ()" . f_ dqW(g.p) = | (p) |
where 4(p) IS the Fourier transform of ¢(q).

For our wavefunction:

W[I'.-y!py] — if du ™ (I Yy — E) \Jr (:._," Y+ %) E_ipyi"

— du/ dy A5 (2) Ay (z) etV )= yu]f dy g~ ilPy—¥'+v)/ 2

2?1’ —

[}
- f AU A o () Apy o2ty suya(2) €I
—aa
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Its Fourier transform:

) I e
Wiz, v,p,) = ﬂf dyWiz,y.pyle” (y—vo)

= Apy—v/21Vp, /2 ) Ap, v 2¥p, v p2(T)

Our Idea:

—

define X =x—-#6p,, X =0x+p, and
integrate out X .

o e

. 1 P e
aw(X.v) = 1 | AXW((X,X),v,p,(X. X))

—00
|

X +6X X.X)=
(X +6X), py( X, X) T

where z(X,X) = (X — 6X)

1 4 62
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Check and Confirm our idea

Compare o(X,v) with the Fourier transform of the density
obtained in the previous section:

glX,v) = %f riyf dv”fﬁ dir’ A2 (X + OP) At [ X + gp},giiﬂ'—ﬂ"lw—yn)E—!’H[y—yn)

- f dv" ALy Uy (X 4 0P ) Ayl upa (X + 0P).
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=3 =3I -1 i L I 3 4 =1 =X =1 :;I: 1 a
() (b) (e}

almost indistinguishable
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8 7. Discussion and Outlook

o A NonCommutative (NC) deformation of the
minisuperspace variables is studied by means of an integrable
model. Its analytical solutions are obtained in classical and
quantum cosmology.

e We showed that the peak of the wave packet reproduces
the classical trajectory by using exact solutions with an
Interpretation of the NC variables in the present model.
e \We proposed a new probability distribution in NC quantum
cosmology constructed from the Wigner function. Its validity
In the present solvable model is confirmed numerically.
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e In future study, we will investigate general NC cosmology
by using the probability distribution function. General
deformations of minisuperspace variables should be studied
further.

e The model with a phantom scalar field and/or a phantom
gauge field may also be worth studying in the context of NC
cosmology.
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