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Abstract

We study the OPE coefficients c∆,J for heavy-light scalar four-point functions, which
can be obtained holographically from two point function of a light scalar for some
non-integer conformal dimension ∆L is AdS black hole.
We verify that the OPE coefficient cd,0=0 for pure gravity, satisfying the consistency
of holographic energy-momentum tensor Tµ

µ=0.

We then study the OPE coefficients from black holes involving matter fields. First we
consider the charged black hole and give some explicit example of OPE coefficients
and then the recursion formula for the lowest-twist OPE coefficients with at most two
current operators.

Finally we consider the charged AdS black hols in gauged supergravity derive the
linear perturbation of such a scalar dual to the operators with ∆L = d − 2 and obtain
the OPE coefficients cd−2,0



Motivation

The AdS/CFT correspondence establishes an insightful routine to investigate a
strongly coupled conformal field theory(CFT) by using appropriate weakly
coupled gravity in AdS space [J.M. Maldacena, hep-th/9711200]. Typically, even
though the structures are same, different gravity theories may lead to different
CFT data. Thus gravities can be served as effective CFTs

The simplest as well as nontrivial structures of holographic CFTs is four point
functions, which can be decomposed into conformal blocks determined by
conformal symmetry with theory dependent OPE coefficient. [J.D. Qualls,
1511.04074; S.Rychkov, 1601.05000]. However, although the holographic
conformal blocks as the geodesic Witten diagram were studied extensively [E.
Hijano 1508.00501; K.B. Alkalaev 1510.06685], explicitly computing them for quite
general classes of higher-derivative gravities is rather challenging.

On the other hand, higher-point correlation functions, such as four-point
functions can be studied further than the structures without referring to any
specific theory by bootstrap program [D. Poland, 1805. 04405]. The consistency:
the unitarity, the crossing symmetry and ANEC can universally constrain the
spectrum and CFT data beyond higher-point functions.

Follow this motivation and the formalism set up by literatures [A.L. Fitzpatrick,
1903.05306], we study the holographic OPE coefficients for general black holes
involving matter fields.
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Four-point functions from holography

In this section, we will take a brief review about the holographic technique to
compute the heavy-light four point functions in heavy limit, developed in [A.L.
Fitzpatrick, 1903.05306].
In s-channel in the conformal frame, the four-point function can be decomposed as

〈OHOLOLOH〉 = (zz̄)−
∆H +∆L

2

∑
O

c∆,J G∆HL ,−∆HL
∆,J (z, z̄) , (1)

In the holographic picture, the AdS black hole can be interpreted as the excited states
|BH〉 ' OH |0〉. In heavy limit, we can treat the heavy-light four point function like

〈OHOLOLOH〉 ' 〈OLOL〉BH . (2)

In other word, we can use the standard holographic dictionary to derive the two point
function in the AdS black hole background instead of computing complicated
four-point function.
According to the crossing symmetry, it is advantageous to compute such as four point
function t-channel as

〈OLOL〉BH = ((1 − z)(1 − z̄))−∆L
∑
Õ

c̃∆,J G0,0
∆,J(1 − z, 1 − z̄) , (3)



Four-point functions from holography

For convenience, we replace z by 1 − z and take the light cone limit z→ 0:

〈OLOL〉BH = (zz̄)−∆L
∑
O

c∆,J G0,0
∆,J(z, z̄) . (4)

Remark on conformal block:
by the virtual of the conformal symmetry the four-point function can be written in a compact
form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
g(u, v)

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

( x2
24

x2
14

) ∆12
2

( x2
14

x2
13

) ∆34
2 , (5)

where xij = xi − xj, ∆ij = ∆i − ∆j and g(u, v) is a function of the cross ratios (u, v):

u =
x2

12x2
34

x2
13x2

24

= zz̄ , v =
x2

14x2
23

x2
13x2

24

= (1 − z)(1 − z̄) . (6)

To study the four-point functions, it is standard and convenient to use the conformal symmetry
to take the conformal frame, namely

x1 = (0, 0, · · · ) , x2 = (x, y, 0, · · · ) , x3 = (1, 0, · · · ) , x4 → ∞ . (7)

Defining z = x + iy and z̄ = x − iy, we have

u = zz̄ , v = (1 − z)(1 − z̄) . (8)



Four-point functions from holography

By applying the OPE expansion, g(u, v) is expected to be decomposed into conformal blocks
characterized by conformal dimension ∆ and spin J

g(u, v) =
∑
∆,J

λJ
12∆λ

J
34∆G∆12 ,∆34

∆,J (z, z̄) , (9)

where λij∆’s are the coefficients in OPE expansions and hence the three-point functions are
〈OiOjO∆,J〉 ∝ λ

J
ij∆.

In general even d dimension, we consider the OPE limit (z � 1, z̄ � 1), for which the leading
OPE tells us the conformal block can take the simple form

G00
∆,J = (zz̄)

∆
2

J!

( d
2 − 1)J

C
d
2 −1
J (

z + z̄

2
√

zz̄
) + · · · , (10)

where C
d
2 −1
J is the Gegenbauer polynomial.



The construction in pure gravity backgrounds

we consider gravity minimally coupled to a free massive scalar:

L =
√
|g|

(
R − 2Λ + L(Rµνρσ) − 1

2 (∂φ)2 − m2φ2
)
, Λ =

d(d − 1)
2`2

0

, (11)

Maintaining the spherical symmetry, one can construct Euclidean AdS planar black
holes (with φ remaining zero):

ds2 = r2f (r)dt2 +
1

r2h(r)
dr2 + r2(du2 + u2dΩ2

d−2) . (12)

For Einstein gravity, we have the solution of Schwarzschild-AdS planar black hole:

f = h = 1 −
f0

rd . (13)

For general L(Rµνρσ), we could take the massless mode and h and f can have such
asymptotic form

f (r) = 1 −
f0

rd −
fd

r2d − · · · , h(r) = 1 −
h0

rd −
hd

r2d − · · · . (14)

The equation of motion of the free scalar field φ in the AdS black hole background is

(� − m2)φ = 0 , m2 = ∆L(∆L − d) ≥ m2
BF = 1

4 d2 , (15)



The construction in pure gravity backgrounds

According to the holographic dictionary, the solution of φ give rise to the
bulk-to-boundary propagator Φ(r, t, u) in which the coefficient of 1/r∆L is the two
point function. We making the coordinate transformation as

t = −
1
2

(z + z̄) , u =
i
2

(z − z̄)

w2 = 1 + r2(t2 + u2) = 1 + r2zz̄ , û = ru =
i
2

r(z − z̄) . (16)

In this coordinate system ,the equation of motion of φ in AdS vacuum can be
expressed simply as

ΦAdS = (
r

w2 )∆L ∼
(zz̄)−∆L

r∆L
+ · · · , for r → ∞ . (17)

Comparing to the four point function in heavy limit, it is natural to factorize the bulk
to boundary propagator in general asymptotic form

Φ(r,w, û) = ΦAdSG(r,w, û) . (18)

Then the function G(r,w, û) in the r → ∞ limit is precisely the conformal block. In
other words, the holographic dictionary now reduces to∑

O

c∆,J G0,0
∆,J(z, z̄) = lim

r→∞
G(r,w, û) . (19)



The construction in pure gravity backgrounds

There are two sets of operators that can exchange in the OPE expansions in scalar
four-point function, one is multi-stress operator Tn, denoting n stress tensor
multiplication and contributing ∆ = nd in conformal block. like

Tµ1µ2 · · · Tµn−1µn . (20)

The other set is double-trace operator with spin J and conformal dimension
∆ = 2∆L + 2n + J:

[OL]∆
J = OL�

n∂µ1 · · · ∂µJOL .. (21)

According to this result, the near boundary expansion for G(r,w, û) should be take
the form

G(r,w, û) = 1 + GT (r,w, û) + GL(r,w, û) ,

GT (r,w, û) =
1
rd

∑
i∈N

GT
i (w, û)

rid , GL(r,w, û) =
(w

r
)2∆L

∑
i∈2N

GL
i (w, û)

ri , (22)

When ∆L is not an integer, this two set is independent.



The construction in pure gravity backgrounds

Since GT
i and GL

i should be related to the conformal blocks with certain ∆, they must
take the polynomials of û,

GT
i =

2(1+i)∑
j∈2N

aij(w)ûj , GL
i =

i∑
j∈2N

bij(w)ûj . (23)

The truncation is a little subtle. If there is no truncation, we will obtain

1
r∆

∞∑
m=−∞

w∆−mûm ∼

∞∑
m=−∞

(zz̄)
∆−m

2 (z − z̄)m . (24)

However, the lowest power for z in conformal blocks should be 1
2 (∆ − J), we then

have m ≤ J. Thus, for the multi-stress set Tn, we have the m ≤ 2(1 + i) truncation and
for the double-trace set (21) we have the truncation that the m ≤ J = i − 2n ≤ i and
that the coefficients of the higher-n terms vanish.
As the result, it can turns out that in d-dimension aij(w) can be the polynomial of w:

aij(w) =

(1+i)d−j∑
k=−2(1+i)

aijkwk , (25)



The consistency of cd,0 = 0

The OPE cd,0 describe the exchange particle with ∆ = d and spin-0 operator. The
only operator contribute cd,0 is the trace of the energy-momentum tensor

Tµ
µ . (26)

To show this, we note that for n = 1, with maximum J = 2, so that G(r,w, û) should
take up to û2:

G(r,w, û) = 1 +
1
rd

( d
2∑

k=−2

akw2k +

d−2
2∑

k=−2

bkû2w2k
)
. (27)

Plugging into the equation of motion of φ, an and bn can be solved as

b−1 = −
f0∆L

d + 1
, bk =

(d − 2k)
2(d − k)

bk−1 , k = 2, 3, . . . . (28)

For even d, the series terminates at k = d/2 and hence we have

bk = −
(d − 2)f0∆L(2 − d

2 )k−1

4(d2 − 1)(2 − d)k−1
, −1 ≤ k ≤ 1

2 d − 1 , (29)

where (i)j is the Pochhammer polynomial

(i)j =
Γ(i + j)

Γ(i)
. (30)



The consistency of cd,0 = 0

The û0-order terms give rise to the recursion relation for an:

a−1 = −
(f0 + h0)∆L

d + 1
, a0 =

(d − 1)(f0 − h0) + 2(f0 + h0)∆L

4(d + 1)
,

a1 =
(f0 + h0(d − ∆L) + df0(∆L − 2))∆L

4(d2 − 1)(∆L − 1)
,

ak =
(2 + d − 2k)(k − ∆L − 1)ak−1 − (d − 1)bk−1

2(d − k)(k − ∆L)
, k ≥ 2 . (31)

We thus end up with

ak =
∆L(−dh0 − f0k + df0(k + 1 − ∆L) + h0∆L)(1 − d

2 )k−1

4(d2 − 1)(k − ∆L)(2 − d)k−1
, k ≥ −1 . (32)

With the solution (32) and (29), both OPE coefficients cd,0 can be read off. We find
that the coefficient cd,0 is

cd,0 =

√
π2−d−1∆L(d − ∆L)Γ

(
d
2

)
(f0 − h0)

(d − 2∆L)Γ
(

d+3
2

) . (33)
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The contruction and explicit examples

We consider a general class of theories of the following form

L = R − 2Λ − 1
4 F2 +L(Rµνρσ,Fµν) − 1

2 (∂φ2 + m2φ2) , (34)

where L(Rµνρσ,Fµν) represents the higher-order invariant polynomials of the
curvature tensor and the strength Fµν and hence matter and gravity can be generally
non-minimally coupled.

The falling off of the metric function

f = 1 −
f0

rd +
f̃0

r2(d−1) −
fd

r2d + · · · , h = 1 −
h0

rd +
h̃0

r2(d−1) −
hd

r2d + · · · , (35)

where f̃0 is proportional to Q2 (the charge squared) of black holes.

To be precise, we now have the power series

G(r,w, û) = Gs(r,w, û) =
∑
i,j∈N

Gij(w, û)
rid+2j(d−1) , G00 = 1 , (36)



d=4

In d = 4,

f = 1 −
f0

r4 +
f̃0

r6 −
f4

r8 +
f6

r10 + · · · , h = 1 −
h0

r4 +
h̃0

r6 −
h4

r8 +
h6

r10 + · · · . (37)

The structure of G:

G(r,w, û) = 1 +
G10(w, û)

r4 +
G01(w, û)

r6 +
G20(w, û)

r8 +
G11(w, û)

r10 + · · · ,

G10 =

4−i∑
j=−2

2∑
i=0

α10
ij ûiwj , G10 =

6−i∑
j=−2

2∑
i=0

α01
ij ûiwj ,

G20 =

8−i∑
j=−4

4∑
i=0

α20
ij ûiwj , G11 =

10−i∑
j=−4

4∑
i=0

α11
ij ûiwj . (38)

We obtain explicit OPE coefficients

∆ = 6:

JµJ
µ , c6,0 = −

∆L(∆2
L − 4∆L + 9)(3f̃0 − 2h̃0)

1680(∆L − 3)(∆L − 2)

JµJν , c6,2 = −
f̃0∆L(1 + ∆L)
560(∆L − 2)

, (39)



d = 4

∆ = 8:

TµνTµν , c8,0 =
∆L

201600(∆L − 4)(∆L − 3)(∆L − 2)

(
2(∆L(∆L(∆L(7∆L − 45) + 100)

+100) + 228)f 2
0 − 2(∆L(∆L(∆L(7∆L − 55) + 130) + 80) + 168)f0h0

+40∆L((∆L − 3)∆L + 20)(2f4 − h4) + 960(2f4 − h4)
+(∆L − 6)(∆L(∆L(7∆L − 23) + 22) + 12)h2

0

)
,

TµρTρ
ν , c8,2 =

∆L

201600(∆L − 3)(∆L − 2)

(
(21∆3

L − 49∆2
L + 126∆L + 76)f 2

0

−2(7∆3
L − 13∆2

L + 52∆L + 32)f0h0 + 80(∆2
L + 3∆L + 2)f4

)
,

TµνTρσ , c8,4 =
∆L(7∆2

L + 6∆L + 4)f 2
0

201600(∆L − 2)
, (40)
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Guaged supergravity

Chow proposed a class of Einstein-Maxwell-Dilaton (STU) models in general
dimensions, in which the Lagrangian is [D.D.K. Chow 1108.5319].

L = R − V −
1
2

(∂ϕ1)2 −
1
2

(∂ϕ2)2 −
1
4

2∑
i=1

X−2
i (Fi)2 , Xi = e−

1
2 ~ai ·~ϕ ,

V = −(D − 3)2X1X2 − 2(D − 3)(X1X2)−
D−3

2 (X1 + X2)
+(D − 5)(X1X2)−(D−3) ,

~ϕ = (ϕ1, ϕ2) , ~a1 = (
√

2
D−2 ,

√
2) , ~a2 = (

√
2

D−2 ,−
√

2) . (41)

Charged AdS black hole can be obtain:

ds2
D = (H1H2)−

D−3
D−2 f̃ dt2 + (H1H2)

1
D−2 (f̃ −1dρ2 + ρ2dxidxi) ,

Xi = H−1
i (H1H2)

D−3
2(D−2) , Ai =

√
µ

qi
(1 − H−1

i )dt ,

f̃ = −
µ

ρD−3 + ρ2H1H2 , Hi = 1 −
q2

i

ρD−3 , i = 1, 2 . (42)



Guaged supergravity

We can consistently truncate ϕ2 = 0 by requiring F1 = F2 = F/
√

2. The resulting
theory admits the the black holes in (42) with q1 = q2. We then turn on the linear
perturbation. The linear perturbation of the φ can be deduced as

(� − m2(r))φ = 0, (43)

where
m2(r) = −2(D − 3)e

D−4√
2(D−2)

ϕ1 +
1
2

e
√

2
D−2 ϕ1 F2 . (44)

Plugging the background solution in to the perturbation function, we find the fall off

of m2(r) is

m2(r) = −2(d − 2) −
m0

rd−2 + · · · , m0 = −
2(d − 2)(d − 3)q

d − 1
. (45)

We could conclude that we have operators contribute ∆ = d − 2 and we now turn to
derive it. For the spin-0, the G can be taken

G(r,w, û) = 1 +
G(d−2)(w)

rd−2 + · · · . (46)

Substituting the antantz into the E.O.M, the reduced equation is

−2(d − 2)(w2(∆L − 1) − 2∆L)G(d−2) + w((d(w2 − 2) + (w2 − 1)(2∆L − 5))G(d−2)′

−2(m0 + (w2 − 1)G(d−2)′′ )) = 0 . (47)



Guaged supergravity

It can be exactly solved that

G(d−2) =
1

2(∆L − 1)Γ(d − 1)

(
m0wd−4(w2 − 1)1− d

2 (wdΓ(
d
2
− 1)Γ(

d
2

)

−w2Γ(d − 2)) 2F1[2 − 1
2 d, 1

2 (d − 2); 1
2 d; w−2]

)
. (48)

We consider the even d in such that the polynomial antantz, we have

cd−2,0 =
m0Γ( d

2 − 1)Γ( d
2 )

2(∆L − 1)Γ(d − 1)
= −

2qΓ( d
2 )2

Γ(d)
. (49)



Guaged supergravity

We take an example of d = 4, denoting that the gauged supergravity will reduce to
D = 5 STU model. The metric function will have such fall off that

h = −
gtt

r2 = 1 −
µ

r4 +
µq(1)

3r6 −
µq(2)

9r8 +
µq(3)

81r10 + · · · ,

f =
r2

gρρ

( dr
dρ

)2
= 1 −

µ − 2
9 q(2)

r4 +

1
3µq(1) − 4

81 q(3)

r6 −
q(2)( 1

3µ −
1
27 q(2))

r8

+

1
81µ(6q(1)q(2) + 5q(3)) − 4

729 q(2)q(3)

r10 + · · · , (50)

where we denote

q1 = q1 + q2 + q3 , q(2) = q2
1 + q2

2 + q2
3 − q1q2 − q1q3 − q2q3 ,

q(3) = (2q1 − q2 − q3)(2q2 − q1 − q3)(2q3 − q1 − q2) . (51)

Here we print some explicit result of the OPE coefficient:

c2,0 =
m0

4(∆L − 1)
, c4,2 =

f0∆L

120
, c6,2 =

∆L(7f0m0 − 6f̃0(∆L + 1))
3360(∆L − 2)

,

c4,0 =
4(∆L − 1)((∆L − 4)∆L(f0 − h0) + 5m2) + 15m2

0

480(∆L − 2)(∆L − 1)
, (52)



Conclusion

We study the holographic OPE coefficients for heavy-light scalar four point
function in heavy limit where the heavy operator can be treated as the excited
state of black hole.We find that in pure gravity involving only massless graviton,
i.e. f0 = h0, the OPE coefficient cd,0=0.

We also include the Maxwell field and study the holographic OPE coefficients
in the charged AdS black hole background, where the current operator will be
exchanged. However we found that the spin-1 current operator J that the
scaling dimension is ∆ = d − 1 will not violate the consistency.

Finally, we consider gauged supergravity theory in which the black holes
involve a set of scalar fields. We find that the scalar are conformally massless
and contribute the exchange scalar with ∆ = d − 2. We found that in d = 4, even
though when the leading order f0 = h0, cd,0 , 0.


