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Matrix Model = Spectral Theory

• M-Theory, Mother, Membrane (M2), Mystery
• ABJM Theory for Multiple M2-branes

[Aharony-Bergman-Jafferis-Maldacena 2008]

• Partition Function is Localized to Matrix Model
[Kapustin-Willett-Yaakov 2009]

• Large N Expansion =  N3/2 , Airy Function
[Drukker-Marino-Putrov 2010, Fuji-Hirano-M 2011]

• Matrix Model as Spectral Det, Det( 1 + z H−1 )
(Fermi Gas Formalism) [Marino-Putrov 2011]



Matrix Model = Topological String

• Matrix Model by Topological Strings
[Hatsuda-Marino-M-Okuyama 2013]

• Many Generalizations
[... ... … 2013-2019]

But, Why Interesting? What is New?



No More Matrix Models

• ST / TS Correspondence
(Spectral Theories / Topological Strings)

[Grassi-Hatsuda-Marino 2014]

• On one hand,
Matrix Model = Spectral Theory

• On the other hand,
Matrix Model = Topological String



Advantages of ST / TS 

• At Least Technically, 
Group Theoretical Structure

- So Far, Free Energy of Topological Strings in Kahler Parameters
… Complicated & Ambigous …

- With Group Theoretical Structure, in Characters

• Conceptually, replace MM by ST / TS?

Moduli
of M2 Weyl Group



Especially, in ”Strings & Fields 2017”

• Free Energy of Topological Strings
F = Σ N [(characters) e−μ/k

+ { (characters) μ + ∂(characters) } e−μ]
N: Multiplicities of Representations (BPS indices)
- (2,2) Model,                so(10) → so(8)
- Rank Deformations,  so(10) → [su(2)]3

For D5[=so(10)] Del Pezzo Geometry



Especially, in ”Strings & Fields 2017”

• Free Energy of Topological Strings
F = Σ N [(characters) e−μ/k

+ { (characters) μ + ∂(characters) } e−μ]
N: Multiplicities of Representations (BPS indices)
- (2,2) Model,                so(10) → so(8)
- Rank Deformations,  so(10) → [su(2)]3

Question: Explain the Symmetry Breaking!
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1. ABJM Theory
(Background)



[Aharony-Bergman-Jafferis-Maldacena 2008]

ABJM Theory

N=6 Chern-Simons Theory

U(N)k U(N)-k

N x M2 on C4 / Zk



Brane Configuration in IIB

NS5-brane (1,k)5-brane

N x D3-branes

N x D3-branes

(IIB String Theory)

From Large Supersymmetries
[Kitao-Ohta-Ohta 1998, ...]

→ T-duality to IIA
→ Lift to M-Theory



Grand Canonical Ensemble

• Partition Function Zk(N) & Grand Partition F
[Marino-Putrov 2011]

Ξk(z) =  ΣN=0
∞ zN Zk(N)

(N : Particle Number, z : Dual Fugacity)

• Spectral Determinant      Ξk(z) = Det( 1 + z H−1 )
H−1 = (P1/2+P−1/2)−1 (Q1/2+Q−1/2)−1

or     H = (Q1/2+Q−1/2) (P1/2+P−1/2)
( Q = eq, P = ep, [q,p] = i 2πk )

NS5 (1,k)5



From Matrix Models To Curves

Grand Partition Function Ξk(z)

Spectral Det
Det ( 1 + z H−1 )

Free Energy of Top Strings
exp [ Σ Nd

jL,jR Fd
jL,jR (T) ] 

[..., Hatsuda-Marino-M-Okuyama 2013]

H = (Q1/2+Q−1/2) (P1/2+P−1/2)
(Curve Eq of Local P1 x P1)

Nd
jL,jR : BPS index on 

Local P1 x P1

d: degree, (jL,jR): spins

[Marino-Putrov 2011]

T=T(z) : Kahler Parameters



From Matrix Models To Curves

(Without Referring To Matrix Model)

Spectral Det
Det ( 1 + z H−1 )

Free Energy of Top Strings
exp [ Σ Nd

jL,jR Fd
jL,jR (T) ] 

H = (Curve Eq)
Q = eq, P = ep, [q,p] = i 2πk

Nd
jL,jR : BPS index

on the Curve

[Grassi-Hatsuda-Marino 2014]



2. Super Chern-Simons Theories
(Questions)



As a simple generalization

Nd
jL,jR : BPS index on 

Local D5 Del Pezzo

Free Energy of Top Strings
exp [ Σ Nd

jL,jR Fd
jL,jR (T) ] 

Spectral Det
Det ( 1 + z H−1 )

H=(Q1/2+Q−1/2)2(P1/2+P−1/2)2

• (2,2) Model                                           [M-Nosaka 2014]

NS5 (1,k)5



Natural Because

For (2,2) Model
H = (Q1/2+Q−1/2)2 (P1/2+P−1/2)2

= Q1P1+2P1+Q−1P1+2Q1+4+2Q−1+Q1P−1+2P−1+Q−1P−1

Well-known Newton Polygon of D5[=so(10)] Curve

Q#

P#



Also

• (1,1,1,1) Model                                     [Honda-M 2014]

H = (Q1/2+Q−1/2)1(P1/2+P−1/2)1(Q1/2+Q−1/2)1(P1/2+P−1/2)1

= Q1/2 P1/2 Q1/2 P1/2 + …
= q−1/4 Q P + …
(Since PαQβ = q−αβ QβPα, q = e2πik)

The Same D5 Curve



Furthermore, Two Models are

• connected by Rank Deformations (M1,M2)

• described by Topological Strings                        
in A Single Function:

- Prepare Six Kahler Parameters Ti
± = ... (i = 1,2,3)

- Total BPS indices are distributed by Various Combinations 

Free Energy of Top Strings
exp [ Σ Nd

jL,jR Fd
jL,jR (T) ] 

[M-Nakayama-Nosaka 2017]

Hanany-Witten
Transition



Decomposition of BPS index

• Explicitly, 6 Degrees for 6 Kahler Parameters
Σ Nd

(jL,jR) (d1
+,d2

+,d3
+;d1

−,d2
−,d3

−)・(T1
+,T2

+,T3
+;T1

−,T2
−,T3

−)
• BPS Index
- d=1, (jL,jR)=(0,0)   

16 → 2(1,0,0;0,0,0)+4(0,1,0;0,0,0)+2(0,0,1;0,0,0)
+2(0,0,0;1,0,0)+4(0,0,0;0,1,0)+2(0,0,0;0,0,1)

From Tables in
[Huang-Klemm-Poretschkin 2013]

How About Higher Degrees?



Decomposition of BPS index

|d| {d = (d+1 , d
+
2 , d

+
3 ; d

−
1 , d

−
2 , d

−
3 )} ±Nd

jL,jR
(jL, jR)

(1, 0, 0; 0, 0, 0) (0, 0, 0; 1, 0, 0) 2(0, 0)

1 (0, 1, 0; 0, 0, 0) (0, 0, 0; 0, 1, 0) 4(0, 0)

(0, 0, 1; 0, 0, 0) (0, 0, 0; 0, 0, 1) 2(0, 0)

(0, 2, 0; 0, 0, 0), (1, 0, 1; 0, 0, 0) (0, 0, 0; 0, 2, 0), (0, 0, 0; 1, 0, 1) (0, 12)

2 (1, 0, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1) (0, 1, 0; 1, 0, 0), (0, 0, 1; 0, 1, 0) 2(0, 12)

(1, 0, 0; 1, 0, 0), (0, 1, 0; 0, 1, 0), (0, 0, 1; 0, 0, 1) 4(0, 12)

(2, 0, 0; 1, 0, 0), (0, 2, 0; 0, 0, 1),
(1, 1, 0; 0, 1, 0), (1, 0, 1; 0, 0, 1)

(1, 0, 0; 2, 0, 0), (0, 0, 1; 0, 2, 0),
(0, 1, 0; 1, 1, 0), (0, 0, 1; 1, 0, 1)

2(0, 1)

3 (0, 2, 0; 0, 1, 0), (1, 0, 1; 0, 1, 0),
(1, 1, 0; 1, 0, 0), (0, 1, 1; 0, 0, 1)

(0, 1, 0; 0, 2, 0), (0, 1, 0; 1, 0, 1),
(1, 0, 0; 1, 1, 0), (0, 0, 1; 0, 1, 1)

4(0, 1)

(0, 0, 2; 0, 0, 1), (0, 2, 0; 1, 0, 0),
(0, 1, 1; 0, 1, 0), (1, 0, 1; 1, 0, 0)

(0, 0, 1; 0, 0, 2), (1, 0, 0; 0, 2, 0),
(0, 1, 0; 0, 1, 1), (1, 0, 0; 1, 0, 1)

2(0, 1)

Table 2: The BPS indices Nd
jL,jR identified for the (2, 2) model under the assumption of

six Kähler parameters. Here ±Nd
jL,jR

(jL, jR) on the top of the right column stands for the

abbreviation of (−1)|d|−1
∑

{d}
∑

jL,jR
Nd

jL,jR(jL, jR).

N (1,0,0;0,0,0)
0,0 = N (0,0,0;1,0,0)

0,0 = N (0,0,1;0,0,0)
0,0 = N (0,0,0;0,0,1)

0,0 = 2. (3.42)

After fixing the Kähler parameters to be (3.29) we can proceed further to higher instantons.

Since we have generated six Kähler parameters (3.29) from a single parameter M , there are

some essential ambiguities. In fact, due to the relations

2T±
2 = T±

1 + T±
3 , T+

1 + T−
1 = T+

2 + T−
2 = T+

3 + T−
3 , T±

2 + T∓
1 = T∓

2 + T±
3 , (3.43)

we cannot distinguish which degrees the BPS indices belong to. For example, for the degrees

(d+; d−) = (2, 0), the independent degrees are

2T+
2 = T+

1 + T+
3 , T+

2 + T+
1 , T+

2 + T+
3 , 2T+

1 , 2T+
3 , (3.44)

while for the degrees (d+; d−) = (1, 1), the independent degrees are

T−
2 + T+

1 = T+
2 + T−

3 , T+
1 + T−

3 , T+
2 + T−

2 = T+
1 + T−

1 = T+
3 + T−

3 . (3.45)

If we match the free energy of topological strings with the unknown BPS indices against (3.31)

with the help of the e−2µeff term in (k,M) = (2, 1), we can uniquely fix the BPS indices as in

table 2 for d = 2, aside from the essential ambiguity (3.43). For d = 3 strictly speaking we

27

Decompositions Not Unique
Due to Relations among T's

2T2
± = T1

± + T3
±, 

T1
++T1

− = T2
++T2

− = T3
++T3

−, ...
Ambiguous, A Trouble ... ...



Organizing BPS Index Differently
[M-Nosaka-Yano 2018]

d (jL, jR) BPS (−1)d−1
∑

dI

(∑
dII

N (d,dI,dII)
jL,jR

)
dI

1 (0, 0) 16 8+1 + 8−1

2 (0, 1
2) 10 1+2 + 80 + 1−2

3 (0, 1) 16 8+1 + 8−1

4 (0, 1
2) 1 10

(0, 3
2) 45 8+2 + 290 + 8−2

(12 , 2) 1 10

Table 1: The split of the BPS indices on the D5 del Pezzo curve for the (2, 2) model. The split

is interpreted as the decomposition of the D5 representations into the D4 subalgebra, as in

16 → (8s/c)+1+(8s/c)−1, 10 → (1)+2+(8v)0+(1)−2 and 45 → (8v)+2+(28)0+(1)0+(8v)−2.

broken respectively to those of the subalgebras† D4, (A1)3 and A3, while the (2, 1, 2, 1) model

corresponds to the E7 del Pezzo curve at the modulus where the E7 algebra is broken to the

subalgebra D5 ×A1. Namely, for example for the (2, 2) model and the (1, 1, 1, 1) model, since

the total BPS indices Nd
jL,jR

=
∑

|d|=dN
d
jL,jR

at each degree d were computed in [47], our task

reduces to identifying the Kähler parameters T and the split of the total BPS indices at each

degree d. This was performed in [30] and it was further found in [31] that, by regarding the

BPS indices as representations of the D5 algebra, the introduction of the Kähler parameters

amounts to identifying “the Higgs fields acquiring expectation values” and the split of the

total BPS indices corresponds to the decomposition of the representations of the D5 algebra

into those of the unbroken subalgebras.

More concretely, the rank deformations of the (2, 2) model and the (1, 1, 1, 1) model, which

are connected by the Hanany-Witten effect, were studied intensively in [30]. For the (2, 2)

model with the rank deformations U(N)k×U(N + MI)0×U(N + 2MI)−k×U(N + MI)0, the

Kähler parameters and the string coupling constant gs in the instanton exponents e−d·T and

e−d·T/gs are

T± =
µeff

k
± πi

(
1−

MI

k

)
, gs =

1

k
, (2.10)

and the BPS indices forming the representations of the D5 algebra are broken to representa-

tions of D4 (see table 1 for the split of the BPS indices). Furthermore, for the (2, 2) model

with the rank deformations

U(N +MII)k ×U(N +MI)0 ×U(N + 2MI +MII)−k ×U(N +MI)0, (2.11)

†As we explain later, the remaining symmetry (A1)4 for the (1, 1, 1, 1) model identified in [31] should be

corrected by (A1)3.

5

Reminiscent of 45 → 280 + 8+2 + 8−2 + 10
in so(10) → so(8) 

In (M1,M2)=(M,0) Deformation,



Organizing BPS Index Differently

d (jL, jR) dI BPS (−1)d−1
∑

dII

(
N (d,dI,dII)

jL,jR

)
dII

1 (0, 0) ±1 8 2+1 + 40 + 2−1

2 (0, 12) 0 8 2+1 + 40 + 2−1

±2 1 10

3 (0, 1) ±1 8 2+1 + 40 + 2−1

4 (0, 12) 0 1 10
(0, 32) 0 29 1+2 + 8+1 + 110 + 8−1 + 1−2

±2 8 2+1 + 40 + 2−1

(12 , 2) 0 1 10

Table 2: The split of the BPS indices on the D5 del Pezzo curve for the (1, 1, 1, 1) model. The

split is interpreted as the decomposition of the D4 representations into the (A1)4 subalgebra,

as in 8v → (2, 2, 1, 1)+(1, 1, 2, 2), 8s → (2, 1, 2, 1)+(1, 2, 1, 2), 8c → (2, 1, 1, 2)+(1, 2, 2, 1)

and 28 → (3, 1, 1, 1) + (1, 3, 1, 1) + (1, 1, 3, 1) + (1, 1, 1, 3) + (2, 2, 2, 2), where the last A1

factor contributes as the u(1) charge in the subscript (and hence is broken).

in the breaking D5 → (D4)dI and further decompositions of various D4 representations into

(A1)4 are given by

28 → (3, 1, 1, 1) + (1, 3, 1, 1) + (1, 1, 3, 1) + (1, 1, 1, 3) + (2, 2, 2, 2),

8v → (2, 2, 1, 1) + (1, 1, 2, 2). (2.17)

The last factor of A1 is broken and the u(1) charge is denoted by dII. After expressing the two

u(1) charges dI and dII in terms of the charges d and d̃, each representation of the last factor

of (A1)d in the unbroken symmetry (A1)3 combines into the representations of A2 as

8 → 2+3 + 30 + 10 + 2−3, 3 → 1+2 + 2−1, 3 → 2+1 + 1−2, 1 → 10 (2.18)

in A2 → (A1)d. Finally the decomposition of the D5 adjoint representation into (A1×A1×A2)d̃
is given by

45 →(1, 1, 3)+4 + (2, 2, 3)+2 + (3, 1, 1)0 + (1, 3, 1)0 + (1, 1, 8)0 + (1, 1, 1)0

+ (2, 2, 3)−2 + (1, 1, 3)−4, (2.19)

which implies that the symmetry (A1)3 is further enhanced to (A1)2 × A2 = A1 ×A1 × A2 in

the (1, 1, 1, 1) model without rank deformations.

7

In General (M1,M2) Deformation,

Interpreted As Further Decomposition so(8)→[su(2)]3

e.g. 28→(3,1,1,1)+(1,3,1,1)+(1,1,3,1)+(1,1,1,3)+(2,2,2,2)
in so(8) → [su(2)]4



Finally,

M1

M2

[su(2)]3

(2,2)

(1,1,1,1)

so(8)



A Natural Question

Nice to Summarize Numerical Results by
so(10) → so(8) & so(8) → [su(2)]3

• But Why ? Any Explanations ?
[Also Raised by Y.Hikida & S.Sugimoto, "Strings & Fields 2017"]

• Now We Have Answer From Curve Viewpoint



3. Symmetry, Symmetry Breaking
(Answer)



Strategy

① D5 Weyl Action on D5 Curve

② (2,2) Model in D5 Curve

③ Unbroken Symmetry for Models



Quantum Curve

• Definition: Spectral Problem of
H = Σ cmn Qm Pn

( PαQβ = q−αβ QβPα, q = e2πik )
Invariant under Similarity Transf.

H ~ G H G−1

• For D5 Quantum Curve
H = Σ(m,n)∈{−1,0,1}x{-1,0,1} cmn Qm Pn Q#

P#

As Classical Curves are Defined 
by Zeros of Polynomial Rings



Parameterization

Parameterize D5 Curve by “Asymptotic Values”
H/α =     Q P            − (e3+e4) P   + e3e4 Q−1 P

− (e1
−1+e2

−1) Q + E/α − ... Q−1

+ (e1e2)−1 Q P−1 − ... P−1 + ... Q−1 P−1

Subject to Vieta's Formula                                                                   
解と係数の関係 (h1h2)2 = e1...e8

1/e1

1/e2e5/h2

e6/h2

h1/e7 h1/e8

e3e4

Q=∞Q=0

P=∞

P=0



① D5 Weyl Transformation

Trivial Transformations
(Switching Asymptotic Values)

s1: h1/e7 ⇔ h1/e8

s2: e3 ⇔ e4

s5: 1/e1 ⇔ 1/e2

s0: e5/h2 ⇔ e6/h2

3
2

1
4

5

0

1/e1

1/e2e5/h2

e6/h2

h1/e7 h1/e8

e3e4

Q=∞Q=0

P=∞

P=0



① D5 Weyl Transformation

Nontrivial s3 and s4
by Suitable Similarity Transf. 

Q' = GQG−1,   P' = GPG−1

s3: e3 ⇔ h1/e7

s4: 1/e1 ⇔ e5/h2

Totally, D5 Weyl Transf. 1/e1

1/e2e5/h2

e6/h2

h1/e7 h1/e8

e3e4

Q=∞Q=0

P=∞

P=0

3
2

1
4

5

0



Gauge Fixing

• Redundancies in Parametrization
- (h1,h2,e1,...,e8): 10 Parameters for 8 Asymptotic Values
- Similarity Transformation to Rescale Q & P

(Q,P)~(AQ,P), (Q,P)~(Q,BP)

• Totally, 4 Gauge Fixing Conditions
e2 = e4 = e6 = e8 = 1

• 6 Parameters Subject to 1 Vieta's Constraint
→ 5 DOF (h1,h2,e1,e3,e5)

s1, s2, s3, s4, s5 : (h1,h2,e1,e3,e5) → (*, *, *, *, *)



②Matrix Models

• (2,2), H = (Q1/2+Q−1/2)2 (P1/2+P−1/2)2

(h1,h2,e1,e3,e5)=(1,1,1,1,1)
→ so(8)

• (1,1,1,1), H = (Q1/2+Q−1/2)(P1/2+P−1/2)(Q1/2+Q−1/2)(P1/2+P−1/2)

(h1,h2,e1,e3,e5)=(1,1,q−1/2,q+1/2,q−1/2)        q = e2πik

→ su(3) x [su(2)]2



③Matrix Models

• (2,2), H = (Q1/2+Q−1/2)2 (P1/2+P−1/2)2

(h1,h2,e1,e3,e5)=(1,1,1,1,1)
→ so(8)

• (1,1,1,1), H = (Q1/2+Q−1/2)(P1/2+P−1/2)(Q1/2+Q−1/2)(P1/2+P−1/2)

(h1,h2,e1,e3,e5)=(1,1,q−1/2,q+1/2,q−1/2)        q = e2πik

→ su(3) x [su(2)]2 ≠ [su(2)]3

Unbroken 
Symmetry



"Moduli Space of M2?"

log h

log e

131

232
454343

1345431

454343

2345432

1345431

43

2345432

5
1

2
343

1345431

343

2345432

M1

M2

(2,2)

(1,1,1,1)

e = h−1 e = h

so(8)

[su(2)]3
su(3) x [su(2)]2

(h1,h2,e1,e3,e5)=(e/(qh),qh/e,1/e,e,1/e)



Conclusion & Further Progress

• Group-Theoretical Structure is useful
• Weyl Group acts on M2-brane configurations
• From Matrix Models To Quantum Curves
- 3D Relative Ranks vs 5D Parameter Space
- Group-Theoretical Structure works also for Mirror Map
- Integrability Hierarchy also acts on M2-brane configurations

→ N. Kubo's, Y. Sugimoto's, T. Furukawa's talks and posters

Moduli
of M2 Weyl Group


