Symmetry Breaking in Quantum Curves & Super Chern-Simons Matrix Models

Sanefumi Moriyama (Osaka City Univ/NITEP)

Main References:

S.M., S.Nakayama, T.Nosaka, JHEP, 2017;

S.M., T.Nosaka, T.Yano, JHEP, 2017;

N.Kubo, S.M., T.Nosaka, JHEP, 2018.

Matrix Model = Spectral Theory

- M-Theory, Mother, Membrane (M2), Mystery
- ABJM Theory for Multiple M2-branes

[Aharony-Bergman-Jafferis-Maldacena 2008]

- Partition Function is Localized to Matrix Model [Kapustin-Willett-Yaakov 2009]
- Large N Expansion = $N^{3/2}$, Airy Function

[Drukker-Marino-Putrov 2010, Fuji-Hirano-M 2011]

Matrix Model as Spectral Det, Det(1 + z H⁻¹)

(Fermi Gas Formalism) [Marino-Putrov 2011]

Matrix Model = Topological String

Matrix Model by Topological Strings

[Hatsuda-Marino-M-Okuyama 2013]

• Many Generalizations

[... ... 2013-2019]

But, Why Interesting? What is New?

No More Matrix Models

- ST / TS Correspondence (Spectral Theories / Topological Strings) [Grassi-Hatsuda-Marino 2014]
- On one hand,

Matrix Model = Spectral Theory

• On the other hand,

Matrix Model = Topological String

Advantages of ST / TS

• At Least Technically,

Group Theoretical Structure

- So Far, Free Energy of Topological Strings in Kahler Parameters ... Complicated & Ambigous ...
- With Group Theoretical Structure, in Characters
- Conceptually, replace MM by ST / TS?

Especially, in "Strings & Fields 2017"

• Free Energy of Topological Strings

 $F = \Sigma N$ [(characters) $e^{-\mu/k}$

+ { (characters) μ + ∂ (characters) } $e^{-\mu}$]

N: Multiplicities of Representations (BPS indices)

- (2,2) Model, $so(10) \rightarrow so(8)$
- Rank Deformations, $so(10) \rightarrow [su(2)]^3$ For D5[=so(10)] Del Pezzo Geometry

Especially, in "Strings & Fields 2017"

• Free Energy of Topological Strings

 $F = \Sigma N$ [(characters) $e^{-\mu/k}$

+ { (characters) μ + ∂ (characters) } $e^{-\mu}$]

N: Multiplicities of Representations (BPS indices)

- (2,2) Model, $so(10) \rightarrow so(8)$
- Rank Deformations, $so(10) \rightarrow [su(2)]^3$

Question: Explain the Symmetry Breaking!

Contents

1. ABJM Theory

(Background) 2. Super Chern-Simons Theories (Question) 3. Symmetry, Symmetry Breaking

(Answer)

1. ABJM Theory (Background)

ABJM Theory

Brane Configuration in IIB

From Large Supersymmetries

Grand Canonical Ensemble

• Partition Function $Z_k(N)$ & Grand Partition F

[Marino-Putrov 2011]

$$\Xi_k(z) = \sum_{N=0}^{\infty} z^N Z_k(N)$$

(N : Particle Number, z : Dual Fugacity)

• Spectral Determinant $\Xi_k(z) = \text{Det}(1 + z H^{-1})$ $H^{-1} = (P^{1/2} + P^{-1/2})^{-1} (Q^{1/2} + Q^{-1/2})^{-1}$ or $H = (Q^{1/2} + Q^{-1/2}) (P^{1/2} + P^{-1/2})$ $(Q = e^q, P = e^p, [q, p] = i 2\pi k)$

NS5 (1,*k*)5

From Matrix Models To Curves

[Marino-Putrov 2011]

[..., Hatsuda-Marino-M-Okuyama 2013]

T=*T*(*z*) : Kahler Parameters

From Matrix Models To Curves

2. Super Chern-Simons Theories (Questions)

As a simple generalization

Natural Because

For (2,2) Model $H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$ $= Q^1 P^1 + 2P^1 + Q^{-1} P^1 + 2Q^1 + 4 + 2Q^{-1} + Q^1 P^{-1} + 2P^{-1} + Q^{-1} P^{-1}$

Well-known Newton Polygon of D5[=so(10)] Curve

Also

$$H = (Q^{1/2} + Q^{-1/2})^{1} (P^{1/2} + P^{-1/2})^{1} (Q^{1/2} + Q^{-1/2})^{1} (P^{1/2} + P^{-1/2})^{1}$$

= $Q^{1/2} P^{1/2} Q^{1/2} P^{1/2} + \dots$

 $= q^{-1/4} Q P + ...$

(Since $P^{\alpha}Q^{\beta} = q^{-\alpha\beta}Q^{\beta}P^{\alpha}$, $q = e^{2\pi i k}$)

The Same D5 Curve

Furthermore, Two Models are

- Prepare Six Kahler Parameters $T_i^{\pm} = \dots (i = 1, 2, 3)$
- Total BPS indices are distributed by Various Combinations

[M-Nakayama-Nosaka 2017]

Decomposition of BPS index

- Explicitly, 6 Degrees for 6 Kahler Parameters
 - $\sum N^{d}_{(jL,jR)} (d_{1}^{+}, d_{2}^{+}, d_{3}^{+}; d_{1}^{-}, d_{2}^{-}, d_{3}^{-}) \bullet (T_{1}^{+}, T_{2}^{+}, T_{3}^{+}; T_{1}^{-}, T_{2}^{-}, T_{3}^{-})$
- BPS Index
- $d=1, (j_{L}, j_{R})=(0, 0)$ $16 \rightarrow 2(1, 0, 0; 0, 0, 0)+4(0, 1, 0; 0, 0, 0)+2(0, 0, 1; 0, 0, 0)$ +2(0, 0, 0; 1, 0, 0)+4(0, 0, 0; 0, 1, 0)+2(0, 0, 0; 0, 0, 1)From Tables in

[Huang-Klemm-Poretschkin 2013]

How About Higher Degrees?

Decomposition of BPS index

d	$\{ \boldsymbol{d} = (d_1^+, d_2^+, d_2^+, d_2^+) \}$	$\pm N^{\boldsymbol{d}}_{j_L,j_R}(j_L,j_R)$		
1	(1, 0, 0; 0, 0, 0)	(0, 0, 0; 1, 0, 0)	2(0,0)	
	(0, 1, 0; 0, 0, 0)	(0, 0, 0; 0, 1, 0)	4(0,0)	
	(0, 0, 1; 0, 0, 0)	(0, 0, 0; 0, 0, 1)	2(0,0)	
2	(0, 2, 0; 0, 0, 0), (1, 0, 1; 0, 0, 0)	(0, 0, 0; 0, 2, 0), (0, 0, 0; 1, 0, 1)	$(0, \frac{1}{2})$	
	(1, 0, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1)	(0, 1, 0; 1, 0, 0), (0, 0, 1; 0, 1, 0)	$2(0,\frac{1}{2})$	
	(1, 0, 0; 1, 0, 0), (0, 1, 0; 0, 1, 0), (0, 0, 1; 0, 0, 1)		$4(0,\frac{1}{2})$	
	(2, 0, 0; 1, 0, 0), (0, 2, 0; 0, 0, 1)	(1, 0, 0; 2, 0, 0), (0, 0, 1; 0, 2, 0),	2(0,1)	
3	(1, 1, 0; 0, 1, 0), (1, 0, 1; 0, 0, 1)	(0, 0, 1; 1, 0), (0, 0, 1; 1, 0, 1)	-(-,-)	
	(0, 2, 0; 0, 1, 0), (1, 0) Deco	ompositions Not Unique	4(0,1)	
	(1, 1, 0, 1, 0, 0), (0, 1) Due	Due to Relations among T's		
	(0, 0, 2, 0, 0, 1), (0, 2) (0, 1, 1; 0, 1, 0), (1, 0)	$2T_2^{\pm} = T_4^{\pm} + T_2^{\pm}$	2(0,1)	
	$- \tau + \cdot$			
	$I_1' + I_1 = I_2' + I_2 = I_3' + I_3' \dots$			
	Am	biguous, A Trouble		

Organizing BPS Index Differently

In $(M_1, M_2) = (M, 0)$ Deformation,

[M-Nosaka-Yano 2018]

Organizing BPS Index Differently

In General (M_1, M_2) Deformation,

d	(JL, JR)	d_{I}	RL2	$(-1)^{a-1} \sum_{d_{\rm II}} \left(N_{j_{\rm L},j_{\rm R}}^{(d,d_{\rm I},d_{\rm II})} \right)_{d_{\rm II}}$
1	(0, 0)	± 1	8	$2_{+1} + 4_0 + 2_{-1}$
2	$(0, \frac{1}{2})$	0	8	$2_{+1} + 4_0 + 2_{-1}$
		± 2	1	10
3	(0,1)	±1	8	$2_{+1} + 4_0 + 2_{-1}$
4	$(0, \frac{1}{2})$	0	1	10
	$(0, \frac{3}{2})$	0	29	$1_{+2} + 8_{+1} + 11_0 + 8_{-1} + 1_{-2}$

Interpreted As Further Decomposition $so(8) \rightarrow [su(2)]^3$ e.g. $28 \rightarrow (3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,2,2,2)$ in $so(8) \rightarrow [su(2)]^4$

Finally,

A Natural Question

Nice to Summarize Numerical Results by $so(10) \rightarrow so(8) \& so(8) \rightarrow [su(2)]^3$

- But Why ? Any Explanations ? [Also Raised by Y.Hikida & S.Sugimoto, "Strings & Fields 2017"]
- Now We Have Answer From Curve Viewpoint

3. Symmetry, Symmetry Breaking (Answer)

Strategy

1 D5 Weyl Action on D5 Curve

(2) (2,2) Model in D5 Curve

(3) Unbroken Symmetry for Models

Quantum Curve

As Classical Curves are Defined by Zeros of Polynomial Rings

Definition: Spectral Problem of

 $H = \sum c_{mn} Q^m P^n$ ($P^{\alpha}Q^{\beta} = q^{-\alpha\beta} Q^{\beta}P^{\alpha}, q = e^{2\pi i k}$)

Invariant under Similarity Transf.

 $H \sim G H G^{-1}$

For D5 Quantum Curve

 $H = \sum_{(m,n) \in \{-1,0,1\}} C_{mn} \ Q^m \ P^n$

Parameterization

1 D5 Weyl Transformation

Trivial Transformations (Switching Asymptotic Values) $s_1: h_1/e_7 \Leftrightarrow h_1/e_8$ $s_2: e_3 \Leftrightarrow e_4$ $s_5: 1/e_1 \Leftrightarrow 1/e_2$ $s_0: e_5/h_2 \Leftrightarrow e_6/h_2$

1 D5 Weyl Transformation

Nontrivial s_3 and s_4 by Suitable Similarity Transf. $Q' = GQG^{-1}, P' = GPG^{-1}$ $s_3: e_3 \Leftrightarrow h_1/e_7$ $s_4: 1/e_1 \Leftrightarrow e_5/h_2$

Totally, D5 Weyl Transf.

- Redundancies in Parametrization
- $(h_1, h_2, e_1, \dots, e_8)$: 10 Parameters for 8 Asymptotic Values
- Similarity Transformation to Rescale Q & P

 $(Q,P)^{\sim}(AQ,P), (Q,P)^{\sim}(Q,BP)$

• Totally, 4 Gauge Fixing Conditions

$$e_2 = e_4 = e_6 = e_8 = 1$$

• 6 Parameters Subject to 1 Vieta's Constraint \rightarrow 5 DOF $(h_1, h_2, e_1, e_3, e_5)$

 $s_1, s_2, s_3, s_4, s_5: (h_1, h_2, e_1, e_3, e_5) \rightarrow (*, *, *, *, *)$

• (2,2), $H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$

 $(h_1, h_2, e_1, e_3, e_5) = (1, 1, 1, 1, 1)$

• $(1,1,1,1), H = (Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})(Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})$ $(h_1,h_2,e_1,e_3,e_5) = (1,1,q^{-1/2},q^{+1/2},q^{-1/2}) \qquad q = e^{2\pi i k}$

③ Matrix Models

•
$$(2,2), H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$$

 $(h_1, h_2, e_1, e_3, e_5) = (1, 1, 1, 1, 1, 1)$
• $(1, 1, 1, 1), H = (Q^{1/2} + Q^{-1/2})(Q^{1/2} + Q^{-1/2})(Q^{1/2} + Q^{-1/2})(Q^{1/2} + Q^{-1/2})$

• $(1,1,1,1), H = (Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})(Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})$ $(h_1,h_2,e_1,e_3,e_5) = (1,1,q^{-1/2},q^{+1/2},q^{-1/2}) \qquad q = e^{2\pi i k}$ $\rightarrow su(3) x [su(2)]^2 \neq [su(2)]^3$

"Moduli Space of M2?"

Conclusion & Further Progress

- Group-Theoretical Structure is useful
- Weyl Group acts on M2-brane configurations
- From Matrix Models To Quantum Curves
- 3D Relative Ranks vs 5D Parameter Space
- Group-Theoretical Structure works also for Mirror Map
- Integrability Hierarchy also acts on M2-brane configurations

 \rightarrow N. Kubo's, Y. Sugimoto's, T. Furukawa's talks and posters

