Exponentially suppressed cosmological constant with enhanced gauge symmetry in heterotic interpolating models Sota Nakajima (Osaka City University) Based on arXiv: 1905.10745 with H. Itoyama **SUSY breaking by Compactification** Introduction • Compactification on a circle Non-supersymmetric string models are generally unstable because of non-vanishing dilaton tadpoles; The translation operator identify for X_9 satifies At 1-loop level, $e^{2\pi i P_9 R} = 1$ ► X₉ $\therefore P_9 = \frac{n}{R} \quad (n \in \mathbf{Z})$ C $2\pi R$ 0 **SUSY is NOT broken** The desired model is a non-supersymmetric one • Compactification on a twisted circle

as possible.

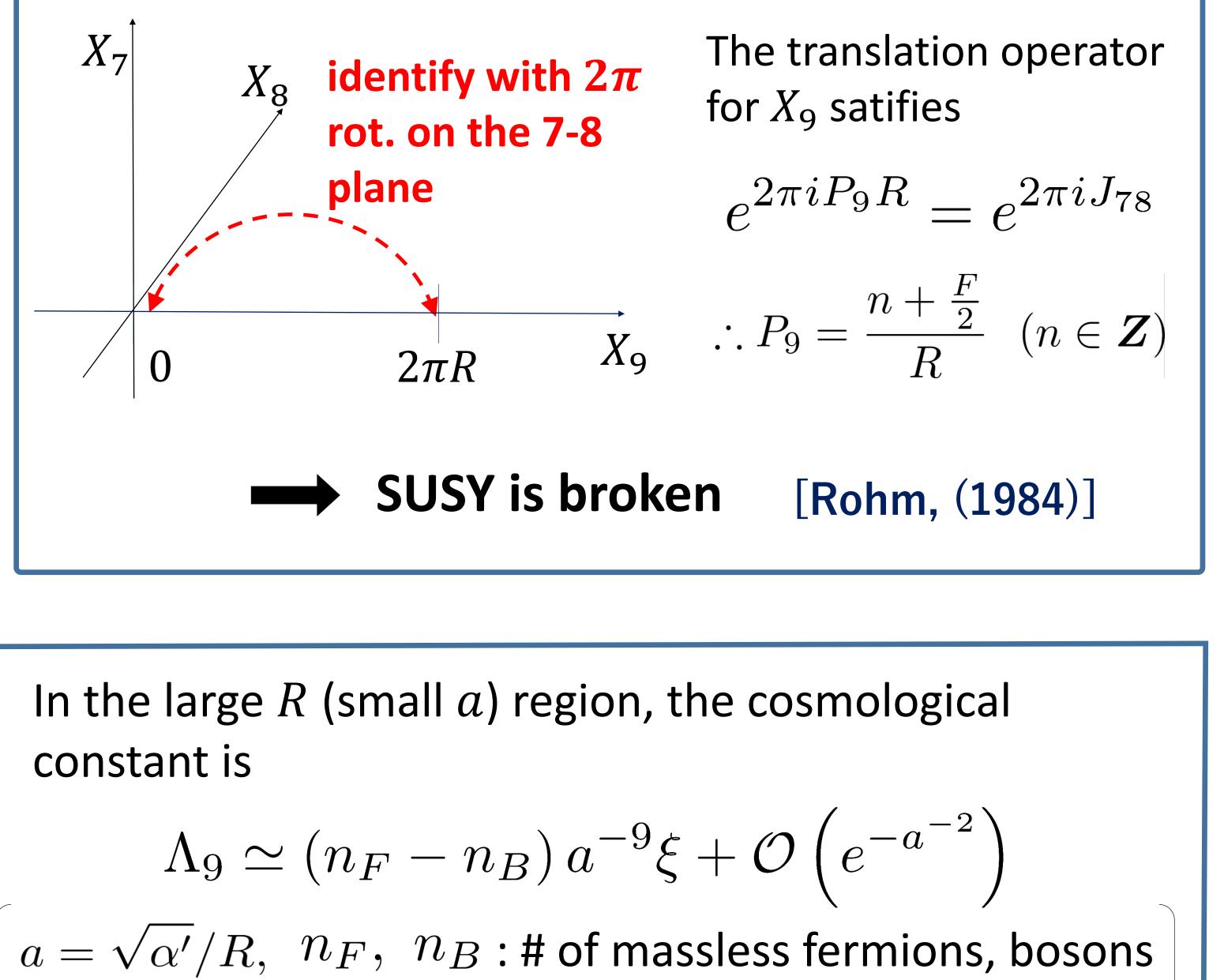
Interpolating models have the possibility of such properties. [Itoyama, Taylor, (1987)]

whose cosmolosical constant is vanishing or as small

Interpolating models

An interpolating model is a lower dimensional string model relating two different higher dimensional string models continuously;

non-SUSY <u>10 dim.</u> Model M_2 **T-dual** non-SUSY **SUSY** Model M_1 Comp. on a twisted circle



If $n_F = n_B$, the cosmological constant is exponentially suppressed. [Itoyama, Taylor, (1987)]

Ex). Interpolation between SO(32) and $SO(16) \times SO(16)$

The one-loop partition function

$$Z_{\text{int}}^{(9)} = Z_B^{(7)} \left\{ \Lambda_{0,0} \left[\bar{V}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) - \bar{S}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) \right] \right. \\ \left. + \Lambda_{1/2,0} \left[\bar{V}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) - \bar{S}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) \right] \right. \\ \left. + \Lambda_{0,1/2} \left[\bar{O}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) - \bar{C}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) \right] \right. \\ \left. + \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \right\}$$

$$\left. \left. + \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \right\}$$

$$\left. + \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\}$$

•<u>The limiting cases</u>

• $R \rightarrow \infty$: the contribution from zero winding # only; $\Lambda_{\alpha,0} \to (2a)^{-1} Z_B^{(1)}, \quad \Lambda_{\alpha,1/2} \to 0$

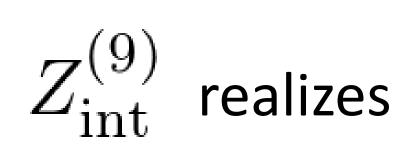
Massless spectrum

For generic *R*, massless states come from the *n=w=0* parts (1st line);

 $+\beta$

The 1st and 2nd lines survive

- $R \rightarrow 0$: the contributions from zero momentum only; $\Lambda_{0,\beta} \to a Z_R^{(1)}, \quad \Lambda_{1/2,\beta} \to 0$
 - The 1st and 3rd lines survive



SUSY SO(32) model in $R \rightarrow \infty$ $SO(16) \times SO(16) \mod R \to 0$

Massless bosons

- graviton, anti-symmetric tensor, dilaton
- Gauge bosons in adj rep of $SO(16) \times SO(16)$ \bullet

Massless fermions

• $8_{\rm S} \otimes (16, 16)$

Boost on momentum lattice

The effective change in the 1-loop partition function is

 $\Lambda_{\alpha,\beta}\left(a\right) \begin{pmatrix} \vartheta \begin{bmatrix} \gamma \\ \delta \end{bmatrix} \\ \eta \end{pmatrix}^{8} \xrightarrow{\text{Turning on WL}} \Lambda_{(\gamma,\delta)}^{(\alpha,\beta)}\left(a,A\right) \begin{pmatrix} \vartheta \begin{bmatrix} \gamma \\ \delta \end{bmatrix} \\ \eta \end{pmatrix}^{7} \xrightarrow{\text{The fundamental results}} -\sqrt{2} \leq \Lambda_{(\gamma,\delta)}^{(\alpha,\beta)} = (\bar{\eta}\eta)^{-1} \eta^{-1} \sum_{n,w,m} (-1)^{2\delta m} q^{\frac{\alpha'}{2}(l_{L}^{\prime 2} + p_{L}^{\prime 2})} \bar{q}^{\frac{\alpha'}{2}p_{R}^{\prime 2}} \left[n \in 2(\mathbb{Z} + \alpha), \ w \in \mathbb{Z} + \beta, \ m \in \mathbb{Z} + \gamma \right]$

• The fundamental region of moduli space

It is convenient to introduce a modular parameter $ilde{ au}$ as

$$\tilde{\tau} = \tilde{\tau}_1 + i\tilde{\tau}_2 = \frac{A}{\sqrt{1+A^2}}a^{-1} + i\frac{1}{\sqrt{1+A^2}}a^{-1}$$

The momentum lattice $\Lambda^{(\alpha,\beta)}_{(\gamma,\delta)}$ is invariant under the shift $\tilde{\tau} \to \tilde{\tau} + 2\sqrt{2}$

The fundamental region of moduli space is $-\sqrt{2} \leq \tilde{\tau}_1 \leq \sqrt{2}$

Ex1). Interpolation between SO(32) and $SO(16) \times SO(16)$ with WL

• The one-loop partition function

$$\begin{split} Z_{\text{int}}^{(9)} &= Z_B^{(7)} \left\{ \bar{V}_8 \left(O_{16}^{(0,0)} O_{16} + S_{16}^{(0,0)} S_{16} \right) - \bar{S}_8 \left(V_{16}^{(0,0)} V_{16} + C_{16}^{(0,0)} C_{16} \right) \\ &\quad + \bar{V}_8 \left(V_{16}^{(1/2,0)} V_{16} + C_{16}^{(1/2,0)} C_{16} \right) - \bar{S}_8 \left(O_{16}^{(1/2,0)} O_{16} + S_{16}^{(1/2,0)} S_{16} \right) \\ &\quad + \bar{O}_8 \left(V_{16}^{(0,1/2)} C_{16} + C_{16}^{(0,1/2)} V_{16} \right) - \bar{C}_8 \left(O_{16}^{(0,1/2)} S_{16} + S_{16}^{(0,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1/2)} S_{16} \right) \\ &\quad + \bar{O}_8 \left(O_{16}^{(1/2,1$$

Massless spectrum

For generic *R*, massless states come from the *n=w=0* parts (1st line);

Massless bosons

- graviton, anti-symmetric tensor, dilaton
- Gauge bosons in adj rep of $SO(16) \times SO(14) \times U(1)$

Macclace formione

We found a few conditions under which the additional massless states appear:

Condition	$\widetilde{\tau}_1 = n_1 / \sqrt{2}$ $(n_1 \in 2Z)$	$ ilde{ au}_1=n_2/\sqrt{2}$ $(n_2\in 2Z+1)$
Additional	\cdot two $8_V \otimes (1, 14)$	\cdot two $8_V \otimes (16, 1)$
states	\cdot two $8_S \otimes (16, 1)$	\cdot two $8_S \otimes (1, 14)$
Gauge group	$SO(16) \times SO(16)$	$SO(18) \times SO(14)$

Massless spectrum for generic R

IVIASSIESS TETTIIOTIS	00000 8100p					
• $8_S \otimes (16, 14)$	Leading term	$n_F - n_B = 64$	$n_F - n_B = 0$			

Ex2). Interpolation between $E_8 \times E_8$ and $SO(16) \times SO(16)$ with WL

• <u>The one-loop partition function</u>

$$Z_{\text{int}}^{(9)} = Z_B^{(7)} \left\{ \bar{V}_8 \left(O_{16}^{(0,0)} O_{16} + S_{16}^{(0,0)} S_{16} \right) - \bar{S}_8 \left(O_{16}^{(0,0)} S_{16} + S_{16}^{(0,0)} O_{16} \right) \\ + \bar{V}_8 \left(O_{16}^{(1/2,0)} S_{16} + S_{16}^{(1/2,0)} O_{16} \right) - \bar{S}_8 \left(O_{16}^{(1/2,0)} O_{16} + S_{16}^{(1/2,0)} S_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(0,1/2)} C_{16} + C_{16}^{(0,1/2)} V_{16} \right) - \bar{C}_8 \left(V_{16}^{(0,1/2)} V_{16} + C_{16}^{(0,1/2)} C_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) - \bar{C}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ + \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} C_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O}_8 \left(V_{16}^{(1/2,1/2)} V_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \\ - \bar{O$$

Condition	$ ilde{ au}_1=n_1/\sqrt{2}$ ($n_1/2\in 2Z$)	$ ilde{ au}_1=n_1/\sqrt{2}$ $(n_1/2\in 2Z+1)$	$\widetilde{ au}_1 = n_2/\sqrt{2}$ ($n_2 \in 2Z+1$)
Additional states	\cdot two $8_V \otimes (1, 14) \cdot$ two $8_S \otimes (1)$	6,1) $\cdot \operatorname{two} 8_V \otimes (1, 14) \cdot \operatorname{two} 8_V \otimes (16, 1)$	\cdot two $8_S \otimes (1, 14)$
Gauge group	SO(16) × SO(16)	$SO(16) \times E_8$	$SO(16) \times SO(14) \times U(1)$

Leading term

$n_F - n_B = 64$

$$n_F - n_B = -1984$$

$$n_F - n_B = -512$$

The orbits in the fundamental region

In the fundamental region, there are only four inequivalent orbits on which the additional massless states appear;

