Hanany-Witten Transition in Quantum Curves

Naotaka Kubo (YITP, Kyoto U.)

Based on: [NK-Moriyama, 1907.04971]

(Strings and Fields 2019)

M2-breanes

 M2-brane is one of the most important object in the M-theory.

Quiver gauge theories

• A partition function on S^3 reduces to a partition function of matrix model by using the localization technique. $Z(N_1, N_2, ..., N_R) \propto \int \prod_a d^{N_a} \lambda_a e^{ik_a \sum_i \lambda_{a,i}^2} Z_{N_a, N_{a+1}}(\lambda_a, \lambda_{a+1})$ $Z_{N_a, N_{a+1}}(\mu, \nu) = \frac{\prod_{i < j}^{N_a} 2 \sinh \frac{\mu_i - \mu_j}{2} \prod_{i < j}^{N_{a+1}} 2 \sinh \frac{\nu_i - \nu_j}{2}}{\prod_{i < j}^{N_a, N_{a+1}} 2 \cosh \frac{\mu_i - \nu_j}{2}}$

Grand partition function

• A grand partition function plays an important role.

$$\Xi_n(\vec{M};\kappa) = \sum_N \kappa^{N+M_n} |Z(N+M_1, N+M_2, \dots, N+M_R)|$$

Only relative ranks are important in this expression.

Hidden group structure

 Large N behavior of a grand partition function can be expressed by a character of corresponding exceptional type group.

Can we realize this symmetry? \rightarrow We could carry out.

[NK-Moriyama-Nosaka 2018]

Realization of symmetry

Conjecture:

$$\Xi(\vec{M};\kappa) = \operatorname{Det}\left(1 + \kappa \widehat{H}(\vec{e};\widehat{Q},\widehat{P})^{-1}\right)$$

$$\begin{split} \widehat{Q} &= e^{\widehat{q}}, \ \widehat{P} = e^{\widehat{p}}, \ [\widehat{q}, \widehat{p}] = 2\pi ik \end{split} \label{eq:Grassi-Hatsuda-Marino 2014} \\ \widehat{H}(\vec{e}; \widehat{Q}, \widehat{P}) &= \sum_{i,j} e_{ij} \widehat{Q}^i \widehat{P}^j \ \text{(Quantum curve)} \end{split}$$
(No parameter identification)

For D_5 theory,

 $\widehat{H} = \widehat{Q}\widehat{P} + \widehat{Q} + \widehat{Q}\widehat{P}^{-1} + e_1\widehat{P} + e_2\widehat{P}^{-1} + e_3\widehat{Q}^{-1}\widehat{P} + e_4\widehat{Q}^{-1} + e_5\widehat{Q}^{-1}\widehat{P}^{-1}$

Realization of symmetry

$$\Xi(\vec{M};\kappa) = \operatorname{Det}\left(1 + \kappa \widehat{H}^{-1}\right)$$

We introduced maps generated by similarity transformations.

$$w:\widehat{H}\to\widehat{G}\widehat{H}\widehat{G}^{-1}$$

A set of these maps have Weyl group structure!

[NK-Moriyama-Nosaka 2018]

(Weyl group of D_{τ})

• The results are consistent with the large N results. D_5 theory $W(D_5)$

Correspondence?

Parameter identification of \vec{M} and \vec{e}

 \rightarrow We can interpret the Weyl group as symmetries of branes.

Contents

- Introduction
- Symmetries of branes
- Parameter Identification
- Summary

Symmetries of branes

Branes of type IIB string theory possess many symmetries.

SL(2, Z) transformations $NS5 \leftrightarrow (1, k) 5$ with $\begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix} \in SL(2, Z)$ and flipping the sign of RR charge of D5-branes.

Results

Only W(B₃) ⊂ W(D₅) works as symmetries of brane configurations.

• $W(B_3)$ is bigger than Hanany-Witten+SL(2, \mathbb{Z}).

Results

<u>We could unify Hanany-Witten+SL(2, \mathbb{Z}) into a Weyl group.</u>

Results

New brane symmetries?

Contents

- Introduction
- Symmetries of branes
- Parameter Identification
- Summary

Parameters

$$\Xi(\vec{M};\kappa) = \operatorname{Det}\left(1 + \kappa \widehat{H}(\vec{e};\widehat{Q},\widehat{P})^{-1}\right)$$

• Brane configurations

Reference frame

- A concept "reference frame" is important.
- Technically, "reference frame" appear in the definition of grand partition function.

$$\Xi(\vec{M};\kappa) = \sum_{N} \kappa^{N+M_2} Z(N+M_1, N+M_2, \dots, N+M_R)$$

Identification

 The relation was proved for no rank deformations cases. (Fermi gas formalism)
 [Marino-Putrov 2012] [Moriyama-Nosaka 2014]

$$(\widehat{P}^{1/2} + \widehat{P}^{-1/2}) \qquad (\widehat{Q}^{1/2} + \widehat{Q}^{-1/2})$$

Identification

Non-trivial rank deformations from no rank deformations.

Identification

Spectral operator	$\Delta(h, e, f)$	Brane configuration	(M_1, M_2, M_3)
$\widehat{\mathcal{Q}}_4 \widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_1 \widehat{\mathcal{P}}_2$	(1, 1, 1)	$\langle 0 \stackrel{2}{\bullet} 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{4}{\circ} \rangle$	(0, 0, 0)
$\widehat{\mathcal{Q}}_4 \widehat{\mathcal{P}}_1 \widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_2$	$(q^{\frac{1}{2}}, q^{\frac{1}{2}}, 1)$	$\langle 0 \stackrel{2}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{1}{\bullet} 0 \stackrel{4}{\circ} \rangle$	$(\frac{k}{2},\frac{k}{2},0)$
$\widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_1 \widehat{\mathcal{Q}}_4 \widehat{\mathcal{P}}_2$	$(q^{\frac{1}{2}}, 1, q^{-\frac{1}{2}})$	$\langle 0 \stackrel{2}{\bullet} 0 \stackrel{4}{\circ} 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} \rangle$	$(rac{k}{2},0,-rac{k}{2})$
$\widehat{\mathcal{Q}}_4 \widehat{\mathcal{P}}_2 \widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_1$	$(q^{\frac{1}{2}}, 1, q^{\frac{1}{2}})$	$\langle 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{4}{\circ} \rangle$	$(\frac{k}{2},0,\frac{k}{2})$
$\widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_2 \widehat{\mathcal{Q}}_4 \widehat{\mathcal{P}}_1$	$(q^{\frac{1}{2}}, q^{-\frac{1}{2}}, 1)$	$\langle 0 \stackrel{1}{\bullet} 0 \stackrel{4}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{3}{\circ} \rangle$	$(\frac{k}{2},-\frac{k}{2},0)$
$\widehat{\mathcal{Q}}_4 \widehat{\mathcal{P}}_1 \widehat{\mathcal{P}}_2 \widehat{\mathcal{Q}}_3$	$(q,q^{\frac{1}{2}},q^{\frac{1}{2}})$	$\langle 0 \stackrel{3}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{1}{\bullet} 0 \stackrel{4}{\circ} \rangle$	$(k, rac{k}{2}, rac{k}{2})$
$\widehat{\mathcal{Q}}_3 \widehat{\mathcal{P}}_1 \widehat{\mathcal{P}}_2 \widehat{\mathcal{Q}}_4$	$(q, q^{-\frac{1}{2}}, q^{-\frac{1}{2}})$	$\langle 0 \stackrel{4}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} \rangle$	$(k, -\frac{k}{2}, -\frac{k}{2})$
$\widehat{\mathcal{P}}_1\widehat{\mathcal{Q}}_4\widehat{\mathcal{Q}}_3\widehat{\mathcal{P}}_2$	$(q, q^{\frac{1}{2}}, q^{-\frac{1}{2}})$	$\langle 0 \stackrel{2}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{4}{\circ} 0 \stackrel{1}{\bullet} \rangle$	$(k, \frac{k}{2}, -\frac{k}{2})$
$\widehat{\mathcal{P}}_{2}\widehat{\mathcal{Q}}_{4}\widehat{\mathcal{Q}}_{3}\widehat{\mathcal{P}}_{1}$	$(q, q^{-\frac{1}{2}}, q^{\frac{1}{2}})$	$\langle 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{4}{\circ} 0 \stackrel{2}{\circ} \rangle$	$(k,-\frac{k}{2},\frac{k}{2})$
$\widehat{\mathcal{P}}_1\widehat{\mathcal{Q}}_4\widehat{\mathcal{P}}_2\widehat{\mathcal{Q}}_3$	$(q^{rac{3}{2}},q^{rac{1}{2}},1)$	$\langle 0 \stackrel{3}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{4}{\circ} 0 \stackrel{1}{\bullet} \rangle$	$(rac{3k}{2},rac{k}{2},0)$
$\widehat{\mathcal{P}}_1\widehat{\mathcal{Q}}_3\widehat{\mathcal{P}}_2\widehat{\mathcal{Q}}_4$	$(q^{\frac{3}{2}}, 1, q^{-\frac{1}{2}})$	$\langle 0\stackrel{4}{\circ} 0\stackrel{2}{\bullet} 0\stackrel{3}{\circ} 0\stackrel{1}{\circ} \rangle$	$(\frac{3k}{2},0,-\frac{k}{2})$
$\widehat{\mathcal{P}}_{2}\widehat{\mathcal{Q}}_{4}\widehat{\mathcal{P}}_{1}\widehat{\mathcal{Q}}_{3}$	$(q^{rac{3}{2}}, 1, q^{rac{1}{2}})$	$\langle 0 \stackrel{3}{\circ} 0 \stackrel{1}{\bullet} 0 \stackrel{4}{\circ} 0 \stackrel{2}{\bullet} \rangle$	$(rac{3k}{2},0,rac{k}{2})$
$\overline{\widehat{\mathcal{P}}_2\widehat{\mathcal{Q}}_3\widehat{\mathcal{P}}_1\widehat{\mathcal{Q}}_4}$	$(q^{\frac{3}{2}}, q^{-\frac{1}{2}}, 1)$	$\langle 0 \stackrel{4}{\circ} 0 \stackrel{1}{\bullet} 0 \stackrel{3}{\circ} 0 \stackrel{2}{\bullet} \rangle$	$(\frac{3k}{2},-\frac{k}{2},0)$
$\widehat{\mathcal{P}}_1\widehat{\mathcal{P}}_2\widehat{\mathcal{Q}}_4\widehat{\mathcal{Q}}_3$	$(q^2, 1, 1)$	$\langle 0 \stackrel{3}{\circ} 0 \stackrel{4}{\circ} 0 \stackrel{2}{\bullet} 0 \stackrel{1}{\bullet} \rangle$	(2k,0,0)

 \rightarrow We conjecture natural parameter identification.

Consistency check

$$\Xi(\vec{M};\kappa) = \operatorname{Det}\left(1 + \kappa \widehat{H}^{-1}\right)$$

• We proved the equality for some rank deformations.

The results are consistent with our conjecture.

Large N behavior, revisit

Only one interval of D3-branes was chosen to be reference frame before our work.

 \rightarrow We test large N behavior for new reference frames.

$$\Xi_n(\vec{M};\kappa) = \sum_N \kappa^{N+M_n} |Z(N+M_1, N+M_2, \dots, N+M_R)|$$

This factor affects the large *N* expansion highly non-trivially and changes the symmetry drastically.

The results are completely consistent with quantum curve analysis.

Summary & future work

- Summary
 - We conjectured the parameter correspondence between brane configurations and quantum curves.
 - We unified Hanany-Witten transitions and $SL(2, \mathbb{Z})$ transformations into the subset of $W(D_5)$.
 - We found new symmetries of brane configurations.
- Future work
 - Applying the same procedure for quiver gauge theories with exceptional type symmetries and also for higher genus quiver gauge theories.
 - Establishing M-theoretical meaning of parameter space of quantum curves.
 - Relation to the Painlevé equations through the Weyl group.

Back-up

Rest parameter space?

Does this 5d parameter space have M-theoretical meaning?