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Abstract
Exactly solvable quantum mechanics (or SUSY QM) has extensively been studied for many years. It is known that shape invariance is the sufficient condition for
exact solvability and the idea is crucial for finding solutions. Recently, a powerful way of constructing approximate solutions has proposed where the modified
concept of shape invariance is applied. We present the prescription and thoroughly discuss the mathematical implications.

Supersymmetric Quantum Mechanics [1]

We consider the exact solutions for time-independent Schrödinger equations:

Hψ(x) = Eψ(x) , H = −
d2

dx2
+ V (x) .

The Hamiltonian can be factorized after the subtraction of a constant;

H − E0 = A†A =

(
−

d

dx
+W (x)

)(
d

dx
+W (x)

)
whereE0 corresponds to the ground state energy eigenvalue, andW (x) is called
superpotential. Note that V (x)−E0 = W 2(x)−W ′(x). The ground state
wave function is obtained from

Aψ0(x) = 0 ∴ W (x) = −
ψ′

0(x)

ψ0(x)
= −

d

dx
lnψ0(x)

=⇒ ψ0(x) = N exp

[
−
∫ x

W (y)dy

]
.

Then, we define the partner Hamiltonian as

H′ := AA† = B†B + ε1

where ε1 means the energy gap E1 − E0. Here, one finds the following inter-
twining relations:

AH = AA†A = H′A ,

A†H′ = A†AA† = HA† ,

which guarantee that H and H′ are iso-spectral and connected via A or A†,
but the ground state of H. By repeatedly applying the above procedure, one
obtains the whole spectra.

The sufficient condition for the exact solvability is

H′(x;λ) = H(x; f(λ)) +R(λ) : shape invariance (SI)

where λ = {a1, a2, . . . } is the set of potential parameters, and f(λ), R(λ)
are functions of λ. Just a small number of potentials are known as shape invariant
potentials. For example:

Potential W (x) V (x) f(a, b)

H.O. ax+ b (ax+ b)2 − a {a, b}
3-d H.O. ax− b/x b(b−1)

x2 + a2x2 − a(2b+ 1) {a, b+ 1}
Coulomb a/b− b/x b(b−1)

x2 − 2a
x
+ a2

b2
{a+ 1, b}

Rosen–Morse a tanh bx − a(a+b)

cosh2 bx
+ a2 {a− b, b}

Pöschl–Teller a tanx− b cotx a(a−1)
cos2 x

+ b(b−1)

sin2 x
− (a+ b)2 {a+ 1, b+ 1}

In fact, most potentials in physics are not SI. However, they are sometimes the
“mixture” of SI potentials. Then, how do we deal with such potentials?

Conditional Shape Invariance [2]

S. Bera et al. have suggested a way of dealing with a potential:

V (x) =
l(l + 1)

x2
+ ax+ bx2 −

c

x
: the mixed potential .

First, they factorize the Hamiltonian as

H − E0 = −
d2

dx2
+
l(l + 1)

x2
+ ax+ bx2 +

c

x
− E0

=

(
−

d

dx
+Ax−

B

x
+ C

)(
d

dx
+Ax−

B

x
+ C

)
.

One finds the relations between sets of parameters:

A =
√
b , C =

a

2
√
b
, B =

√
bc

a
,

and the ground state energy eigenvalue:

E0 = −
a2

4b
−

2bc

a
+

√
b .

However, since the number of the potential parameters is larger than that of the
superpotential, one has a parametric constraint condition:√

bc

a
= l + 1 .

Here, they choose (l, b, c) to be free parameters;

H = −
d2

dx2
+
l(l + 1)

x2
+

√
bc

l + 1
x+ bx2 −

c

x
.

Next, one can define the partner Hamiltonian as

H′ :=

(
d

dx
+Ax−

B

x
+ C

)(
−

d

dx
+Ax−

B

x
+ C

)
= −

d2

dx2
+

(l + 1)(l + 2)

x2
+

√
bc

l + 1
x+ bx2 −

c

x
+R .

However, one cannot factorize this Hamiltonian into (−∂x + Ŵ )(∂x + Ŵ )
because of the constraint. Therefore, they construct a new Hamiltonian as

Ĥ′ := −
d2

dx2
+

(l + 1)(l + 2)

x2
+ a1x+ bx2 −

c

x
+R

=

(
−

d

dx
+ Âx−

B̂

x
+ Ĉ

)(
d

dx
+ Âx−

B̂

x
+ Ĉ

)
+ ε1 ≈

?
H′

with a1 :=

√
bc

l + 2
. Note that Ĥ′ is not coincident with H′, and there are no

mathematical validity in doing so. Now, one can calculate the approximate first
excited state energy of the original Hamiltonian as

E1 ≈
?
E0 + ε1 = −

a2
1

4b
−

2bc

a1

+ 3
√
b

= −
c2

4(l + 2)2
+ 2

√
b(l + 2) + 3

√
b .

Using this prescription again and again, one obtains the nth excited state energy:

En ≈
?
−

c2

4(l + n+ 1)2
+ 2

√
b(l + 1) + (4n+ 1)

√
b .

Logarithmic Perturbation Theory [3,4]

Logarithmic perturbation theory (LPT) requires only a knowledge of the initial
unperturbed ground state ψ0(x). We consider a potential

V (x) = V0(x) + λV1(x)

where λ is the perturbation parameter. Writing

ψ(x) ≡ eS(x) or S(x) = lnψ(x)

and expanding E, S′(x) in the perturbation parameter;

E ∼= E(0) + λE(1) + λ2E(2) + · · · ,
S′(x) ∼= C(0)(x) + λC(1)(x) + λ2C(2)(x) + · · · ,

we obtain the following formula:

E(1) =

∫ ∞

−∞
V1(x)|ψ0(x)|2dx ,

C(1)(x) = |ψ0(x)|−2

∫ x

−∞

[
V1(y) − E(1)

]
|ψ0(y)|2dy ,

E(n) = −
∫ ∞

−∞

(
n−1∑
i=1

C(i)(x)C(n−i)(x)

)
|ψ0(x)|2dx ,

C(n)(x) = |ψ0(x)|−2

∫ x

−∞

[
−E(n) −

n−1∑
i=1

C(i)(y)C(n−i)(y)

]
|ψ0(y)|2dy

(n ⩾ 2) .



“Exact” Solution for the Mixed Potential

We employ LPT to evaluate S. Bera et al.’s prescription and justify it. Let us
consider the correction for the first excited state energy eigenvalue of the original
system E1. Our Hamiltonian here is

H′ = −
d2

dx2
+

(l + 1)(l + 2)

x2
+ a1x+ bx2 −

c

x
+R+ λαx

where we take λ → 1, and α ≡ a− a1. The unperturbed Hamiltonian is

H′(0) ≡ −
d2

dx2
+

(l + 1)(l + 2)

x2
+ a1x+ bx2 −

c

x
+R

=

(
−

d

dx
+ Âx−

B̂

x
+ Ĉ

)(
d

dx
+ Âx−

B̂

x
+ Ĉ

)
+ E(0)

with the parametric relations

Â =
√
b = A , Ĉ =

a1

2
√
b
, B̂ =

√
bc

a1

,

and

α =
2AĈ

B̂ − 1
=

√
bc

(l + 1)(l + 2)
.

Therefore, the ground state energy for the unperturbed system is

E(0) = −
a1

2

4b
−

2bc

a1

+ 3
√
b ,

and the ground state wave function is

ψ0(x) = NxB̂ exp

[
−
A

2
x2 − D̂x

]
where the normalization constant N is

N =

{
1

2
A−B̂−1

[
√
A Γ

(
B̂ +

1

2

)
1F1

(
B̂ +

1

2
,
1

2
;
D̂2

A

)
− 2D̂ Γ

(
B̂ + 1

)
1F1

(
B̂ + 1,

3

2
;
D̂2

A

)]}−1/2

.

Note that 1F1(a, c;x) is the Kummer’s confluent hypergeometric function.
Then, the first order correction of the ground state energy is calculated as

E(1) =
α
[√
A Γ

(
B̂ + 1

)
1F1

(
B̂ + 1, 1

2
; D̂

2

A

)
− 2D̂ Γ

(
B̂ + 3

2

)
1F1

(
B̂ + 3

2
, 3
2
; D̂

2

A

)]
√
A
[√
A Γ

(
B̂ + 1

2

)
1F1

(
B̂ + 1

2
, 1
2
; D̂

2

A

)
− 2D̂ Γ

(
B̂ + 1

)
1F1

(
B̂ + 1, 3

2
; D̂

2

A

)] .
Similarly, we can obtain the higher order corrections. Computing the quantity
E(0) + E(1) + · · · , we obtain the exact value of E1.
Here, we expect c to be some coupling constant, and for now, we fix c = 1 for
simplicity. Thus, b is the model parameter.

E.g. The S state (l = 0) of the system

The unperturbed ground state energy is

E(0)(b) = −
1

16
+ 7

√
b ,

and the first order correction is written as

E(1)(b)

=

√
b1F1

(
3, 1

2
; 1

16
√
b

)
−

4√
b

2
15

√
π

8 1F1

(
7
2
, 3
2
; 1

16
√
b

)
4
√
b3

√
π

4 1F1

(
5
2
, 1
2
; 1

16
√
b

)
− 1F1

(
3, 3

2
; 1

16
√
b

)
=

4
√
b

1
2

4
√
b

−
(

5e
1

16
√
b

64b3/4
+ e

1
16

√
b

1024b5/4
+ 15e

1
16

√
b

16
4√
b

)(
2
√
π
(
1 − erf

(
1

4
4√
b

))
− 8e

− 1

16
√
b

4
√
b− 2

√
π
)
− 128e

− 1

16
√
b

(
e

1
16

√
b

1024b5/4
+ 5e

1
16

√
b

128b3/4

)
b3/4 −

e
1

16
√
b

(
−64e

− 1
16

√
bb3/4−1536e

− 1
16

√
bb5/4

)
1024b5/4

− 15
16

√
π
(

1

12
√
b
+ 1

960b
+ 1

)
e

1

16
√
b


2

1
4

−
(

e
1

16
√
b

64b3/4
+ 3e

1

16
√
b

4
√
b+ 3e

1
16

√
b

4
4√
b

)(√
π −

√
π
(
1 − erf

(
1

4
4√
b

)))
− 8e

− 1

16
√
b

(
e

1
16

√
b

64b3/4
+ 3e

1
16

√
b

8
4√
b

)
4
√
b−

e
1

16
√
b

(
−32e

− 1
16

√
bb3/4−4e

− 1
16

√
b 4√
b

)
64b3/4

+ 3
4

√
πe

1

16
√
b

(
1

4
√
b
+ 1

192b
+ 1

)
4
√
b

 .

We plot E(0), E(1) and E(0) + E(1) as functions of b:
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Applying the procedure over and over again, we get approximate solutions for
higher excited states. We have checked the accuracy of our method for several
choices of a set of parameters.
Ⅰ. l = 1, b = 0.5, c = 0.01

E(num) E(0) E(0) + E(1)

E0 3.53 3.53 –

E1 6.36 6.36 6.36

E2 9.19 9.19 9.19

E3 12.01 12.02 12.02

E4 14.84 14.85 14.84

Ⅱ. l = 1, b = 3.0, c = 1.0

E(num) E(0) E(0) + E(1)

E0 8.59 8.59 –

E1 15.15 15.56 15.15

E2 21.78 22.50 21.86

E3 28.45 29.43 28.64

E4 35.15 36.37 35.46

Physical Application: Heavy Baryonic Systems

Our consideration above can be applied for obtaining mass spectra of a singly-
heavy baryonic system: Σ+

b (uub). We regard the baryon as a three-body
system, and employ the Hyperspherical formalism [5]. The Jacobi relative coordi-
nates (ρ⃗1, ρ⃗2, ρ⃗3) are used to describe quarks’ positions. Defining hyper-radius
and hyper-angle as

x :=
√
ρ12 + ρ22 , ξ := arctan

ρ1

ρ2
,

one obtains the equations:[
−

d2

dx2
+

5

x

d

dx
−
L̂2

x2
+ V (x)

]
X(x) = EX(x)

L̂2Y (Ω) = −γ(γ + 4)Y (Ω)

where Y (Ω) is the Hypersherical Harmonics, and γ is the hyper-orbital angular
momentum quantum number. Then, the reduced hyper-radial equation is[

−
d2

dx2
+

(γ + 3
2
)(γ + 5

2
)

x2
+ ax+ bx2 −

c

x

]
χ(x) = Eχ(x)

with V (x) = ax + bx2 − c/x. ax means the confinement, bx2 is the
correction of two-body forces, and −c/x is the Coulomb-like term. Here, we set
b to satisfy experimental data and

c =
2

3
αs , a =

√
bc

γ + 5
2

where αs is a strong coupling constant. The result is as follows:
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Experimental datum [PDG]:

5811.3 MeV

Summary & Future Plans

The number of exactly solvable potentials is limited. An approximate solution for a “mixture” of SI potentials has been proposed by S. Bera et al.

By using LPT, we justify their prescription, and give a quantity that evaluates it. We show examples for several choices of a set of parameters.

We apply our method to a physical system. Σ+
b (singly-heavy baryon) is an example. We obtain its mass spectra.

We are to examine approximate algebras. We expect that, for either exactly or approximately solvable systems, we are able to construct a corresponding
algebra.
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