Topological string geometry

Matsuo Sato (Hirosaki U.)

- String geometry and non-perturbative formulation of string theory M.S. Int. J. Mod. Phys. A34 (2019)1950126
- Topological string geometry M.S., Yuji Sugimoto (USTC) arXiv:1903.05775
- String geometric phenomenology Masaki Honda (Waseda Univ.), M.S. in preparation

Motivation

String Geometry Theory arXiv:1709.03587 M.S.

- String geometry theory is a candidate of non-perturbative formulation of string theory.
- The theory unifies particles and the space-time.
- We can derive the all-order perturbative scattering amplitudes that possess the super moduli in IIA, IIB and SO(32) I superstring theories from the single theory by considering fluctuations around fixed perturbative IIA, IIB, SO(32) I vacua, respectively.
- The theory is background independent. (in preparation, Masaki Honda, M.S.)

Next task is to derive non-perturbative effects from the theory.

↓ Topological twist

Rather easy to derive non-perturbative effects.

 We may derive non-perturbative corrections to the partition function conjectured by Lockhart-Vafa, Hatsuda-Marino-Moriyama-Okuyama from the ``first principle."

String manifold For presentations, bosonic closed only. In general, supersymmetric open and closed.

String manifolds are constructed by patching open sets of a model space E by general coordinate transformations.

model space
$$E := \bigcup_{\widehat{D}} \{ [\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}] \}$$

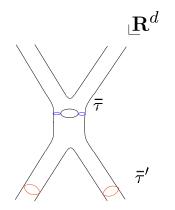
- Σ Riemann surface
- $\overline{\tau}$: global time (Krichever-Novikov 1987)

Defined based on Abelian differential that exists uniquely on Riemann surfaces.

 $\Sigma|_{ar{ au}}\cong S^1\cup \ldots \cup S^1$: many body states of closed strings

• $X_{\widehat{D}}(\overline{\tau}): \Sigma|_{\overline{\tau}} \to \mathbf{R}^d$

 \widehat{D} : backgrounds (B, dilaton) all fixed in a string manifold.



metric

• cotangent vectors

cotangent space of manifolds are spanned by continuous variables:

•
$$\Sigma$$
 is a discrete variable
 $dX_{\hat{D}}^{\mu}(\bar{\sigma},\bar{\tau})$ $d\bar{\tau}$
... $dX_{\hat{D}}^{(\mu\bar{\sigma})}$ as indices.
 $dX_{\hat{D}}^{(\mu\bar{\sigma})}$ $dX_{\hat{D}}^{d}$ summarize
 $dX_{\hat{D}}^{d}$ $(I = d, (\mu\bar{\sigma}))$
Take summation by $\int d\bar{\sigma}\bar{e}(\bar{\sigma},\bar{\tau})$ $(\bar{e} := \sqrt{\bar{h}_{\bar{\sigma}\bar{\sigma}}})$
Invariant under $\bar{\sigma} \mapsto \bar{\sigma}'(\bar{\sigma})$
(*super transformation in the super summetric case)

• metric

$$ds^{2}(\bar{h},\bar{\tau},X_{\widehat{D}}) = G_{IJ}(\bar{h},\bar{\tau},X_{\widehat{D}})dX_{\widehat{D}}^{I}dX_{\widehat{D}}^{J}$$

$$\Sigma \longleftrightarrow \text{ metric } \bar{h}_{ab} \text{ up to diffeo x Weyl translequivalent}$$

$$equivalent$$

Non-perturbative formulation of string theory

•
$$Z = \int \mathcal{D}G\mathcal{D}Ae^{-S}$$
$$S = \frac{1}{G_N} \int \mathcal{D}h\mathcal{D}\bar{\tau}\mathcal{D}X_{\hat{D}}\sqrt{G}(-R + \frac{1}{4}G_NG^{I_1I_2}G^{J_1J_2}F_{I_1J_1}F_{I_2J_2})$$

 F_{IJ} : field strength of an u(1) gauge field A_I

Derive the all order perturbative string amplitudes

• Consider fluctuations around *a* **perturbative vacuum solution**.

generalization of Majumdar-Papapetrou solution (1947, 1948)

The propagators of some modes of the fluctuations

 $\Delta_{F}(\bar{h},\bar{\tau},X(\bar{\tau});\bar{h},'\bar{\tau},'X'(\bar{\tau}'))$ $\downarrow \text{ Schwinger representation (1st quantization formalism)}$ $\int_{hin}^{h^{out}} \mathcal{D}h \int_{hin}^{h^{out}} \mathcal{D}h' \Delta_{F}(\bar{h},\infty,X^{out};\bar{h},'-\infty,X^{in}) = \int_{hin}^{h^{out},X^{out}} \mathcal{D}h \mathcal{D}Xe^{-\lambda\chi}e^{-\int d^{2}\sigma\sqrt{h}\frac{1}{2}(\partial_{m}X^{\mu})^{2}}$

all order perturbative string amplitudes including its moduli

Topological Twist

Topological string theory in a superfield formalism

Topological twist

N=(2,2) SCFT

- \rightarrow Topological string theory
- Make the fields couple with the 2-dim. gravitons
- Change the spins of the fermions

$$\Phi^{I} \text{ and } \Phi^{\overline{I}} \text{ satisfy chirality conditions:} \quad \begin{bmatrix} \overline{\mathcal{D}}_{z} \Phi^{I} = \overline{\mathcal{D}}_{z^{*}} \Phi^{I} = \mathcal{D}_{z} \Phi^{\overline{I}} = \mathcal{D}_{z^{*}} \Phi^{\overline{I}} = 0 \\ \{Q_{A}, \overline{\mathcal{D}}_{z}\} \Phi^{I} = \{Q_{A}, \overline{\mathcal{D}}_{z^{*}}\} \Phi^{I} = \{Q_{A}, \mathcal{D}_{z}\} \Phi^{\overline{I}} = \{Q_{A}, \mathcal{D}_{z^{*}}\} \Phi^{\overline{I}} = 0 \\ \text{spin 0 supercharge} \end{bmatrix}$$

$$\begin{aligned} \text{action} \quad & \int d^2 z d^4 \theta \sqrt{h} K(\Phi^I, \Phi^{\bar{I}}) \\ &= \int d^2 z \sqrt{h} \bigg\{ h^{ab} G_{I\bar{J}} \partial_a \phi^I \partial_b \bar{\phi}^{\bar{J}} - \mathrm{i} h^{ab} G_{I\bar{J}} \Big(\bar{\rho}_a^{\bar{J}} D_b \chi^I + \rho_a^I D_b \bar{\chi}^{\bar{J}} \Big) \\ & - R_{I\bar{J}K\bar{L}} \rho_{z^*}^I \chi^K \bar{\rho}_z^{\bar{J}} \bar{\chi}^{\bar{L}} + G_{I\bar{J}} \Big(F^I - \Gamma^I_{JK} \rho_{z^*}^J \chi^K \Big) \Big(\bar{F}^{\bar{J}} - \Gamma^{\bar{I}}_{\bar{J}\bar{K}} \bar{\chi}^{\bar{J}} \bar{\rho}_z^{\bar{K}} \Big) \bigg\}. \qquad \qquad G_{I\bar{J}} = \partial_I \partial_{\bar{J}} K \end{aligned}$$

Q exactness of the action

$$S = \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}\Phi \sqrt{G} G^{\mathbf{I}\mathbf{K}} G^{\mathbf{J}\mathbf{L}} (-R_{\mathbf{I}\mathbf{J}\mathbf{K}\mathbf{L}} + \frac{1}{4} F_{\mathbf{I}\mathbf{J}} F_{\mathbf{K}\mathbf{L}})$$

$$= \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}\Phi \sqrt{G} \int d\bar{\sigma} d^{4}\theta \bar{e} G^{(\tilde{I}\bar{\sigma}\theta)\mathbf{K}} H_{(\tilde{I}\bar{\sigma}\theta)\mathbf{K}}$$

$$= Q_{A} V$$

$$V = \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}\Phi \sqrt{G} \int d\bar{\sigma}\bar{e} \left((i\nabla_{-}G_{+}^{\tilde{I}\mathbf{K}} + G_{+--}^{\tilde{I}\mathbf{K}})H_{0\tilde{I}\mathbf{K}} + G_{0}^{\tilde{I}\mathbf{K}}(i\nabla_{-}H_{+\tilde{I}\mathbf{K}} + H_{+--\tilde{I}\mathbf{K}}) + (i\nabla_{-}G_{+}^{\tilde{I}\mathbf{K}} + G_{+--}^{\tilde{I}\mathbf{K}})H_{0\tilde{I}\mathbf{K}} + G_{0}^{\tilde{I}\mathbf{K}}(i\nabla_{-}H_{+\tilde{I}\mathbf{K}} + H_{+--\tilde{I}\mathbf{K}}) + G_{-}^{\tilde{I}\mathbf{K}}H_{+-\tilde{I}\mathbf{K}} + G_{+-}^{\tilde{I}\mathbf{K}}H_{-\tilde{I}\mathbf{K}} - G_{+-}^{\tilde{I}\mathbf{K}}H_{+-\tilde{I}\mathbf{K}} \right)$$

$$\begin{aligned} G(\theta) &= G_0 \\ &+ \theta^+ G_+ + \bar{\theta}^+ G_{\bar{+}} + \theta^- G_- + \bar{\theta}^- G_{\bar{-}} \\ &+ \theta^+ \bar{\theta}^+ G_{+\bar{+}} + \theta^- \bar{\theta}^- G_{-\bar{-}} + \theta^+ \theta^- G_{+-} + \bar{\theta}^+ \theta^- G_{\bar{+}-} + \theta^+ \bar{\theta}^- G_{+\bar{-}} + \bar{\theta}^+ \bar{\theta}^- G_{\bar{+}-} \\ &+ \bar{\theta}^+ \theta^- \bar{\theta}^- G_{\bar{+}-\bar{-}} + \theta^+ \theta^- \bar{\theta}^- G_{+-\bar{-}} + \theta^+ \bar{\theta}^+ \bar{\theta}^- G_{+\bar{+}-} \\ &+ \theta^+ \bar{\theta}^+ \theta^- \bar{\theta}^- G_4 \end{aligned}$$

Results

- We have derived the all order perturbative topological string partition function from fluctuations around a perturbative vacuum solution in the theory.
- The action can be written in a **Q-exact** form.

We can apply **the localization teqniques** to obtain non-perturbative corrections to the partition function.

appendix

$$\int d\bar{\sigma} d^{4}\theta G^{(\tilde{I}\bar{\sigma}\theta)\mathbf{K}} H_{(\tilde{I}\bar{\sigma}\theta)\mathbf{K}}$$

$$= \int d\bar{\sigma} d^{4}\theta e^{\theta \cdot Q} G_{0}^{(\tilde{I}\bar{\sigma})\mathbf{K}} H_{0(\tilde{I}\bar{\sigma})\mathbf{K}}$$

$$= \int d\bar{\sigma} Q_{A} Q_{-} Q_{+} \bar{Q}_{-} G_{0}^{(\tilde{I}\bar{\sigma})\mathbf{K}} H_{0(\tilde{I}\bar{\sigma})\mathbf{K}}$$

$$= Q_{A} V_{0}$$

$$V_{0} = \int \mathcal{D}h \mathcal{D}\bar{\tau}\mathcal{D}\Phi\sqrt{G} \int d\bar{\sigma}\bar{e} \left((i\partial_{-}G_{+}^{\tilde{I}K} + G_{+--}^{\tilde{I}K})H_{0\tilde{I}K} + G_{0}^{\tilde{I}K}(i\partial_{-}H_{+\tilde{I}K} + H_{+--\tilde{I}K}) + (i\partial_{-}G_{+}^{\tilde{I}K} + G_{+--}^{\tilde{I}K})H_{0\tilde{I}K} + G_{0}^{\tilde{I}K}(i\partial_{-}H_{+\tilde{I}K} + H_{+--\tilde{I}K}) + G_{-}^{\tilde{I}K}H_{+-\tilde{I}K} + G_{+-}^{\tilde{I}K}H_{-\tilde{I}K} - G_{+-}^{\tilde{I}K}H_{+-\tilde{I}K} - G_{-}^{\tilde{I}K}H_{+-\tilde{I}K} \right)$$

Non-perturbative Formulation of Superstring Theory Based on String Geometry

Matsuo Sato (Hirosaki U.)

- String geometry and non-perturbative formulation of string theory M.S. Int. J. Mod. Phys. A34 (2019)1950126
- Topological string geometry M.S., Yuji Sugimoto (USTC) arXiv:1903.05775
- String geometric phenomenology Masaki Honda (Waseda Univ.), M.S. in preparation

Contents

- 0. Introduction
- 1. String geometry
- 2. Non-perturbative formulation of string theory
- 3. String geometry solution that represents a perturbative vacuum of string theory
- 4. Derive all order scattering amplitudes of perturbative string
- 5. General supersymmetric case that includes open strings
- 6. String geometry and a new type of supersymmetric matrix models
- 7. Unification of particles and the space-time
- 8. Future directions

0. Introduction

Elementary particle physics

Fundamental problems in elementary particle physics

- Many parameters that cannot be determined by the standard model
- Hierarchy problems
- How to describe the very early universe

Theory of gravity at Plank scale = **quantum gravity** is necessary

String theory is one of the most strong candidates of quantum gravity

String theory

- Is understood well perturbatively.
- Has many perturbatively stable vacua.

Advantages of perturbative string theory In bottom up point of view,

Can reproduce almost physics in the experimental region by choosing a perturbative vacuum (geometry) appropriately.

cf. Calabi-Yau compactification, flux compactification

We can find a new phenomenological mechanism by understanding physics in terms of geometry.

(Chosen by hand)

Disadvantages of perturbative string theory In **top down** point of view,

We might say ``This is just replacing the problem of choosing parameters of physics to choosing geometry."

Cannot determine a vacuum. That is, NO prediction.

Non-perturbative formulation of string theory is necessary.

(Chosen automatically)

Motivation

<u>T-duality</u>

• IIA string on a background \longleftrightarrow IIB string on another background

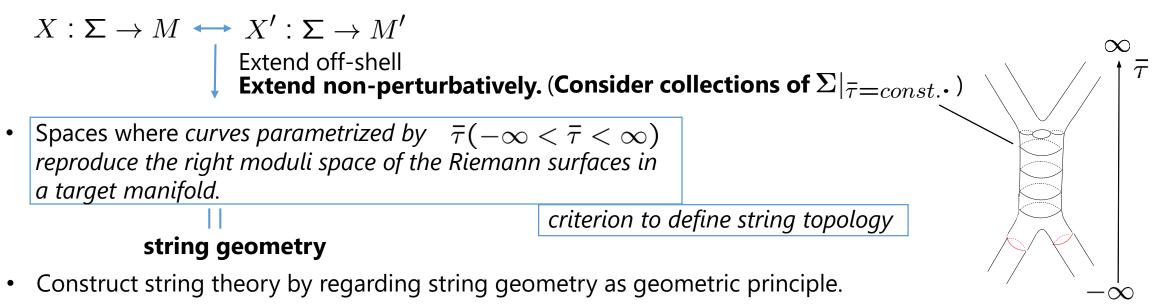
Observed values by strings coincide.

"Space observed by strings are the same."

Expected to be "geometric principle of string theory."

Q. Is there spaces T-dual to each other? $\partial_a X^{\prime 9} = i\epsilon_{ab}\partial_b X^9$

A. Yes: moduli spaces of Riemann surfaces embedded on-shell in the backgrounds.



1. String geometry

1. 1 String model space

Global time $ar{ au}$

- On Σ , there exists an unique Abelian differential dp that has simple poles with residues f_i at Punctures Pi where $\Sigma_i f_i = 0$, if it is normalized to have purely imaginary periods with respect to all contours.
- Global time $\bar{\tau}$ is defined by $\bar{w} = \bar{\tau} + i\bar{\sigma} := \int^P dp$ (Krichever, Novikov 1987)

$$ar{ au} = +\infty \; (-\infty) \;\;$$
 on Pi with $\; f_i > 0 \;\; (f_i < 0) \;\;$

• Determine f_i

0. $\Sigma_i f_i = 0$: f_i conservation law (if we choose the outgoing direction as positive.)

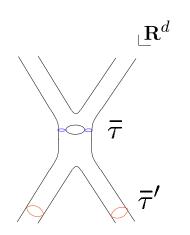
1. Divide Pi s to arbitrary incoming and outgoing sets.

2. Divide -1 to incoming
$$f^i \equiv \frac{-1}{N_{in}}$$
 and 1 to outgoing $f^i \equiv \frac{1}{N_{out}}$
• f_i are determined uniquely on Σ
• $\overline{\tau}$ is uniquely determined.

String model space E

Collection of string states $[\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}]$

- $\Sigma|_{ar{ au}} \cong S^1 \cup \cdots \cup S^1$ many body states of strings
- $X_{\widehat{D}}(\overline{\tau}): \Sigma|_{\overline{\tau}} \to \mathbf{R}^d$
 - \widehat{D} : backgrounds (B, dilaton)



- $[\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}]$: equivalence class
 - at $\overline{\tau} \cong \pm \infty$ $\Sigma \cong C^2 \cup \cdots \cup C^2$

Here, $\Sigma|_{\overline{\tau}\cong\pm\infty} = \Sigma'|_{\overline{\tau}\cong\pm\infty}, X_{\widehat{D}}(\overline{\tau}\cong\pm\infty) = X'_{\widehat{D}}(\overline{\tau}\cong\pm\infty)$ \downarrow $(\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}\cong\pm\infty) \sim (\Sigma', X'_{\widehat{D}}(\overline{\tau}), \overline{\tau}\cong\pm\infty)$ Σ Σ' Σ' Σ' Σ''

• $E := \bigcup_{\widehat{D}} \{ [\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}] \}$

 $(\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau} \cong -\infty) \sim (\Sigma', X_{\widehat{D}}'(\overline{\tau}), \overline{\tau} \cong -\infty) \sim (\Sigma'', X_{\widehat{D}}''(\overline{\tau}), \overline{\tau} \cong -\infty)$

1. 2 String toplology

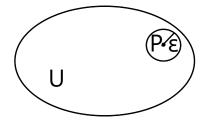
String topology

+ ϵ open neighborhood

$$U([\Sigma, X_{0\hat{D}}(\bar{\tau}_{0}), \bar{\tau}_{0}], \epsilon) := \left\{ [\Sigma, X_{\hat{D}}(\bar{\tau}), \bar{\tau}] \mid \sqrt{|\bar{\tau} - \bar{\tau}_{0}|^{2} + ||X_{\hat{D}}(\bar{\tau}) - X_{0\hat{D}}(\bar{\tau}_{0})||^{2}} < \epsilon \right\}$$

s.t.
$$||X_{\hat{D}}(\bar{\tau}) - X_{\hat{D}0}(\bar{\tau}_0)||^2 = \int_0^{2\pi} d\bar{\sigma} (X_{\hat{D}}^{\mu}(\bar{\tau},\bar{\sigma}) - X_{\hat{D}0}^{\mu}(\bar{\tau}_0,\bar{\sigma}))^2$$

- U is defined to be an open set if there exists ∈ such that an ∈ open neighborhood ⊂ U for an arbitrary point P ∈ U.
- The open sets satisfies the axiom of topology.
 - (i) $\emptyset, E \in \mathcal{U}$
 - (*ii*) $U_1, U_2 \in \mathcal{U} \Rightarrow U_1 \cap U_2 \in \mathcal{U}$
 - $(iii) \quad U_{\lambda} \in \mathcal{U} \Rightarrow \cup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{U}$



1. 2 String manifold

General coordinate transformation

- Σ does not transform to $\overline{\tau}$, $X_{\widehat{D}}$ and vice versa, because Σ is a discrete variable, whereas $\overline{\tau}$, $X_{\widehat{D}}$ are continuous variables by definition of the neighbourhoods.
- $\bar{\tau}$ and $\bar{\sigma}$ do not transform to each other because the string states are defined by $\bar{\tau}$ constant lines.
- Under these restrictions, the most general coordinate transformation is given by

 $[\bar{h}_{mn}(\bar{\sigma},\bar{\tau}),\bar{\tau},X^{\mu}_{\hat{D}}(\bar{\tau})] \mapsto [\bar{h}'_{mn}(\bar{\sigma}'(\bar{\sigma}),\bar{\tau}'(\bar{\tau},X_{\hat{D}}(\bar{\tau}))),\bar{\tau}'(\bar{\tau},X_{\hat{D}}(\bar{\tau})),X'^{\mu}_{\hat{D}}(\bar{\tau}')(\bar{\tau},X_{\hat{D}}(\bar{\tau}))]$

- $\Sigma \iff \bar{h}_{mn}(\bar{\sigma},\bar{\tau})$ up to diff × Weyl
- String manifolds \mathfrak{M} are constructed by patching open sets of E by general coordinate transformations.

Example of string manifolds \mathcal{M}_D

• $\mathcal{M}_D := \{ [\Sigma, x_D(\bar{\tau}), \bar{\tau}] \}$

where $x_D(\bar{\tau}): \Sigma|_{\bar{\tau}} \to M$ which has target mertic $ds^2 = dx_D^{\mu}(\bar{\tau}, \bar{\sigma}) dx_D^{\nu}(\bar{\tau}, \bar{\sigma}) G_{\mu\nu}(x_D(\bar{\tau}, \bar{\sigma}))$

• D: backgronds including the target metric . D is fixed on a string manifold.

• Open sets of $\mathcal{M}_D \longleftrightarrow$ Open sets of E homeomorphic

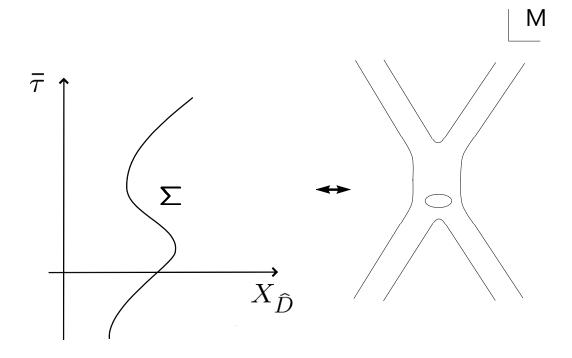
diffeo: $[\Sigma, x_D(\bar{\tau}), \bar{\tau}] \mapsto [\Sigma, X_{\hat{D}}(\bar{\tau}), \bar{\tau}]$

 $X_{\widehat{D}}(\overline{\tau})(x_D(\overline{\tau}))$ Is induced by the diffeomorphism transformation of the target space $x \mapsto X = X(x)$ \downarrow $X_{\widehat{D}}(\overline{\tau},\overline{\sigma}) = X(x_D(\overline{\tau},\overline{\sigma}))$

Example of string manifolds M_D (cont'd)

• Trajectories in asymptotic processes on \mathcal{M}_D represents 2-dim. Riemann surfaces in the target manifold.

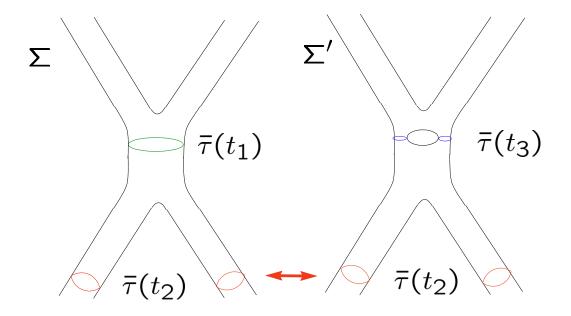
reproduce the right moduli space.



Example of string manifolds M_D (cont'd)

• By a general trajectory, string states on different two-dimensional Riemann surfaces that have **different genus numbers** can be connected continuously.

v.s. the moduli space



1.4 Riemannian string manifold

Riemannian string manifold

• cotangent vectors

cotangent space of manifolds are spanned by continuous variables:

$$dX_{\widehat{D}}^{\mu}(\bar{\sigma},\bar{\tau}) \qquad d\bar{\tau}$$

$$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & &$$

• metric

 $ds^{2}(\bar{h},\bar{\tau},X_{\widehat{D}}) = G_{IJ}(\bar{h},\bar{\tau},X_{\widehat{D}})dX_{\widehat{D}}^{I}dX_{\widehat{D}}^{J}$

2 Non-perturbative formulation of string theory

Non-perturbative formulation of superstring theory

•
$$Z = \int \mathcal{D}G\mathcal{D}Ae^{-S}$$

$$S = \frac{1}{G_N} \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}X_{\hat{D}} \sqrt{G} (-R + \frac{1}{4} G_N G^{I_1 I_2} G^{J_1 J_2} F_{I_1 J_1} F_{I_2 J_2})$$

 $\mathcal{D}h$: the invariant measure of h_{mn} on Σ .

$$h_{mn} \longleftrightarrow \overline{h}_{mn}$$

diff × Weyl

 $F_{\mathbf{I}\mathbf{J}}$: field strength of an u(1) gauge field $A_{\mathbf{I}}$

• The theory is background independent.

diffeomorphism invariance

• Under $(\bar{\tau}, X) \mapsto (\bar{\tau}'(\bar{\tau}, X), X'(\bar{\tau}, X))$

 $G_{IJ}(\bar{h}, \bar{\tau}, X)$: symmetric tensor $A_I(\bar{h}, \bar{\tau}, X)$: vector

Action is manifestly invariant

•

Under
$$\bar{h}_{mn} \to \bar{h}'_{mn}$$
, $G_{IJ}(\bar{h}, \bar{\tau}, X)$ and $A_I(\bar{h}, \bar{\tau}, X)$ are defined as scalars
Under $\bar{\sigma} \mapsto \bar{\sigma}'(\bar{\sigma})$, the fields that have index $\bar{\sigma}$ transform as scalars.
 $\int d\bar{\sigma}\bar{e}(\bar{\sigma}, \bar{\tau})$ is invariant.
 \downarrow
The action is invariant under $\bar{\sigma} \mapsto \bar{\sigma}'(\bar{\sigma})$

* In a supersymmetric case, the action is invariant under $(\bar{\sigma}, \bar{\theta}^{\alpha}) \mapsto (\bar{\sigma}'(\bar{\sigma}, \bar{\theta}), \bar{\theta}'^{\alpha}(\bar{\sigma}, \bar{\theta}))$

3 String geometry solution that represents a perturbative vacuum of string theory

Perturbative vacuum solution (Extension of Majumdar-Papapetrou solution (1947, 1948))

$$\bar{ds}^2 = 2\lambda\bar{\rho}(\bar{h})N^2(X)(dX^d)^2 + \int d\bar{\sigma}\bar{e}\int d\bar{\sigma}'\bar{e}'N^{\frac{2}{2-D}}(X)\frac{\bar{e}^3(\bar{\sigma},\bar{\tau})}{\sqrt{\bar{h}(\bar{\sigma},\bar{\tau})}}\delta_{(\mu\bar{\sigma})(\mu'\bar{\sigma}')}dX^{(\mu\bar{\sigma})}dX^{(\mu\bar{\sigma}')}$$
$$\bar{A}_d = i\sqrt{\frac{2-2D}{2-D}}\frac{\sqrt{2\lambda\bar{\rho}(\bar{h})}}{\sqrt{G_N}}N(X), \qquad \bar{A}_{(\mu\bar{\sigma})} = 0$$

is a solution to the equations of motion. $(\bar{h}_{mn}(\bar{\sigma},\bar{\tau}), \bar{\tau}, X^{\mu}(\bar{\sigma},\bar{\tau}))$ are all independent.)

where
$$\bar{\rho}(\bar{h}) := \frac{1}{4\pi} \int d\bar{\sigma} \sqrt{\bar{h}} \bar{R}_{\bar{h}}$$
 ($\bar{R}_{\bar{h}}$ is the scalar curvature of \bar{h}_{mn})
 $D := \int d\bar{\sigma} \bar{e} \delta_{(\mu\bar{\sigma})(\mu\bar{\sigma})} = d2\pi\delta(0)$ (index volume)
 $N(X) = \frac{1}{1+v(X)} \left(v(X) = \frac{\alpha}{\sqrt{d-1}} \int d\bar{\sigma} \epsilon_{\mu\nu} X^{\mu} \partial_{\bar{\sigma}} X^{\nu} \right)$

- We derive all the perturbative string amplitudes on flat spacetime from the fluctuations around this solution.
- The solution is defined on \mathcal{M}_D where the target metric is fixed to be flat .
- The equations of motion are differential equations with respect to $\overline{\tau}$, $X^{\mu}(\overline{\sigma},\overline{\tau})$ \downarrow The functions of $\overline{h}_{mn}(\overline{\sigma},\overline{\tau})$ are constants in the solution **(determined by the consistency of the fluctuations.)**

4 Derive all order scattering amplitudes of perturbative string

Propagators around the perturbative vacuum

1. Expand the action around the perturbtive vacuum up to 2nd order:

$$G_{IJ} = \bar{G}_{IJ} + \tilde{G}_{IJ}$$
$$A_I = \bar{A}_I + \tilde{A}_I$$

- 2. Take $G_N \rightarrow 0$. Then, the fluctuations of the gaguge field are suppressed.
- 3. Take the harmonic gauge to fix diffeo. Then, the gauge fixing term is added.

$$S_{fix} = \frac{1}{G_N} \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}X \sqrt{\bar{G}} \frac{1}{2} \left(\bar{\nabla}^J (\tilde{G}_{IJ} - \frac{1}{2} \bar{G}_{IJ} \tilde{G}) \right)^2$$

4. Take slowly varying field limit:

derivative expansion
$$\begin{cases} \tilde{G}_{IJ} \rightarrow \frac{1}{\alpha} \tilde{G}_{IJ} \\ \partial_K \tilde{G}_{IJ} \rightarrow \partial_K \tilde{G}_{IJ} \\ \partial_K \partial_L \tilde{G}_{IJ} \rightarrow \alpha \partial_K \partial_L \tilde{G}_{IJ} \end{cases} \text{ and } \alpha \rightarrow 0$$

5. Normalize to obtain canonical kinetic term: $ilde{H}_{IJ} := Z_{IJ} ilde{G}_{IJ}$

6. Take $D
ightarrow \infty$

Propagators around the perturbative vacuum (cont'd)

•
$$S + S_{fix} = \int \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}X \frac{1}{4} \tilde{H}H(-i\frac{\partial}{\partial\bar{\tau}}, -i\frac{1}{\bar{e}}\frac{\partial}{\partial X}, X, \bar{h})\tilde{H}$$
 +(terms do not mix with \tilde{H})

 $ilde{H}$ is one of the modes of $ilde{H}_{d\,(\muar{\sigma})}$

$$H(p_{\bar{\tau}}, p_X, X, h) = \frac{1}{2} \frac{1}{2\lambda\bar{\rho}} p_{\bar{\tau}}^2 + \int_0^{2\pi} d\bar{\sigma} \left(\sqrt{\bar{h}} \left(\frac{1}{2} (p_X^{\mu})^2 + \frac{1}{2} \bar{e}^{-2} (\partial_{\bar{\sigma}} X^{\mu})^2 \right) + i\bar{e}\bar{n}^{\bar{\sigma}} \partial_{\bar{\sigma}} X_{\mu} p_X^{\mu} \right)$$

ADM decomposition $\bar{h}_{mn} = \left(\begin{array}{cc} \bar{n}^2 + \bar{n}_{\bar{\sigma}} \bar{n}^{\bar{\sigma}} & \bar{n}_{\bar{\sigma}} \\ \bar{n}_{\bar{\sigma}} & \bar{e}^2 \end{array} \right)$

• Differential equation for the propagator $\Delta_F(\bar{h}, \bar{\tau}, X; \bar{h}, \bar{\tau}, X')$

$$H(-i\frac{\partial}{\partial\bar{\tau}}, -i\frac{1}{\bar{e}}\frac{\partial}{\partial X}, X, \bar{h})\Delta_F(\bar{h}, \bar{\tau}, X; \bar{h}, \bar{\tau}, X') = \delta(\bar{h} - \bar{h}')\delta(\bar{\tau} - \bar{\tau}')\delta(X - X')$$

Schwinger representation of the propagator = path integral of the perturbative strings

• In order to compare with perturbative strings, Take the Schwinger representation of the propagator by using the first quantization formalism. operators $(\hat{h}, \hat{\tau}, \hat{X})$ conjugate momenta $(\hat{p}_{\bar{h}}, \hat{p}_{\bar{\tau}}, \hat{p}_X)$ eigen states $|\bar{h}, \bar{\tau}, X >$

•
$$H(-i\frac{\partial}{\partial\bar{\tau}}, -i\frac{1}{\bar{e}}\frac{\partial}{\partial X}, X, \bar{h})\Delta_F(\bar{h}, \bar{\tau}, X; \bar{h}, '\bar{\tau}, 'X') = \delta(\bar{h} - \bar{h}')\delta(\bar{\tau} - \bar{\tau}')\delta(X - X')$$

• $\Delta_F(\bar{h}, \bar{\tau}, X; \bar{h}, '\bar{\tau}, 'X') = \langle \bar{h}, \bar{\tau}, X|\hat{H}^{-1}(\hat{p}_{\bar{\tau}}, \hat{p}_X, \hat{X}, \hat{\bar{h}})|\bar{h}, '\bar{\tau}, 'X' >$
 $= \int_0^\infty dT \langle \bar{h}, \bar{\tau}, X|e^{-T\hat{H}}|\bar{h}, '\bar{\tau}, 'X' >$

•
$$\Delta_F(X; X') := \int_0^\infty dT < X|_{out} e^{-T\hat{H}} |X'>_{in}$$

 $|X'>_{in} := \int \mathcal{D}h < \bar{h}, \bar{\tau} = \infty, X|$
 $|X'>_{in} := \int \mathcal{D}h' |\bar{h}', \bar{\tau} = -\infty, X'>$

• path integral representation

• move onto Lagrange formalism from the canonical formalism by integrating out $p_{\overline{\tau}}, p_X$.

Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

$$\begin{split} & \Delta_F(X; X') \\ &= \int_{X'}^X \mathcal{D}T \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}X \mathcal{D}p_T \\ & \exp\left(-\int_0^1 dt \Big(-ip_T(t)\frac{d}{dt}T(t) + \lambda\bar{\rho}\frac{1}{T(t)}(\frac{d\bar{\tau}(t)}{dt})^2 \\ & + \int d\bar{\sigma}\sqrt{\bar{h}}(\frac{1}{2}\bar{h}^{00}\frac{1}{T(t)}\partial_t X^{\mu}(\bar{\sigma},\bar{\tau},t)\partial_t X_{\mu}(\bar{\sigma},\bar{\tau},t) + \bar{h}^{01}\partial_t X^{\mu}(\bar{\sigma},\bar{\tau},t)\partial_{\bar{\sigma}}X_{\mu}(\bar{\sigma},\bar{\tau},t) \\ & + \frac{1}{2}\bar{h}^{11}T(t)\partial_{\bar{\sigma}}X^{\mu}(\bar{\sigma},\bar{\tau},t)\partial_{\bar{\sigma}}X_{\mu}(\bar{\sigma},\bar{\tau},t))\Big)\Big) \end{split}$$

• This path integral is obtained

if $F_1(t) := \frac{d}{dt}T(t) = 0$ gauge is chosen in the next covariant form w.r.t. t diffeo:

• Covariant form w.r.t. t diffeo

$$\begin{split} & \Delta_F(X; X') \\ = \ & Z_1 \int_{X'}^X \mathcal{D}T \mathcal{D}h \mathcal{D}\bar{\tau} \mathcal{D}X \exp\left(-\int_0^1 dt \left(+\lambda \bar{\rho} \frac{1}{T(t)} (\frac{d\bar{\tau}(t)}{dt})^2 \right. \\ & + \int d\bar{\sigma} \sqrt{\bar{h}} (\frac{1}{2} \bar{h}^{00} \frac{1}{T(t)} \partial_t X^\mu(\bar{\sigma}, \bar{\tau}, t) \partial_t X_\mu(\bar{\sigma}, \bar{\tau}, t) + \bar{h}^{01} \partial_t X^\mu(\bar{\sigma}, \bar{\tau}, t) \partial_{\bar{\sigma}} X_\mu(\bar{\sigma}, \bar{\tau}, t) \\ & + \frac{1}{2} \bar{h}^{11} T(t) \partial_{\bar{\sigma}} X^\mu(\bar{\sigma}, \bar{\tau}, t) \partial_{\bar{\sigma}} X_\mu(\bar{\sigma}, \bar{\tau}, t)) \right) \right) \qquad * T(t) \text{ is transformed as an einbein.} \end{split}$$

• T(t) disappears under $\frac{d\bar{\tau}}{d\bar{\tau}'} = T(t)$:

$$\bar{h}^{00} = T^2 \bar{h}'^{00} \qquad \sqrt{\bar{h}} = \frac{1}{T} \sqrt{\bar{h}'}$$

$$\bar{h}^{01} = T \bar{h}'^{01} \qquad \bar{\rho} = \frac{1}{T} \bar{\rho}'$$

$$\bar{h}^{11} = \bar{h}'^{11} \qquad \bar{\rho} = \frac{1}{T} \bar{\rho}'$$

$$\left(\frac{d\bar{\tau}(t)}{dt}\right)^2 = T^2 \left(\frac{d\bar{\tau}'(t)}{dt}\right)^2$$

* This action is still invariant under the diffeomorphism with respect to t if $\bar{\tau}\,$ transforms in the same way as t.

• Take $\bar{\tau} = t$ gauge.

Schwinger representation of the propagator = path integral of the perturbative strings (cont'd)

•
$$\Delta_F(X; X')$$

= $Z \int_{X'}^X \mathcal{D}h \mathcal{D}X \exp\left(-\int d\bar{\tau} \int d\bar{\sigma} \sqrt{\bar{h}} (\frac{\lambda}{4\pi} \bar{R}(\bar{\sigma}, \bar{\tau}) + \frac{1}{2} \bar{h}^{00} \partial_{\bar{\tau}} X^{\mu}(\bar{\sigma}, \bar{\tau}) \partial_{\bar{\tau}} X_{\mu}(\bar{\sigma}, \bar{\tau}) + \bar{h}^{01} \partial_{\bar{\tau}} X^{\mu}(\bar{\sigma}, \bar{\tau}) \partial_{\bar{\sigma}} X_{\mu}(\bar{\sigma}, \bar{\tau}) + \frac{1}{2} \bar{h}^{11} \partial_{\bar{\sigma}} X^{\mu}(\bar{\sigma}, \bar{\tau}) \partial_{\bar{\sigma}} X_{\mu}(\bar{\sigma}, \bar{\tau}))\right)$

• Diff × Weyl transformation gives

(77 77/)

$$\Delta_F(X; X') = Z \int_{X'}^X \mathcal{D}h \mathcal{D}X e^{-\lambda \chi} e^{-S_s}$$
$$S_s = \int_{-\infty}^\infty d\tau \int d\sigma \sqrt{h(\sigma, \tau)} \left(\frac{1}{2}h^{mn}(\sigma, \tau)\partial_m X^{\mu}(\sigma, \tau)\partial_n X_{\mu}(\sigma, \tau)\right)$$

 χ : Euler number

- We obtain the all-order perturbative scattering amplitudes that possess the moduli in the string theory, by inserting asymptotic states.
- The consistency of the fluctuations around the backgrounds \rightarrow the critical dimension d=26.

(**d=10** in the supersymmetric cases)

5 General supersymmetric case that includes open strings

Supersymmetric generalization including open strings

So far	General
Riemann surface Σ	super Riemann surface $~\Sigma~$ with or without boundaries
$X_{\widehat{D}}: \mathbf{\Sigma} _{\overline{\tau}} \to \mathbf{R}^d$	$\mathbf{X}_{\widehat{D}}: \mathbf{\Sigma} _{\overline{ au}} o \mathbf{R}^d$ Boundaries have CP factors and map to D-branes
\widehat{D} : background (B, dilaton)	\hat{D} : background (B, dilaton , RR, submanifolds of M that represent D-branes and O-planes gauge fields on D-branes)
model space $E := \bigcup_{\widehat{D}} \{ [\Sigma, X_{\widehat{D}}(\overline{\tau}), \overline{\tau}] \}$	$\begin{split} \mathbf{E} &:= \bigcup_{\hat{D}_T} \{ [\boldsymbol{\Sigma}, \mathbf{X}_{\hat{D}_T}(\bar{\tau}), \bar{\tau}] \} \text{ (T= IIA, IIB, I)} \\ \bullet \text{ For T=I, } \Omega \text{ projected} \\ \bullet \text{ For T=IIA (T=IIB, I), IIA (IIB) GSO projection is attached on asymptotic states} \\ & ^* \text{We can define GSO projection} \\ \text{ because functions over the model space are functions of } \psi^{\mu}_{\alpha} \\ & \boldsymbol{X}^{\mu}_{\hat{D}_T} = X^{\mu} + \bar{\theta}^{\alpha} \psi^{\mu}_{\alpha} + \frac{1}{2} \bar{\theta}^2 F^{\mu} \end{split}$
index $(\muar{\sigma})$	$(\mu \bar{\sigma} \bar{\theta})$

Non-perturbative formulation of superstring theory

•
$$Z = \int \mathcal{D}G\mathcal{D}Ae^{-S}$$

$$S = \int \mathcal{D} \mathbf{E} \mathcal{D} \bar{\tau} \mathcal{D} \mathbf{X}_{\hat{D}} \sqrt{G} \left(-R + \frac{1}{4} G_N G^{\mathbf{I}_1 \mathbf{I}_2} G^{\mathbf{J}_1 \mathbf{J}_2} F_{\mathbf{I}_1 \mathbf{J}_1} F_{\mathbf{I}_2 \mathbf{J}_2}\right)$$

• The theory is background independent.

Supersymmetry is a part of the diffeomorphisms symmetry

$$\begin{aligned} (\bar{\sigma},\bar{\theta}^{\alpha}) &\mapsto (\bar{\sigma}'(\bar{\sigma},\bar{\theta}),\bar{\theta}'^{\alpha}(\bar{\sigma},\bar{\theta})) \\ \uparrow \\ [\mathbf{E}_{M}^{A}(\bar{\sigma},\bar{\tau},\bar{\theta}^{\alpha}),\mathbf{X}_{\hat{D}_{T}}^{\mu}(\bar{\tau}),\bar{\tau}] &\mapsto [\mathbf{E}_{M}^{'}{}^{A}(\bar{\sigma}'(\bar{\sigma},\bar{\theta}),\bar{\tau},\bar{\theta}'^{\alpha}(\bar{\sigma},\bar{\theta})),\mathbf{X}_{\hat{D}_{T}}^{'\mu}(\bar{\tau})(\mathbf{X}_{\hat{D}_{T}})),\bar{\tau}] \end{aligned}$$

• These are dimensional reductions in $\overline{\tau}$ direction of the two-dimensional $\mathcal{N}=(1,1)$ local susy trans.

• supercharges
$$\xi^{\alpha}Q_{\alpha} = \xi^{\alpha}(\frac{\partial}{\partial\bar{\theta}^{\alpha}} + i\gamma^{1}_{\alpha\beta}\bar{\theta}^{\beta}\frac{\partial}{\partial\bar{\sigma}})$$

- The number of supercharges is the same as of the two-dimensional ones.
- The supersymmetry algebra closes in a field-independent sense as in ordinary supergravities.

Derive the all order perturbative superstring scattering amplitudes

- We obtain the all-order scattering amplitudes that possess the supermoduli in the perturbative type IIA, IIB and SO(32) type I superstring, if we consider the fluctuations after fixing IIA, IIB and SO(32) type I charts, respectively.
- These amplitudes are derived from the single theory.
- The consistency of the fluctuations around the backgrounds \rightarrow **d=10**

• We obtain amplitudes of the superstrings with Dirichlet and Neumann boundary conditions in the normal and tangential directions to the D-submanifolds, respectively.

D-submanifolds represent D-brane backgrounds where back reactions from the D-branes are ignored.

6 String geometry and a new type of supersymmetric matrix models

String geometry and a new type of supersymmetric matrix models

Gravity and a matrix moldel (Hanada-Kawai-Kimura 2006)

Equations of motion of
$$S_e = \frac{1}{G_N} \int d^{10}x \sqrt{g} (-R + \frac{1}{4}G_N F_{\mu\nu}F^{\mu\nu})$$

 \Rightarrow equivalent

Equations of motion of $S_m = tr(-[A_\mu, A_\nu][A^\mu, A^\nu])$ where we replace $A_\mu \equiv \nabla_\mu$

String geometry and a matrix model

(extended) large N reduction ?

More simple

 $S_{M_0} = tr(-[A_{\mathbf{I}}, A_{\mathbf{J}}][A^{\mathbf{I}}, A^{\mathbf{J}}])$ (a supersymmetric matrix model that has ∞ indices $\mathbf{I} = (d, (\mu \bar{\sigma} \bar{\theta}))$)

is interesting.

Worldsheets can be derived in general by perturbations of matrix models

7 Unification of particles and the space-time

Unification of space-time and particles

• space-time and string geometry

asymptotic trajectory on \mathfrak{M}_D with target M = string world-sheet in M $\xrightarrow{}_{\mathsf{macro}}$ trajectory of a particle in M

Space-time M is identified by: observing all trajectories of a particle in M.

 \therefore \mathfrak{M}_D is observed as M macroscopically.

Conversely, we see a string, if we microscopically observe a point of the space-time.

-

• particle and string geometry

A fluctuation of $\mathfrak{M}_D = \text{string}$ macro particle

Conversely, we see a string, if we microscopically observe a particle.

• unification of space-time and particle

Macroscopically, space-time = string manifold

particle = a fluctuation of string manifold

