Doubled Aspects of Vaisman Algebroid and Gauge Symmetry in Double Field Theory Kenta Shiozawa with Haruka Mori and Shin Sasaki (Kitasato Univ.)

based on arXiv:1901.04777

1. Introduction

T-duality: appears in the string mass spectrum (hidden symmetry) Kaluza-Klein modes \leftrightarrow string winding modes

- It is not a manifest symmetry in the string effective action.
- When the compact space is T^D , the T-duality group is O(D, D).

Double Field Theory (DFT):

[Hull-Zwiebach '09]

- an effective theory of strings where T-duality is realized manifestly
- defined on the doubled spacetime \mathcal{M} (dim $\mathcal{M} = 2D$)
 - \mathcal{M} is characterized by the "doubled" coordinate $x^M = (x^\mu, \tilde{x}_\mu)$.
 - x^{μ} is the Fourier dual of KK momentum, \tilde{x}_{μ} is the dual of winding charges.

4. Double of Lie Bialgebroid

- Def: Lie bialgebroid (L, L^*)
- \blacktriangleright a pair of a Lie algebroid L and its dual Lie algebroid L^*
- ▶ satisfying the derivation condition: $d_*[A, B]_s = [d_*A, B]_s + [A, d_*B]_s$

The Schouten bracket $[\cdot, \cdot]_s : \wedge^p L \times \wedge^q L \to \wedge^{p+q-1} L$ is defined by the properties: $[A,B]_{\mathsf{s}} = -(-)^{(p-1)(q-1)}[B,A]_{\mathsf{s}}$ $(A \in \wedge^p L, B \in \wedge^q L)$ $[A, B \land C]_{\mathsf{s}} = [A, B]_{\mathsf{s}} \land C + (-)^{(p-1)q} B \land [A, C]_{\mathsf{s}}$ ($C \in \land^{r} L$)

 $(-)^{(p-1)(r-1)}[A, [B, C]_{\mathsf{s}}]_{\mathsf{s}} + (-)^{(q-1)(p-1)}[B, [C, A]_{\mathsf{s}}]_{\mathsf{s}} + (-)^{(r-1)(q-1)}[C, [A, B]_{\mathsf{s}}]_{\mathsf{s}} = 0$

Def: Courant algebroid $(\mathcal{C}, [\cdot, \cdot]_{c}, \rho_{c}, (\cdot, \cdot))$ [Courant '90, Liu-Weinstein-Xu '97]

The section condition:

- Since DFT has extra d.o.f., it is necessary imposed the physical condition.
- The "strong constraint": $\partial_M * \partial^M * = 0$ (* : arbitrary fields & parameters).
- A trivial solution of the strong constraint: $\partial^{\mu} * = 0$ (independent of \tilde{x}).
- \rightarrow Under this condition, DFT is reduced to type II supergravity.

The C-bracket:

(doubled vectors $\Xi_i^M = (A_i^{\mu}, \alpha_{i\mu})$)

 $[\Xi_1, \Xi_2]_{\mathsf{C}} = [A_1, A_2]_L + \mathcal{L}_{A_1}\alpha_2 - \mathcal{L}_{A_2}\alpha_1 - \frac{1}{2}\mathrm{d}(\iota_{A_1}\alpha_2 - \iota_{A_2}\alpha_1)$ (\heartsuit) + $[\alpha_1, \alpha_2]_{\tilde{L}}$ + $\tilde{\mathcal{L}}_{\alpha_1}A_2 - \tilde{\mathcal{L}}_{\alpha_2}A_1 - \frac{1}{2}\tilde{d}(\tilde{\iota}_{\alpha_1}A_2 - \tilde{\iota}_{\alpha_2}A_1)$

- The C-bracket governs the commutator of the generalized Lie derivative.
- $[\cdot, \cdot]_{C}$ accommodates the *D*-dim. diffeo. and the *B*-field gauge symmetry algebra.
- Under $\partial^{\mu} * = 0$, the C-bracket reduces to the Courant bracket in gen. geom.
- ▶ The algebraic strc. based on $[\cdot, \cdot]_C$ is not a Courant algd. but a Vaisman algd.

Our Results

- ► The Vaisman algebroid is obtained by the double of two Lie algebroids.
- ▶ We find an algebraic origin of the strong constraint in DFT.

2. Drinfel'd Double of Lie Bialgebra

- $\triangleright \mathcal{C} \xrightarrow{\pi} M$: a vector bundle over a manifold M
- ▶ a non-degenerate symmetric bilinear form $(\cdot, \cdot) : \mathcal{C} \times \mathcal{C} \to C^{\infty}(M)$
- ▶ an anchor $\rho_{c} : C \to TM$
- ▶ a skew-symmetric bracket $[\cdot, \cdot]_{c} : C \times C \rightarrow C$
 - (Jacobi identity (up to homotopy)): $[[e_1, e_2]_c, e_3]_c + c.p. = \mathcal{D}T(e_1, e_2, e_3)$
 - (Homomorphic property of ρ_c): $\rho_c([e_1, e_2]_c) = [\rho_c(e_1), \rho_c(e_2)]$
 - (Leibniz rule): $[e_1, fe_2]_c = f[e_1, e_2]_c + (\rho_c(e_1) \cdot f)e_2 (e_1, e_2)\mathcal{D}f$
 - ▶ (calculation rule of \mathcal{D} and (\cdot, \cdot)): $(\mathcal{D}f, \mathcal{D}g) = 0$
 - (Compatibility between (\cdot, \cdot) & ρ_c): $\rho_{\mathsf{c}}(e_1) \cdot (e_2, e_3) = ([e_1, e_2]_{\mathsf{c}} + \mathcal{D}(e_1, e_2), e_3) + (e_2, [e_1, e_3]_{\mathsf{c}} + \mathcal{D}(e_1, e_3))$

A Courant algebroid is obtained by the Drinfel'd double of a Lie bialgebroid.

- $(L \oplus L^*, [\cdot, \cdot]_c, \rho_c = \rho + \rho_*, (\cdot, \cdot)_+)$ and the morphism $\mathcal{D} = d + d_*$
- ▶ a vector space $L \oplus L^*$ and its elements $e_i = A_i + \alpha_i$
- ▶ Non-degenerate bilinear forms: $(e_1, e_2)_{\pm} = \frac{1}{2} (\langle \alpha_1, A_2 \rangle \pm \langle \alpha_2, A_1 \rangle)$
- ▶ a skew-symmetric bracket: same form as the C-bracket (\heartsuit) (but $d \leftrightarrow d_*$)
- $L \oplus L^*$ satisfies all definitions of the Courant algebroid.

5. "Double" for Vaisman Algebroid

Vaisman Algebroids are algebraic structures based on the C-bracket.

[Vaisman '12, '13]

Def: Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$ dual Lie algebra $(\mathfrak{g}^*, [\cdot, \cdot]_*)$

a skew-symmetric bilinear bracket

(the Lie bracket) $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$

► a vector space g

- the dual vector space \mathfrak{g}^*
- ► the dual Lie bracket
- $[\cdot,\cdot]_*:\mathfrak{g}^* imes\mathfrak{g}^* o\mathfrak{g}^*$
- A natural bilinear inner product $\langle \cdot, \cdot \rangle : \mathfrak{g}^* \times \mathfrak{g} \to K$ is defined (K: a field).

Def: Lie bialgebra $(\mathfrak{g}, \mathfrak{g}^*)$ • Let the Lie bracket $[\cdot, \cdot]$ be a bilinear map $\mu : \wedge^2 \mathfrak{g} \to \mathfrak{g}$. ▶ a co-bracket $\delta : \mathfrak{g} \to \wedge^2 \mathfrak{g}$ as an adjoint of the dual bracket $\mu_* : \wedge^2 \mathfrak{g}^* \to \mathfrak{g}^*$ • the adjoint of μ_* , denoted as μ_*^* , is defined by $\langle a, \mu_*(\bar{c}) \rangle = \langle \mu_*^*(a), \bar{c} \rangle$ ($\bar{c} \in \wedge^2 \mathfrak{g}^*$) • imposing the 1-cocycle condition: $\delta([a, b]) = \operatorname{ad}_a^{(2)} \delta(b) - \operatorname{ad}_b^{(2)} \delta(a)$

The Drinfel'd double of a Lie bialgebra \Rightarrow a new Lie algebra $(\mathfrak{d}, [\cdot, \cdot]_{\mathfrak{d}})$

 \blacktriangleright a vector space $\mathfrak{d} = \mathfrak{g} \oplus \mathfrak{g}^*$

▶ a bilinear form: $(a, b) = (\bar{a}, \bar{b}) = 0$, $(a, \bar{b}) = \langle \bar{b}, a \rangle$ $(a, b \in \mathfrak{g}, \bar{a}, \bar{b} \in \mathfrak{g}^*)$

▶ a skew-symmetric bracket: $[a, b]_{\mathfrak{d}} = [a, b], \ [\bar{a}, \bar{b}]_{\mathfrak{d}} = [\bar{a}, \bar{b}]_*, \ [a, \bar{b}]_{\mathfrak{d}} = \operatorname{ad}_a^* \bar{b} - \operatorname{ad}_{\bar{b}}^* a$

3. Lie algebroid and Its Dual

Lie algebroid: a generalization of a Lie algebra defined over a mfd. Lie algebroid Lie algebra

Def: Vaisman algebroid $(\mathcal{V}, [\cdot, \cdot]_{v}, \rho_{v}, (\cdot, \cdot))$

- $\triangleright \mathcal{V} \xrightarrow{\pi} M$: a vector bundle over a manifold M
- ▶ a non-degenerate symmetric bilinear form $(\cdot, \cdot) : \mathcal{V} \times \mathcal{V} \to C^{\infty}(M)$
- ▶ an anchor $\rho_{\mathsf{v}}: \mathcal{V} \to TM$
- ▶ a skew-symmetric bracket $[\cdot, \cdot]_{v} : \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
 - (Leibniz rule): $[e_1, fe_2]_v = f[e_1, e_2]_v + (\rho_v(e_1) \cdot f)e_2 (e_1, e_2)\mathcal{D}f$

• (Compatibility between (\cdot, \cdot) & ρ_v): $\rho_{\mathsf{v}}(e_1) \cdot (e_2, e_3) = ([e_1, e_2]_{\mathsf{v}} + \mathcal{D}(e_1, e_2), e_3) + (e_2, [e_1, e_3]_{\mathsf{v}} + \mathcal{D}(e_1, e_3))$

A Vaisman algebroid is obtained by a "double" of Lie algebroids. • $(L \oplus L^*, [\cdot, \cdot]_v, \rho_v = \rho + \rho_*, (\cdot, \cdot)_+)$ and the morphism $\mathcal{D} = d + d_*$ • (L, L^*) is not a Lie bialgebroid, and the derivation condition is not imposed. ▶ a skew-symmetric bracket: same form as the C-bracket (\heartsuit) (but $d \leftrightarrow d_*$)

► We examine the properties that the Courant bracket should satisfy.

generalized Jacobi identity: X

 $[[e_1, e_2]_{v}, e_3]_{v} + c.p. = \mathcal{D}T(e_1, e_2, e_3) - (J_1 + J_2 + c.p.)$ $J_1 = \iota_{A_3} \big(\mathrm{d}[\alpha_1, \alpha_2]_{\mathsf{v}} - \mathcal{L}_{\alpha_1} \mathrm{d}\alpha_2 + \mathcal{L}_{\alpha_2} \mathrm{d}\alpha_1 \big) + \iota_{\alpha_3} \big(\mathrm{d}_*[A_1, A_2]_{\mathsf{v}} - \mathcal{L}_{A_1} \mathrm{d}_* A_2 + \mathcal{L}_{A_2} \mathrm{d}_* A_1 \big)$ $J_{2} = \left(\mathcal{L}_{d_{*}(e_{1},e_{2})_{-}}\alpha_{3} + [d(e_{1},e_{2})_{-},\alpha_{3}]_{v}\right) - \left(\mathcal{L}_{d(e_{1},e_{2})_{-}}A_{3} + [d_{*}(e_{1},e_{2})_{-},A_{3}]_{v}\right)$

• homomorphic property of ρ_v : X

 $\rho_{\mathsf{v}}([e_1, e_2]_{\mathsf{v}}) \cdot f = [\rho_{\mathsf{v}}(e_1), \rho_{\mathsf{v}}(e_2)]f + \frac{1}{2}(\rho\rho_*^* + \rho_*\rho^*)d_0(\langle \alpha_1, A_2 \rangle - \langle \alpha_2, A_1 \rangle)f$ $-\langle \alpha_1, (\mathcal{L}_{\mathrm{d}f}A_2 - [A_2, \mathrm{d}_*f]_L) \rangle + \langle \alpha_2, (\mathcal{L}_{\mathrm{d}f}A_1 - [A_1, \mathrm{d}_*f]_L) \rangle$

defined using vector fields determined by structure functions using left invariant vector fields

 $(A_i \in L)$

- by structure constants
- Def: Lie algebroid $(L, [\cdot, \cdot]_L, \rho)$ $\blacktriangleright L \xrightarrow{\pi} M$: a vector bundle over a base manifold M ▶ an anchor map $\rho: L \to TM$
- ▶ a skew-symmetric bilinear form $[\cdot, \cdot]_L : L \times L \to L$
 - (Jacobi identity): $[[A_1, A_2]_L, A_3]_L + c.p. = 0$
 - (Homomorphic property of ρ): $\rho([A_1, A_2]_L) = [\rho(A_1), \rho(A_2)]_{TM}$
 - (Leibniz rule): $[A_1, fA_2]_L = f[A_1, A_2]_L + (\rho(A_1) \cdot f)A_2$ $(f \in C^{\infty}(M))$

Given a Lie algebroid, we can define the dual Lie algebroid $(L^*, [\cdot, \cdot]_{L^*}, \rho_*)$ The exterior derivative $d : \wedge^p L^* \to \wedge^{p+1} L^*$ is defined by $(\alpha \in \wedge^p L^*, A_i \in E)$ $d\alpha(A_1, \dots, A_{p+1}) = \sum_{i=1}^{p+1} (-)^{i+1} \rho(A_i) \cdot (\alpha(A_1, \dots, \check{A}_i, \dots, A_{p+1}))$ $+\sum_{i< j} (-)^{i+j} \alpha([A_i, A_j]_L, A_1, \dots, \check{A}_i, \dots, \check{A}_j, \dots, A_{p+1})$

- ► calculation rule of \mathcal{D} in (\cdot, \cdot) : X $(\mathcal{D}f, \mathcal{D}g)_+ = \frac{1}{2}(\rho \rho_*^* + \rho_* \rho^*)(\mathrm{d}_0 f)g$ Leibniz rule and compatibility b/w (\cdot, \cdot) & ρ_v :
- $\blacktriangleright L \oplus L^*$ defines a Vaisman algebroid, but not a Courant algebroid. The extra terms vanish by imposing the derivation condition.

Summary of the above discussion:

[Drinfel'd '86]		[Liu-Weinstein-Xu '97]		[Mori-Sasaki-KS '19]		
ie algebras $\mathfrak g$ and $\mathfrak g^*$		Lie algebroids L and L^*		Lie algebroids L and L^*		
,	1-cocycle condition		derivation condition		double	
ie bialgebra $(\mathfrak{g}, \mathfrak{g}^*)$		Lie bialgebroid (L, L^*)			(without	
	Drinfel'd double		Drinfel'd double		derivation condition)	
ie algebra $\mathfrak{d} = \mathfrak{g} \oplus \mathfrak{g}^*$		Courant algebroid		Vaisman algebroid		

Doubled Aspects of Vaisman Algebroid and Gauge Symmetry in Double Field Theory

6. DFT Geometry

Doubled spacetime: described by a para-Hermitian mfd. [Vaisman '13]

- Def: Para-Hermitian manifold (\mathcal{M}, K, η)
- ► *M*: a differential manifold
- $\blacktriangleright K \in \operatorname{End}(T\mathcal{M})$: a para-complex structure satisfying $K^2 = 1$
- ▶ a neutral metric $\eta : T\mathcal{M} \times T\mathcal{M} \to \mathbb{R}$
- \blacktriangleright the compatibility condition: $\eta(K(X),K(Y))=-\eta(X,Y)$
- imposing the integrability condition: $N_K(X, Y) = 0$
- \blacktriangleright N_K is a real analogue of the Nijenhuis tensor

 $N_K(X,Y) = \frac{1}{4} \Big\{ [K(X), K(Y)] + [X,Y] - K \big([K(X),Y] + [X,K(Y)] \big) \Big\}$

By using the para-complex strc., we can decompose $T\mathcal{M} = L \oplus \tilde{L}$. $L(\tilde{L})$ is the eigenbundle associated with the eigenvalue K = +1 (K = -1).

8. Algebroid Structures by DFT Setting

The conventional DFT is described a flat para-Hermitian geometry. • The flat para-Hermitian mfd. is given by $\begin{pmatrix} \mathcal{M}^{2D}, K = \begin{pmatrix} -1 & 0 \\ 0 & +1 \end{pmatrix}, \eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$. • The tangent space $T\mathcal{M}$ is spanned by $\partial_M (M = 1, \dots, 2D)$. • Vector fields on $T\mathcal{M}$ are decomposed by P, \tilde{P} : $\Xi^M \partial_M = A^\mu(x, \tilde{x}) \partial_\mu + \alpha_\mu(x, \tilde{x}) \tilde{\partial}^\mu \qquad (\Xi \in T\mathcal{M}, A \in L, \alpha \in \tilde{L}).$

Schouten brackets and the action of \tilde{d} in DFT setting:

• We introduce the "odd coordinate"
$$\zeta_{\mu} := \partial_{\mu}$$
, then r -vector is

$$A = \frac{1}{r!} A^{\mu_1 \cdots \mu_r} \partial_{\mu_1} \wedge \cdots \wedge \partial_{\mu_r} = \frac{1}{r!} A^{\mu_1 \cdots \mu_r} \zeta_{\mu_1} \cdots \zeta_{\mu_r}.$$

 ζ_{μ} can be treated as a Grassmann number $\rightarrow \partial/\partial \zeta_{\mu}$ is the right derivative.
The Schouten bracket is explicitly given by $(A \in \wedge^{r}L, B \in \wedge^{s}L)$

► This decomposition is performed via the projection operator:

$$P = \frac{1}{2}(1+K), \qquad \tilde{P} = \frac{1}{2}(1-K).$$

• We can decompose N_K (cf. not-para case, we cannot do it).

 $N_{K}(X,Y) = N_{P}(X,Y) + N_{\tilde{P}}(X,Y),$ $N_{P}(X,Y) = \tilde{P}[P(X),P(Y)], \qquad N_{\tilde{P}}(X,Y) = P[\tilde{P}(X),\tilde{P}(Y)].$

• L and \tilde{L} are distributions of $T\mathcal{M}$ (distribution: a generalization of subbundle)

Integrability of distributions:

► The Frobenius theorem:

a distribution L is Frobenius integrable iff L is involutive ($[L, L] \subset L$)

- If $N_P(N_{\tilde{P}})$ vanishes, the distribution $L(\tilde{L})$ is involutive.
- \blacktriangleright The integrability of L and \tilde{L} is independent of each other.

The physical spacetime is identified as a leaf of the foliation:

► An alternative representation of the Frobenius theorem:

a subbundle $E \subset T\mathcal{M}$ is integrable iff it is defined by a regular foliation of \mathcal{M}

 \blacktriangleright When L and \tilde{L} are integrable, then they have foliation strc. $L=T\mathcal{F},~\tilde{L}=T\tilde{\mathcal{F}}$

Def: Foliation structures

• The foliation \mathcal{F} is given by the union of leaves $\bigsqcup_p M_p$.

$$[A,B]_{\mathbf{s}} = \left(\frac{\partial}{\partial \zeta_{\mu}}A\right)\partial_{\mu}B - (-1)^{(r-1)(s-1)}\left(\frac{\partial}{\partial \zeta_{\mu}}B\right)\partial_{\mu}A$$

• The action of $\widetilde{\mathrm{d}}$ on a r-vector A is given by

$$\tilde{\mathrm{d}}A = \frac{1}{r!} \tilde{\partial}^{\nu} A^{\mu_1 \cdots \mu_r} \partial_{\nu} \wedge \partial_{\mu_1} \wedge \cdots \wedge \partial_{\mu_r}.$$

• The same discussion holds for $[\cdot, \cdot]_s^*$ and d on \tilde{L} (replaced $\zeta_{\mu} = \partial_{\mu} \Leftrightarrow \zeta^{*\mu} = \tilde{\partial}^{\mu}$). Lie algebroid structures in DFT:

► The exterior algebras of multi-vectors in DFT is defined.

 \Rightarrow we obtain the Lie algd. $(\wedge^{\bullet}L, [\cdot, \cdot]_{s}, d)$ and its dual Lie algd. $(\wedge^{\bullet}\tilde{L}, [\cdot, \cdot]_{s}^{*}, \tilde{d})$.

 \blacktriangleright Next, Let us check if the pair of L and L makes a Lie bialgebroid.

We examine the derivation condition in DFT by explicit calculation: $\tilde{d}[A, B]_{s} = [\tilde{d}A, B]_{s} + [A, \tilde{d}B]_{s} + (\eta^{MN} \partial_{M} A^{\mu} \partial_{N} B^{\nu}) \partial_{\mu} \wedge \partial_{\nu}.$

- ► The last contribution represents the violation of the derivation condition.
- ► The last term vanishes when the strong constraint is imposed.
- ▶ So, L and \tilde{L} are the Lie algebroids in DFT, but (L, \tilde{L}) is not a Lie bialgebroid. → the double $L \oplus \tilde{L}$ defines a **Vaisman algebroid in DFT**.
- This completely agrees with the analysis in [Chatzistavrakidis-Jonke-Khoo-Szabo '18]
 where the pre-DFT algebroid (Vaisman algebroid) becomes a Courant algebroid after imposing the strong constraint.

- A leaf M_p is a subspace of \mathcal{F} that pass through a point $p \in \mathcal{M}$.
- For *F*, the local coordinate x^µ is given along a leaf. The one for the transverse directions to leaves is *x̃*_µ.
 ⇒ *x̃*_µ is a constant on a leaf M_p.

The relations between DFT and the Generalized Geometry: • η can be seen as a map $\eta : T\mathcal{M} = L \oplus \tilde{L} \to T^*\mathcal{M} = L^* \oplus \tilde{L}^*$. • By using η , an isomorphism $\phi^+ : \tilde{L} \to L^*$ is defined (vectors $\to 1$ -forms). • Given ϕ^+ , we can define the "natural" isomorphism $\Phi^+ : T\mathcal{M} \to L \oplus L^*$ • Φ^+ is utilized to relate DFT and Hitchin's Generalized Geometry.

7. Exterior Algebras in DFT

Let us define a Lie algebroid structure in DFT.

- ► Multi-vectors on a mfd. define a Gerstenhaber alg. by the Schouten br. [Tulczyjew '74]
- A Lie algebroid over a vector bundle $V \to M$ and a Gerstenhaber alg. over multi-vectors $\Gamma(\wedge^{\bullet}V)$ are equivalent. [Vaintrob '97]
- \Rightarrow a Lie algebroid is defined by the exterior algebra of multi-vectors in DFT.

9. Gauge Symmetry in DFT

- The structure of the C-bracket in DFT naturally arises as a Vaisman bracket on a para-Hermitian geometry.
 [Vaisman '13, Svoboda '18]
- The geometric realization of the C-bracket (the Vaisman bracket) is NOT necessarily require the section condition.

In DFT, the B-field gauge symmetry is non-Abelian:

- Using Φ^+ , \tilde{L} is identified as L^* (i.e. "winding" vectors becomes 1-forms).
- $[\cdot, \cdot]_{\tilde{L}}$ represents the *B*-field gauge symmetry parametrized by 1-forms.
- Since $[\cdot, \cdot]_{\tilde{L}}$ is generically non-zero, the T-duality covariantized *B*-field gauge symmetry is effectively enhanced to non-Abelian.

Imposing the strong constraint (SC):

- A trivial sol. of SC is equivalent to imposing the para-holomorphic cond. $\tilde{d}f = 0$.
 - $[\cdot, \cdot]_{\tilde{L}}$ vanish and C-bracket is reduced to original Courant bracket.
 - \blacktriangleright The B-field gauge symmetry is realized as Abelian.

10. Conclusion

▶ We show that the Vaisman algd. is obtained by the "double" of two Lie algd.

We define a natural exterior algebra on TM and L:
We introduce a set of doubled multi-vectors Â^k(M) = Γ(∧^kTM).
If we define A^{r,s}(M) as the section of (∧^rL) ∧ (∧^sL̃), then, we obtain the decomposition Â^k(M) = ⊕_{k=r+s} A^{r,s}(M).
This decomposition is given by π^{r,s} : Â^{r+s}(M) → A^{r,s}(M).
π^{r,s} is called the canonical projection operator and induced by P, P̃.
The exterior derivatives acting on L and L̃ is defined by

$$\begin{split} \tilde{\mathrm{d}} &: \mathcal{A}^{r,s}(\mathcal{M}) \to \mathcal{A}^{r+1,s}(\mathcal{M}) \quad (\text{i.e. } \wedge^{r}L \to \wedge^{r+1}L), \\ \mathrm{d} &: \mathcal{A}^{r,s}(\mathcal{M}) \to \mathcal{A}^{r,s+1}(\mathcal{M}) \quad (\text{i.e. } \wedge^{s}\tilde{L} \to \wedge^{s+1}\tilde{L}). \end{split}$$
 $\tilde{\mathrm{d}}$ and d have the following properties: $\tilde{\mathrm{d}}^{2} = 0$, $\mathrm{d}^{2} = 0$, $\mathrm{d}\tilde{\mathrm{d}} + \tilde{\mathrm{d}}\mathrm{d} = 0$.
So, they are called the para-Dolbeault operators.
Also, we define the interior products and the Lie derivatives.

► We find that an algebraic origin of SC is traced back the derivation condition.

Future direction

- Finite gauge transformations in DFT is governed by an "integrated" version of Vaisman algebroids.
 - This is analogous to relation between Lie algebras and Lie groups. \rightarrow corresponding group like structures: **groupoids**
 - ► We expect the existence of groupoids associated with Vaisman algebroids.
- \blacktriangleright Twisted Vaisman algebroids? \rightarrow using the generalized flux in DFT?
- ► Gauged DFT is not necessary to impose the strong constraint.
 - \rightarrow Vaisman algebroids would play impotant roles in applications of DFT.
- A geometric origin of DFT gauge symmetry is important to understand the stringy winding effects to spacetimes.
- ► We expect that similar discussions are applied to the exceptional field theories.