Doubled Aspects of Vaisman Algebroid

and Gauge Symmetry in Double Field Theory

Kenta Shiozawa with Haruka Mori and Shin Sasaki (Kitasato Univ.)

based on arXiv:1901.04777

1. Introduction

T-duality: appears in the string mass spectrum (hidden symmetry)

Kaluza-Klein modes <+ string winding modes

» It is not a manifest symmetry in the string effective action.
» When the compact space is T, the T-duality group is O(D, D).

Double Field Theory (DFT): [Hull-Zwiebach '09]

» an effective theory of strings where T-duality is realized manifestly

» defined on the doubled spacetime M (dim M = 2D)

» M is characterized by the “doubled” coordinate z' = (x# 7).
» 1/ is the Fourier dual of KK momentum, 7, is the dual of winding charges.

The section condition:

» Since DFT has extra d.o.f., it is necessary imposed the physical condition.
» The “strong constraint”: 9;; * 0% = 0 (x
» A trivial solution of the strong constraint: 0"« = 0 (independent of Z).

. arbitrary fields & parameters).

— Under this condition, DFT is reduced to type | supergravity.
The C-bracket: = (A, ;)
= |Ay, Aol + Lo — La,00 — —d(LAl Q) — LAQCH)

+ o, a7 + EalAg £a2A1 d(LalAQ — Lo, A1)

» [ he C-bracket governs the commutator of the generalized Lie derivative.

(doubled vectors =

[Ela EQ]C (O)

> |-, -|c accommodates the D-dim. diffeo. and the B-field gauge symmetry algebra.
» Under 0"« = 0, the C-bracket reduces to the Courant bracket in gen. geom.
» The algebraic strc. based on |-, -|c is not a Courant algd. but a Vaisman algd.

Our Results
» [ he Vaisman algebroid is obtained by the double of two Lie algebroids.
» We find an algebraic origin of the strong constraint in DFT.

2. Drinfel’d Double of Lie Bialgebra

Def: Lie algebra (g, |-, -|)

» a vector space ¢

dual Lie algebra (g |-, -|«)
» the dual vector space g~
» a skew-symmetric bilinear bracket » the dual Lie bracket
(the Lie bracket) |-,:] : g x g — ¢ gt x gt — gt
A natural bilinear inner product (-, ) : g* X g — K is defined (K: a field).

Def: Lie bialgebra (g, g*)

» Let the Lie bracket [-,-| be a bilinear map 1 : A’g — g.

» a co-bracket § : g — A’g as an adjoint of the dual bracket 1, : A°g* — g*

» the adjoint of u,, denoted as u¥, is defined by {a, u.(¢)) = (u*(a),c) (c € N°g*)
» imposing the 1-cocycle condition: §([a, b]) = ad!?§(b) — adf)&(a)

The Drinfel’d double of a Lie bialgebra = a new Lie algebra (2, [+, ])

» a vector space 0 =g®d g*

(@.b) =0, (a.b)=(ba)  (abeg, abe g’
= [a,b], [a, 0o = [a,B]., [a, o = ad;b — adja

» a bilinear form: (a,b) =
» a skew-symmetric bracket: |a, bl;

3. Lie algebroid and Its Dual

Lie algebroid: a generalization of a Lie algebra defined over a mfd.
Lie algebroid Lie algebra

» defined using vector fields

» determined by structure functions

Def: Lie algebroid (L, |-, |1, p)

» L 5 M: a vector bundle over a base manifold M
» an anchormap p: L — TM

» using left invariant vector fields
» by structure constants

» a skew-symmetric bilinear form |-, |7 : L X L — L
» (Jacobi identity): [|A1, As|r, Aslr +c.p. =0 (A; € L)
» (Homomorphic property of p): p(|A1, As|r) = [p(A1), p(As)|7m
> (Leibniz rule): [Al, fAQ]L — f[Al, AQ] ( (Al) f)AQ (f - COO(M»

Given a Lie algebroid, we can define the dual Lie algebroid (L*, |-, |1+, p«)
The exterior derivative d : APL* — APT1L* is defined by (. € NPL* A; € E)

da(Ar o Apar) = 305 ()T o(A) - (@A Ai o Apy)
_|_ZZ<]< )Z—’_jOé([AZ,A]]L,A1,...,Ai,...,A]’,...,Ap_|_1)

4. Double of Lie Bialgebroid

Def: Lie bialgebroid (L, L*)

» a pair of a Lie algebroid L and its dual Lie algebroid L*

» satisfying the derivation condition: d,|A, Bl = [d,A, Bls + |A, d,B]s
The Schouten bracket [-, s : APL x AYL — APT2 1L is defined by the properties:
» [A, B], = — (=)~ Y=l B, A, (A e ANPL, B € NIL)
» [A,BAC)s=[A,Bls AC+ (—)P" V1B A A, C)s (C € A"L)
> (=)= V0=D4, [B, Ols + (=)@ D=V[B, [C, Alds + (=)D VIC, [4, BlyJs = 0

Def: Courant algebroid (C, [', ']c; Pc, ('7 )) [Courant '90, Liu-Weinstein-Xu '97]
» C = M : a vector bundle over a manifold M
» a non-degenerate symmetric bilinear form (-,-) : C x C — C*°(M)
» an anchor p. : C — TM
» a skew-symmetric bracket |-,-|.:C xC — C
» (Jacobi identity (up to homotopy)): ||e1, es]c, €3]c + c.p. = DT (e, e, €3)

> (Homomorph|c property of pc) c([€17 62](;) — [pc(el)v IOC(GZ)]

> (Leibniz I’U|€)Z [61, f@g]c — f[el, 62] + (,OC(Gl) ¥ f)@z — (61, 62)Df

» (calculation rule of D and (-,-)): (Df,Dg) =0

» (Compatibility between (-,-) & p¢):

pc(er) - (e, e3) = (ler, ealc + D(er, ), €3) + (€9, ler, eslc + D(eq, e3))

A Courant algebroid is obtained by the Drinfel'd double of a Lie bialgebroid.
» (LD LY, |-, e, pc = p+ px, (+,-).) and the morphism D = d + d,

» a vector space L @ L* and its elements e¢; = A; + «;
» Non-degenerate bilinear forms: (e, e5) . = 5((aq, Ao)

5 T <C¥2, A1>)
» a skew-symmetric bracket: same form as the C-bracket (Q) (but d « d,)

» L @ L* satisfies all definitions of the Courant algebroid.

5. “Double” for Vaisman Algebroid

Vaisman Algebroids are algebraic structures based on the C-bracket.

Def: Vaisman algebroid (V, |-, |y, pv, (-, *))

» )V — M : a vector bundle over a manifold M/
» a non-degenerate symmetric bilinear form (-,-) : V x V — C®(M)
» an anchor p, : V — T'M
» a skew-symmetric bracket [-,-|, - V XV — V
» (Leibniz rule): [eq, fes]y = fler, ea]y + (puler) -
» (Compatibility between (-, ) & py):
ov(er) - (ea,e3) = (e, eav + D(eq, e2), e3) + (e, e, e3]y + D(ey, e3))

[Vaisman '12, '13]

flez — (e1,e2)Df

A Vaisman algebroid is obtained by a “double” of Lie algebroids.
> (L@ L% [-,-|v, oy = p+ ps, (), ) and the morphism D = d + d,
» (L, L*) is not a Lie bialgebroid, and the derivation condition is not imposed.
» a skew-symmetric bracket: same form as the C-bracket (Q) (but d « d,)
» We examine the properties that the Courant bracket should satisfy.
» generalized Jacobi identity: X

[[617 62]V7 6?)]V + C.p. = DT(ela €2, 63) o (Jl -+ J2 + Cp)
Ji = ta,(d]on, as)y — Lo, das + £a2doz1) + Lo (d*[Al, Asly — L 4,d A + EAQd*Al)
JQ — (*Cd*(el,eg)_(XS + [d(ela 62)_, aB]v) — (ﬁd(el,eg)_AS - [d*(ela 62)_7 A3]V)

» homomorphic property of p,: X

pu(le, ealv) - f = [pu(er), pu(€2)] f+5 (oot + pep*)do({an, Ao) — (a2, A1) f
— (a1, (LagAs = [As, duf]L)) + (a2, (LapAr — [Ar, duf]L))
» calculation rule of Din (+,-): X (Df,Dg). = s(pp:+ psp*)(dof)g
» Leibniz rule and compatibility b/w (-, ) & py: v
» L. & L* defines a Vaisman algebroid, but not a Courant algebroid.
» [ he extra terms vanish by imposing the derivation condition.

Summary of the above discussion:
[Liu-Weinstein-Xu '97]
Lie algebroids L and L~

[Drinfel’d '86] [Mori-Sasaki-KS '19]

Lie algebras g and g” Lie algebroids /. and L*

J 1-cocycle condition l derivation condition double

(without
derivation condition)

Lie bialgebra (g,9") Lie bialgebroid (L, L")

Drinfel’d double Drinfel’d double

v

Lie algebra 0 =g @ g~ Courant algebroid Vaisman algebroid
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6. DFT Geometry

8. Algebro

Doubled spacetime: described by a para-Hermitian mfd.  [Vaisman '13]

Def: Para-Hermitian manifold (M, K, n)
» M: a differential manifold
» K € End(T'M): a para-complex structure satisfying K* = 1
» a neutral metricy : T’M X TM — R

» the compatibility condition: n(K(X), K(Y)) = —n(X,Y)
» imposing the integrability condition: Ny (X,Y) =0

» N is a real analogue of the Nijenhuis tensor

Ni(X,Y) = [K(X), KO0)] 4 (X, Y]~ K(K(X), Y]+ [X, K (V)]

By using the para-complex strc., we can decompose T’ M = L & L.

~

» L. (L) is the eigenbundle associated with the eigenvalue K = +1 (K = —1).

» [ his decomposition is performed via the projection operator:

1 ~ ]

» We can decompose N (cf. not-para case, we cannot do it).
Nk(X,Y) = Np(X,Y) + Np(X,Y),
Np(X,Y) = PP(X), P(Y)],  Np(X,Y) = P[P(X), P(V)]
» L and L are distributions of 7'M (distribution: a generalization of subbundle)

Integrability of distributions:
» [ he Frobenius theorem:

a distribution L is Frobenius integrable iff L is involutive (|L, L] C L)

» If Np (Np) vanishes, the distribution L (L) is involutive.
» [ he integrability of L and L is independent of each other.

The physical spacetime is identified as a leaf of the foliation:

» An alternative representation of the Frobenius theorem:
a subbundle £ C T'M is integrable iff it is defined by a regular foliation of M

» When L and L are integrable, then they have foliation strc. L =TF, L = TF

Def: Foliation structures

» [ he foliation JF is given by the
union of leaves | | M,

» A leaf M, is a subspace of F that
pass through a point p € M.

» For F, the local coordinate x* is
given along a leaf. The one for the
transverse directions to leaves is .

= I, Is a constant on a leaf M,,.

The relations between DFT and the Generalized Geometry:
»ncanbeseenasamapn: TM=L&SL —>T"M=L"G L*

» By using 7, an isomorphism ¢t : L — L* is defined (vectors — 1-forms).
» Given ¢, we can define the “natural” isomorphism & : TM — L @ L*
» O is utilized to relate DFT and Hitchin's Generalized Geometry.

/. Exterior Algebras in DFT

Let us define a Lie algebroid structure in DFT.

» Multi-vectors on a mfd. define a Gerstenhaber alg. by the Schouten br. [Tulczyjew '74]

» A Lie algebroid over a vector bundle V' — M and a Gerstenhaber alg. over
multi-vectors ['(A®*V) are equivalent. [Vaintrob '97]

= a Lie algebroid is defined by the exterior algebra of multi-vectors in DFT.

We define a natural exterior algebra on T'M and L:
» We introduce a set of doubled multi-vectors A*(M) = (AT M).
> If we define A"*(M) as the section of (A"L) A (AN°L),
then, we obtain the decomposition A*(M) =, _, , A"(M).
» This decomposition is given by 7> : A™$(M) — A™5(M).

» % Is called the canonical projection operator and induced by P, P.

» The exterior derivatives acting on L and L is defined by
d: AF¥(M) = A5 (M) (e AL — AL,
d: A™(M) = AT M) (i.e. AL — /\SHE).
» d and d have the following properties: 2=0,d2=0, dd +dd = 0.

» So, they are called the para-Dolbeault operators.
» Also, we define the interior products and the Lie derivatives.

The conventional DFT is described a flat para-Hermitian geometry.

—1 0 01
] ] ] ] 2D L L
» [ he flat para-Hermitian mfd. is given by (/\/l K = ( 0 1> , 1 = (1 O))

» The tangent space T'M is spanned by Oy (M =1,...,2D).
» Vector fields on T' M are decomposed by P, P:

=M0y = A2, 2)0, + oz, 2)0" (E€TM,Ac€ L,acL).

Schouten brackets and the action of d in DFT setting:
» We introduce the “odd coordinate” (,, := J,, then r-vector is

1 |
A= SAFGu A N, = AP, -G,

» (,, can be treated as a Grassmann number — 9/0(, is the right derivative.
» The Schouten bracket is explicitly given by (Ae N'L,B e NL)

(9 (1) (i )
A, B, — (agf) 9,8 — (—1) 5c B )

» The action of d on a r-vector A is given by
N 1 .
dA = =0"A"""0, ANOy, N---NOy,.
r ’
» The same discussion holds for [-,-]* and d on L (replaced ¢, = 9, < (** = 0.

Lie algebroid structures in DFT:
» [ he exterior algebras of multi-vectors in DFT is defined.

= we obtain the Lie algd. (A°L,[-,]s,d) and its dual Lie algd. (A°L, [-, -]%, d).
» Next, Let us check if the pair of L and L makes a Lie bialgebroid.

We examine the derivation condition in DFT by explicit calculation:
d[A, B], = [dA, B, + [A, dBls + (MY 0y A*OnBY)0, A O,

» [ he last contribution represents the violation of the derivation condition.

» [ he last term vanishes when the strong constraint is imposed.

» So, L and L are the Lie algebroids in DFT, but (L, L) is not a Lie bialgebroid.
— the double L & L defines a Vaisman algebroid in DFT.
» [ his completely agrees with the analysis in [Chatzistavrakidis-Jonke-Khoo-Szabo '18]

» where the pre-DFT algebroid (Vaisman algebroid) becomes a Courant
algebroid after imposing the strong constraint.

9. Gauge Symmetry in DFT

» [ he structure of the C-bracket in DF T naturally arises as a Vaisman bracket on
a para-Hermitian geometry. [Vaisman '13, Svoboda '18]

» The geometric realization of the C-bracket (the Vaisman bracket) is
NOT necessarily require the section condition.

In DFT, the B-tfield gauge symmetry is non-Abelian:

» Using ®*, L is identified as L* (i.e. “winding” vectors becomes 1-forms).

> |-, ] represents the B-field gauge symmetry parametrized by 1-forms.

» Since |, -7 is generically non-zero, the T-duality covariantized B-field gauge
symmetry is effectively enhanced to non-Abelian.

Imposing the strong constraint (SC):

» A trivial sol. of SC is equvalent to imposing the para-holomorphic cond. d f = 0.

> |-, |7 vanish and C-bracket is reduced to original Courant bracket.
» The B-field gauge symmetry is realized as Abelian.

10. Conclusion

» We show that the Vaisman algd. is obtained by the “double” of two Lie algd.
» We find that an algebraic origin of SC is traced back the derivation condition.

Future direction

» Finite gauge transformations in DF T is governed by an “integrated” version of
Vaisman algebroids.

» This is analogous to relation between Lie algebras and Lie groups.
— corresponding group like structures: groupoids
» We expect the existence of groupoids associated with Vaisman algebroids.

» [wisted Vaisman algebroids? — using the generalized flux in DFT?
» Gauged DFT is not necessary to impose the strong constraint.
— Vaisman algebroids would play impotant roles in applications of DFT.

» A geometric origin of DF T gauge symmetry is important to understand the
stringy winding effects to spacetimes.

» We expect that similar discussions are applied to the exceptional field theories.



