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1. Introduction
T-duality: appears in the string mass spectrum (hidden symmetry)

Kaluza-Klein modes ↔ string winding modes

▶ It is not a manifest symmetry in the string effective action.
▶ When the compact space is TD, the T-duality group is O(D,D).

Double Field Theory (DFT): [Hull-Zwiebach ’09]

▶ an effective theory of strings where T-duality is realized manifestly
▶ defined on the doubled spacetime M (dim M = 2D)

▶ M is characterized by the “doubled” coordinate xM = (xµ, x̃µ).
▶ xµ is the Fourier dual of KK momentum, x̃µ is the dual of winding charges.

The section condition:
▶ Since DFT has extra d.o.f., it is necessary imposed the physical condition.
▶ The “strong constraint”: ∂M ∗ ∂M∗ = 0 (∗ : arbitrary fields & parameters).
▶ A trivial solution of the strong constraint: ∂̃µ∗ = 0 (independent of x̃).

→ Under this condition, DFT is reduced to type II supergravity.

The C-bracket: (doubled vectors ΞM
i = (Aµ

i , αiµ))

[Ξ1, Ξ2]C = [A1, A2]L + LA1
α2 − LA2

α1 − 1
2d(ιA1

α2 − ιA2
α1)

+ [α1, α2]L̃ + L̃α1
A2 − L̃α2

A1 − 1
2d̃(ι̃α1

A2 − ι̃α2
A1)

(♡)

▶ The C-bracket governs the commutator of the generalized Lie derivative.
▶ [·, ·]C accommodates the D-dim. diffeo. and the B-field gauge symmetry algebra.
▶ Under ∂̃µ∗ = 0, the C-bracket reduces to the Courant bracket in gen. geom.
▶ The algebraic strc. based on [·, ·]C is not a Courant algd. but a Vaisman algd.

Our Results
▶ The Vaisman algebroid is obtained by the double of two Lie algebroids.
▶ We find an algebraic origin of the strong constraint in DFT.

2. Drinfel’d Double of Lie Bialgebra

Def: Lie algebra (g, [·, ·])
▶ a vector space g

▶ a skew-symmetric bilinear bracket
(the Lie bracket) [·, ·] : g × g → g

dual Lie algebra (g∗, [·, ·]∗)
▶ the dual vector space g∗

▶ the dual Lie bracket
[·, ·]∗ : g∗ × g∗ → g∗

A natural bilinear inner product ⟨·, ·⟩ : g∗ × g → K is defined (K: a field).

Def: Lie bialgebra (g, g∗)
▶ Let the Lie bracket [·, ·] be a bilinear map µ : ∧2g → g.
▶ a co-bracket δ : g → ∧2g as an adjoint of the dual bracket µ∗ : ∧2g∗ → g∗

▶ the adjoint of µ∗, denoted as µ∗
∗, is defined by ⟨a, µ∗(c̄)⟩ = ⟨µ∗

∗(a), c̄⟩ (c̄ ∈ ∧2g∗)

▶ imposing the 1-cocycle condition: δ([a, b]) = ad(2)
a δ(b) − ad

(2)
b δ(a)

The Drinfel’d double of a Lie bialgebra ⇒ a new Lie algebra (d, [·, ·]d)
▶ a vector space d = g ⊕ g∗

▶ a bilinear form: (a, b) = (ā, b̄) = 0, (a, b̄) = ⟨b̄, a⟩ (a, b ∈ g, ā, b̄ ∈ g∗)
▶ a skew-symmetric bracket: [a, b]d = [a, b], [ā, b̄]d = [ā, b̄]∗, [a, b̄]d = ad∗

ab̄ − ad∗
b̄a

3. Lie algebroid and Its Dual

Lie algebroid: a generalization of a Lie algebra defined over a mfd.
Lie algebroid
▶ defined using vector fields
▶ determined by structure functions

Lie algebra
▶ using left invariant vector fields
▶ by structure constants

Def: Lie algebroid (L, [·, ·]L, ρ)
▶ L

π−→ M : a vector bundle over a base manifold M

▶ an anchor map ρ : L → TM

▶ a skew-symmetric bilinear form [·, ·]L : L × L → L
▶ (Jacobi identity): [[A1, A2]L, A3]L + c.p. = 0 (Ai ∈ L)
▶ (Homomorphic property of ρ): ρ([A1, A2]L) = [ρ(A1), ρ(A2)]TM

▶ (Leibniz rule): [A1, fA2]L = f [A1, A2]L + (ρ(A1) · f )A2 (f ∈ C∞(M))

Given a Lie algebroid, we can define the dual Lie algebroid (L∗, [·, ·]L∗, ρ∗)
The exterior derivative d : ∧pL∗ → ∧p+1L∗ is defined by (α ∈ ∧pL∗, Ai ∈ E)

dα(A1, . . . , Ap+1) =
∑p+1

i=1 (−)i+1ρ(Ai) · (α(A1, . . . , Ǎi, . . . , Ap+1))

+
∑

i<j(−)i+jα([Ai, Aj]L, A1, . . . , Ǎi, . . . , Ǎj, . . . , Ap+1)

4. Double of Lie Bialgebroid

Def: Lie bialgebroid (L,L∗)
▶ a pair of a Lie algebroid L and its dual Lie algebroid L∗

▶ satisfying the derivation condition: d∗[A,B]s = [d∗A,B]s + [A, d∗B]s

The Schouten bracket [·, ·]s : ∧pL × ∧qL → ∧p+q−1L is defined by the properties:
▶ [A,B]s = −(−)(p−1)(q−1)[B, A]s (A ∈ ∧pL,B ∈ ∧qL)
▶ [A,B ∧ C]s = [A,B]s ∧ C + (−)(p−1)qB ∧ [A,C]s (C ∈ ∧rL)
▶ (−)(p−1)(r−1)[A, [B, C]s]s + (−)(q−1)(p−1)[B, [C, A]s]s + (−)(r−1)(q−1)[C, [A,B]s]s = 0

Def: Courant algebroid (C, [·, ·]c, ρc, (·, ·)) [Courant ’90, Liu-Weinstein-Xu ’97]

▶ C π−→ M : a vector bundle over a manifold M

▶ a non-degenerate symmetric bilinear form (·, ·) : C × C → C∞(M)

▶ an anchor ρc : C → TM

▶ a skew-symmetric bracket [·, ·]c : C × C → C
▶ (Jacobi identity (up to homotopy)): [[e1, e2]c, e3]c + c.p. = DT (e1, e2, e3)
▶ (Homomorphic property of ρc): ρc([e1, e2]c) = [ρc(e1), ρc(e2)]
▶ (Leibniz rule): [e1, fe2]c = f [e1, e2]c + (ρc(e1) · f )e2 − (e1, e2)Df
▶ (calculation rule of D and (·, ·)): (Df, Dg) = 0
▶ (Compatibility between (·, ·) & ρc):

ρc(e1) · (e2, e3) = ([e1, e2]c + D(e1, e2), e3) + (e2, [e1, e3]c + D(e1, e3))

A Courant algebroid is obtained by the Drinfel’d double of a Lie bialgebroid.
▶ (L ⊕ L∗, [·, ·]c, ρc = ρ + ρ∗, (·, ·)+) and the morphism D = d + d∗
▶ a vector space L ⊕ L∗ and its elements ei = Ai + αi

▶ Non-degenerate bilinear forms: (e1, e2)± = 1
2

(
⟨α1, A2⟩ ± ⟨α2, A1⟩

)

▶ a skew-symmetric bracket: same form as the C-bracket (♡) (but d̃ ↔ d∗)
▶ L ⊕ L∗ satisfies all definitions of the Courant algebroid.

5. “Double” for Vaisman Algebroid

Vaisman Algebroids are algebraic structures based on the C-bracket.

Def: Vaisman algebroid (V , [·, ·]v, ρv, (·, ·)) [Vaisman ’12, ’13]

▶ V π−→ M : a vector bundle over a manifold M

▶ a non-degenerate symmetric bilinear form (·, ·) : V × V → C∞(M)

▶ an anchor ρv : V → TM

▶ a skew-symmetric bracket [·, ·]v : V × V → V
▶ (Leibniz rule): [e1, fe2]v = f [e1, e2]v + (ρv(e1) · f )e2 − (e1, e2)Df
▶ (Compatibility between (·, ·) & ρv):

ρv(e1) · (e2, e3) = ([e1, e2]v + D(e1, e2), e3) + (e2, [e1, e3]v + D(e1, e3))

A Vaisman algebroid is obtained by a “double” of Lie algebroids.
▶ (L ⊕ L∗, [·, ·]v, ρv = ρ + ρ∗, (·, ·)+) and the morphism D = d + d∗

▶ (L,L∗) is not a Lie bialgebroid, and the derivation condition is not imposed.
▶ a skew-symmetric bracket: same form as the C-bracket (♡) (but d̃ ↔ d∗)
▶ We examine the properties that the Courant bracket should satisfy.

▶ generalized Jacobi identity: 7

[[e1, e2]v, e3]v + c.p. = DT (e1, e2, e3) − (J1 + J2 + c.p.)

J1 = ιA3

(
d[α1, α2]v − Lα1

dα2 + Lα2
dα1

)
+ ια3

(
d∗[A1, A2]v − LA1

d∗A2 + LA2
d∗A1

)

J2 =
(
Ld∗(e1,e2)−α3 + [d(e1, e2)−, α3]v

)
−

(
Ld(e1,e2)−A3 + [d∗(e1, e2)−, A3]v

)

▶ homomorphic property of ρv: 7

ρv([e1, e2]v) · f = [ρv(e1), ρv(e2)]f+1
2

(
ρρ∗

∗ + ρ∗ρ∗)d0

(
⟨α1, A2⟩ − ⟨α2, A1⟩

)
f

−⟨α1, (LdfA2 − [A2, d∗f ]L)⟩ + ⟨α2, (LdfA1 − [A1, d∗f ]L)⟩
▶ calculation rule of D in (·, ·): 7 (Df, Dg)+ = 1

2

(
ρρ∗

∗ + ρ∗ρ∗)(d0f )g
▶ Leibniz rule and compatibility b/w (·, ·) & ρv: 3

▶ L ⊕ L∗ defines a Vaisman algebroid, but not a Courant algebroid.
▶ The extra terms vanish by imposing the derivation condition.

Summary of the above discussion:
[Drinfel’d ’86]

Drinfel’d double

Lie algebra

Lie algebras and

Lie bialgebra

1-cocycle condition

g g⇤

(g, g⇤)

d = g� g⇤

[Liu-Weinstein-Xu ’97]

Drinfel’d double

Lie algebroids

Lie bialgebroid

derivation condition

Courant algebroid

andL L⇤

(L,L⇤)

[Mori-Sasaki-KS ’19]
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Lie algebroids

(without 
derivation condition)

Vaisman algebroid

andL L⇤
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6. DFT Geometry

Doubled spacetime: described by a para-Hermitian mfd. [Vaisman ’13]

Def: Para-Hermitian manifold (M, K, η)
▶ M: a differential manifold
▶ K ∈ End(TM): a para-complex structure satisfying K2 = 1

▶ a neutral metric η : TM × TM → R
▶ the compatibility condition: η(K(X), K(Y )) = −η(X, Y )

▶ imposing the integrability condition: NK(X, Y ) = 0
▶ NK is a real analogue of the Nijenhuis tensor

NK(X,Y ) =
1

4

{
[K(X), K(Y )] + [X,Y ] − K

(
[K(X), Y ] + [X,K(Y )]

)}

By using the para-complex strc., we can decompose TM = L ⊕ L̃.
▶ L (L̃) is the eigenbundle associated with the eigenvalue K = +1 (K = −1).
▶ This decomposition is performed via the projection operator:

P =
1

2
(1 + K), P̃ =

1

2
(1 − K).

▶ We can decompose NK (cf. not-para case, we cannot do it).

NK(X,Y ) = NP (X,Y ) + NP̃ (X,Y ),

NP (X,Y ) = P̃ [P (X), P (Y )], NP̃ (X,Y ) = P [P̃ (X), P̃ (Y )].

▶ L and L̃ are distributions of TM (distribution: a generalization of subbundle)

Integrability of distributions:
▶ The Frobenius theorem:

a distribution L is Frobenius integrable iff L is involutive ([L,L] ⊂ L)

▶ If NP (NP̃ ) vanishes, the distribution L (L̃) is involutive.
▶ The integrability of L and L̃ is independent of each other.

The physical spacetime is identified as a leaf of the foliation:
▶ An alternative representation of the Frobenius theorem:

a subbundle E ⊂ TM is integrable iff it is defined by a regular foliation of M
▶ When L and L̃ are integrable, then they have foliation strc. L = TF , L̃ = T F̃
Def: Foliation structures
▶ The foliation F is given by the

union of leaves
⊔

p Mp.
▶ A leaf Mp is a subspace of F that

pass through a point p ∈ M.
▶ For F , the local coordinate xµ is

given along a leaf. The one for the
transverse directions to leaves is x̃µ.

⇒ x̃µ is a constant on a leaf Mp.

M

MpM̃p

F̃F

・p

x

x̃

The relations between DFT and the Generalized Geometry:
▶ η can be seen as a map η : TM = L ⊕ L̃ → T ∗M = L∗ ⊕ L̃∗.
▶ By using η, an isomorphism ϕ+ : L̃ → L∗ is defined (vectors → 1-forms).
▶ Given ϕ+, we can define the “natural” isomorphism Φ+ : TM → L ⊕ L∗

▶ Φ+ is utilized to relate DFT and Hitchin’s Generalized Geometry.

7. Exterior Algebras in DFT

Let us define a Lie algebroid structure in DFT.
▶ Multi-vectors on a mfd. define a Gerstenhaber alg. by the Schouten br. [Tulczyjew ’74]

▶ A Lie algebroid over a vector bundle V → M and a Gerstenhaber alg. over
multi-vectors Γ(∧•V ) are equivalent. [Vaintrob ’97]

⇒ a Lie algebroid is defined by the exterior algebra of multi-vectors in DFT.

We define a natural exterior algebra on TM and L:
▶ We introduce a set of doubled multi-vectors Âk(M) = Γ(∧kTM).
▶ If we define Ar,s(M) as the section of (∧rL) ∧ (∧sL̃),

then, we obtain the decomposition Âk(M) =
⊕

k=r+s Ar,s(M).

▶ This decomposition is given by πr,s : Âr+s(M) → Ar,s(M).
▶ πr,s is called the canonical projection operator and induced by P, P̃ .

▶ The exterior derivatives acting on L and L̃ is defined by

d̃ : Ar,s(M) → Ar+1,s(M) (i.e. ∧rL → ∧r+1L),

d : Ar,s(M) → Ar,s+1(M) (i.e. ∧sL̃ → ∧s+1L̃).

▶ d̃ and d have the following properties: d̃2 = 0, d2 = 0, dd̃ + d̃d = 0.
▶ So, they are called the para-Dolbeault operators.

▶ Also, we define the interior products and the Lie derivatives.

8. Algebroid Structures by DFT Setting
The conventional DFT is described a flat para-Hermitian geometry.

▶ The flat para-Hermitian mfd. is given by

(
M2D, K =

(
−1 0
0 +1

)
, η =

(
0 1
1 0

))
.

▶ The tangent space TM is spanned by ∂M (M = 1, . . . , 2D).
▶ Vector fields on TM are decomposed by P, P̃ :

ΞM∂M = Aµ(x, x̃)∂µ + αµ(x, x̃)∂̃µ (Ξ ∈ TM, A ∈ L, α ∈ L̃).

Schouten brackets and the action of d̃ in DFT setting:
▶ We introduce the “odd coordinate” ζµ := ∂µ, then r-vector is

A =
1

r!
Aµ1···µr∂µ1

∧ · · · ∧ ∂µr
=

1

r!
Aµ1···µrζµ1

· · · ζµr
.

▶ ζµ can be treated as a Grassmann number → ∂/∂ζµ is the right derivative.
▶ The Schouten bracket is explicitly given by (A ∈ ∧rL,B ∈ ∧sL)

[A,B]s =

(
∂

∂ζµ
A

)
∂µB − (−1)(r−1)(s−1)

(
∂

∂ζµ
B

)
∂µA.

▶ The action of d̃ on a r-vector A is given by

d̃A =
1

r!
∂̃νAµ1···µr∂ν ∧ ∂µ1

∧ · · · ∧ ∂µr
.

▶ The same discussion holds for [·, ·]∗s and d on L̃ (replaced ζµ = ∂µ ⇔ ζ∗µ = ∂̃µ).

Lie algebroid structures in DFT:
▶ The exterior algebras of multi-vectors in DFT is defined.

⇒ we obtain the Lie algd. (∧•L, [·, ·]s, d) and its dual Lie algd. (∧•L̃, [·, ·]∗s , d̃).
▶ Next, Let us check if the pair of L and L̃ makes a Lie bialgebroid.

We examine the derivation condition in DFT by explicit calculation:

d̃[A,B]s = [d̃A,B]s + [A, d̃B]s + (ηMN∂MAµ∂NBν)∂µ ∧ ∂ν.

▶ The last contribution represents the violation of the derivation condition.
▶ The last term vanishes when the strong constraint is imposed.
▶ So, L and L̃ are the Lie algebroids in DFT, but (L, L̃) is not a Lie bialgebroid.

→ the double L ⊕ L̃ defines a Vaisman algebroid in DFT.
▶ This completely agrees with the analysis in [Chatzistavrakidis-Jonke-Khoo-Szabo ’18]

▶ where the pre-DFT algebroid (Vaisman algebroid) becomes a Courant
algebroid after imposing the strong constraint.

9. Gauge Symmetry in DFT

▶ The structure of the C-bracket in DFT naturally arises as a Vaisman bracket on
a para-Hermitian geometry. [Vaisman ’13, Svoboda ’18]

▶ The geometric realization of the C-bracket (the Vaisman bracket) is
NOT necessarily require the section condition.

In DFT, the B-field gauge symmetry is non-Abelian:
▶ Using Φ+, L̃ is identified as L∗ (i.e. “winding” vectors becomes 1-forms).
▶ [·, ·]L̃ represents the B-field gauge symmetry parametrized by 1-forms.
▶ Since [·, ·]L̃ is generically non-zero, the T-duality covariantized B-field gauge

symmetry is effectively enhanced to non-Abelian.

Imposing the strong constraint (SC):
▶ A trivial sol. of SC is equvalent to imposing the para-holomorphic cond. d̃f = 0.

▶ [·, ·]L̃ vanish and C-bracket is reduced to original Courant bracket.
▶ The B-field gauge symmetry is realized as Abelian.

10. Conclusion
▶ We show that the Vaisman algd. is obtained by the “double” of two Lie algd.
▶ We find that an algebraic origin of SC is traced back the derivation condition.

Future direction
▶ Finite gauge transformations in DFT is governed by an “integrated” version of

Vaisman algebroids.
▶ This is analogous to relation between Lie algebras and Lie groups.

→ corresponding group like structures: groupoids
▶ We expect the existence of groupoids associated with Vaisman algebroids.

▶ Twisted Vaisman algebroids? → using the generalized flux in DFT?
▶ Gauged DFT is not necessary to impose the strong constraint.

→ Vaisman algebroids would play impotant roles in applications of DFT.
▶ A geometric origin of DFT gauge symmetry is important to understand the

stringy winding effects to spacetimes.
▶ We expect that similar discussions are applied to the exceptional field theories.


