The Geometry of Double Field Theory

Richard Szabo

Strings and Fields 2019 Yukawa Institute for Theoretical Physics Kyoto, Japan

String Geometry

- Strings see geometry in different ways than particles do
- Sometimes strings see deformations of geometry
- ► E.g. Resolutions of singularities:

▶ Probes of Planck scale quantum geometry: Spacetime uncertainty $\Delta x \geq \ell_s$ related to noncommutative spacetime structure?

String Geometry

- ▶ Spacetime geometry in string theory is an approximate notion: Valid at sizes $R \gg \ell_s$, but breaks down at $R \sim \ell_s$ due to non-locality
- Isolate geometry from non-locality: Geometry makes sense in decoupling limit $\alpha'=\ell_s^2\longrightarrow 0$ with R finite
- Not all spacetime geometries are ordinary geometric spaces,
 e.g. noncommutative spaces can arise as decoupling limits
- ▶ One can use effective field theories as probes of geometry: Introduce D-branes and take decoupling limit ⇒ Noncommutative worldvolume gauge theories in an NS-NS B-field background (Douglas & Hull '97; Seiberg & Witten '99; Cornalba & Schiappa '01; Herbst, Kling & Kreuzer '01; ...)

Outline

- ► T-duality and doubled geometry
- ► Non-geometric backgrounds
- Supergravity and generalized geometry
- Basic double field theory
- Global aspects of double field theory
- Double field theory and para-Hermitian geometry
- Further developments

T-Duality

- ► T-duality is a string symmetry relating distinct spacetimes, some of which are "non-geometric"
- ▶ Simplest example: $T: R \longrightarrow R' = \ell_s^2/R$
- ▶ String theory on S^1 of radius R is physically equivalent to string theory on S^1 of radius ℓ_s^2/R (automorphism of CFT)
- Exchanges discrete momentum p and winding w

- ▶ Exchanges S^1 coordinate x with dual S^1 coordinate \tilde{x}
- ▶ Acts on a "doubled circle" with coordinates (x, \tilde{x}) :

Strings "see" a doubled geometry

T-Duality

▶ For a d-torus T^d with background fields (g, B), worldsheet theory is

$$S = \int d^2 \sigma \ E_{ij}(x) \, \partial_+ x^i \, \partial_- x^j \qquad , \qquad E = g + B$$

▶ T-duality symmetry $O(d, d; \mathbb{Z})$:

$$E' = (aE + b)\frac{1}{cE + d}$$
, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d, d; \mathbb{Z})$

- Acts on d discrete momenta and d winding numbers, preserves $\eta = 2 dx^i d\tilde{x}_i$: String theory "sees" a doubled torus T^{2d}
- More generally, if M is a T^d -bundle, then string theory "sees" a torus bundle with doubled torus fibres T^{2d} :

T-duality
$$O(d, d; \mathbb{Z}) \subset GL(2d, \mathbb{Z})$$
 acts geometrically

Non-Geometric Backgrounds

(Hellerman, McGreevy & Williams '02; Dabholkar & Hull '02; Kachru, Schulz, Tripathy & Trivedi '02; Hull '04)

- ▶ New features of T-duality when $H = dB \neq 0$
- ▶ Prototypical examples come from torus bundles $M \xrightarrow{T^d} W$ (with H-flux $[H] \in H^3(M, \mathbb{Z})$)

Non-Geometric Backgrounds

(Hellerman, McGreevy & Williams '02; Dabholkar & Hull '02; Kachru, Schulz, Tripathy & Trivedi '02; Hull '04)

- ▶ New features of T-duality when $H = dB \neq 0$
- ▶ Prototypical examples come from torus bundles $M \xrightarrow{T^d} W$ (with H-flux $[H] \in H^3(M, \mathbb{Z})$)
- **E.g.** $W = S^1$, M = twisted torus, H = 0:

Patching: Diffeos

Patching: T-duality

Non-Geometric Backgrounds

Generalized Flux Backgrounds

 $M=T^3$ with H-flux $H=m\,\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z$, $B=m\,x\,\mathrm{d}y\wedge\mathrm{d}z$ gives geometric and non-geometric fluxes (Hull '05; Shelton, Taylor & Wecht '05; Dabholkar & Hull '06; ...)

Dabholka
$$H_{ijk} \xrightarrow{\mathsf{T}_i} f^i{}_{jk} \xrightarrow{\mathsf{T}_j} Q^{ij}{}_k \xrightarrow{\mathsf{T}_k} R^{ijk}$$

$$(T^3,H\text{-flux}): [H] = m$$

$$\mathsf{T}_y$$
Nilfold (f)

$$\mathsf{T}\text{-fold } (Q)$$

$$\mathsf{T}_z$$

$$\mathsf{T}_z$$

$$\mathsf{T}_z$$

$$\int_{x}^{T_{x}}$$
Essentially doubled (R)

Doubled Geometry

 $lackbox{Doubled torus} \xrightarrow{T^4} S^1_{\scriptscriptstyle X}$: (Hull '05)

Doubled Geometry

 $lackbox{Doubled torus} \xrightarrow{T^4} S_{\scriptscriptstyle X}^1$: (Hull '05)

▶ Doubled twisted torus $\xrightarrow{T^4}$ $S^1_{\widetilde{x}} \times S^1_{\widetilde{x}}$: (Hull &

(Hull & Reid-Edwards '07)

Doubled Geometry

 $lackbox{Doubled torus} \xrightarrow{T^4} S_{\scriptscriptstyle \chi}^1$: (Hull '05)

▶ Doubled twisted torus $\xrightarrow{T^4}$ $S^1_{x} \times S^1_{\widetilde{x}}$:

(Hull & Reid-Edwards '07)

▶ Geometrization of non-geometry: $GL(4,\mathbb{Z}) \supset O(2,2;\mathbb{Z}) \subset O(3,3)$

- \triangleright (g, B) satisfy field equations that determine a CFT
- ▶ Reproduced from target space theory (d = 10):

$$S_{ ext{SUGRA}}[g,B] = \int d^d x \, \sqrt{g} \, \left(R(g) - rac{1}{12} \, H^2
ight) \quad , \quad H = \mathrm{d} B$$

Low energy effective theory \equiv supergravity

- \triangleright (g, B) satisfy field equations that determine a CFT
- ▶ Reproduced from target space theory (d = 10):

$$S_{ ext{SUGRA}}[g,B] = \int d^d x \, \sqrt{g} \, \left(R(g) - rac{1}{12} \, H^2
ight) \quad , \quad H = \mathrm{d} B$$

Low energy effective theory \equiv supergravity

- \blacktriangleright (g,B) and (g',B') give same CFT if related by:
 - S1. Diffeomorphisms and B-field gauge transformations
 - S2. (Factorized) T-dualities
- ▶ S1. captured as transition functions in Generalized Geometry

(Hitchin '02; Gualtieri '04)

▶ String Hamiltonian $h = \frac{1}{2} \mathcal{H}_{IJ} P^I P^J$ with:

$$\mathcal{H}(g,B) = \begin{pmatrix} g - B g^{-1} B & B g^{-1} \\ -g^{-1} B & g^{-1} \end{pmatrix} , \quad P = \begin{pmatrix} w^i \\ p_i \end{pmatrix}$$

▶ String Hamiltonian $h = \frac{1}{2} \mathcal{H}_{IJ} P^I P^J$ with:

$$\mathcal{H}(g,B) = \begin{pmatrix} g - B g^{-1} B & B g^{-1} \\ -g^{-1} B & g^{-1} \end{pmatrix} \quad , \quad P = \begin{pmatrix} w^i \\ p_i \end{pmatrix}$$

Generalized Geometry doubles tangent bundle

$$TM \longrightarrow \mathbb{T}M = TM \oplus T^*M$$

with structure of a Courant algebroid, twisted by a B-field

- $\eta = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} \quad O(d,d) \text{-structure (fibre metric of } \mathbb{T}M),$ $\mathcal{H}^{-1} = \eta^{-1} \, \mathcal{H} \, \eta^{-1} \quad , \text{ bracket of sections is the Courant bracket}$
- ▶ $\mathcal{H}(g,B) \in O(d,d)/O(d) \times O(d)$ Generalized metric on $\mathbb{T}M$, P is a section of $\mathbb{T}M$

Courant Algebroids

(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)

Quadruple
$$(E \xrightarrow{\mathbb{R}^{2d}} M, [-,-], \langle -,- \rangle, \rho : E \longrightarrow TM)$$
 satisfying:

- 1. Jacobi: $[[A, B], C] + \text{cyclic} = \frac{1}{3} \mathcal{D}\langle [A, B], C\rangle + \text{cyclic}$
- 2. Leibniz: $[A, f B] = f [A, B] + (\rho(A)f)B \langle A, B \rangle \mathcal{D}f$
- 3. Compatibility:

$$\rho(C)\langle A,B\rangle = \langle [C,A] + \mathcal{D}\langle C,A\rangle,B\rangle + \langle [C,B] + \mathcal{D}\langle C,B\rangle,A\rangle$$

Courant Algebroids

(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)

Quadruple
$$(E \xrightarrow{\mathbb{R}^{2d}} M, [-,-], \langle -,- \rangle, \rho : E \longrightarrow TM)$$
 satisfying:

- 1. Jacobi: $[[A, B], C] + \text{cyclic} = \frac{1}{3} \mathcal{D}\langle [A, B], C \rangle + \text{cyclic}$
- 2. Leibniz: $[A, f B] = f [A, B] + (\rho(A)f)B \langle A, B \rangle \mathcal{D}f$
- 3. Compatibility:

$$\rho(C)\langle A,B\rangle = \langle [C,A] + \mathcal{D}\langle C,A\rangle,B\rangle + \langle [C,B] + \mathcal{D}\langle C,B\rangle,A\rangle$$

Additional properties:

- 4. Homomorphism: $\rho([A, B]) = [\rho(A), \rho(B)]$ $(A, B, C \in \Gamma(E))$
- 5. "Strong constraint": $\langle \mathcal{D}f, \mathcal{D}g \rangle = 0$ $(f, g \in C^{\infty}(M))$

Courant Algebroids

(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)

Quadruple
$$(E \xrightarrow{\mathbb{R}^{2d}} M, [-,-], \langle -,- \rangle, \rho : E \longrightarrow TM)$$
 satisfying:

- 1. Jacobi: $[[A, B], C] + \text{cyclic} = \frac{1}{3} \mathcal{D}\langle [A, B], C\rangle + \text{cyclic}$
- 2. Leibniz: $[A, f B] = f [A, B] + (\rho(A)f)B \langle A, B \rangle \mathcal{D}f$
- 3. Compatibility:

$$\rho(C)\langle A,B\rangle = \langle [C,A] + \mathcal{D}\langle C,A\rangle,B\rangle + \langle [C,B] + \mathcal{D}\langle C,B\rangle,A\rangle$$

Additional properties:

- 4. Homomorphism: $\rho([A, B]) = [\rho(A), \rho(B)]$ $(A, B, C \in \Gamma(E))$
- 5. "Strong constraint": $\langle \mathcal{D}f, \mathcal{D}g \rangle = 0$ $(f, g \in C^{\infty}(M))$

Courant bracket:

$$[A,B]_{K} = (\rho_{J}{}^{i} A^{J} \partial_{i} B_{K} - \frac{1}{2} \rho_{K}{}^{i} A^{J} \partial_{i} B_{J}) - (A \leftrightarrow B) + T(A,B,e_{K})$$

Supergravity on Courant Algebroids

- ▶ When $E = \mathbb{T}M = TM \oplus T^*M$ with natural frame $(e_l) = (\partial_i, \mathrm{d}x^i)$ and O(d, d)-invariant metric $\langle \partial_i, \mathrm{d}x^j \rangle = \delta_i{}^j$, axioms give fluxes (H, f, Q, R) and Bianchi identities of supergravity
- ► Type II supergravity can be entirely formulated in terms of

 Generalized Geometry (Graña, Minasian, Petrini & Waldram '08;

 Coimbra, Strickland-Constable & Waldram '11)
- \sim α' -corrections in heterotic supergravity also appear to be controllable geometrically (Liu & Minasian '18)

Supergravity on Courant Algebroids

- ▶ When $E = \mathbb{T}M = TM \oplus T^*M$ with natural frame $(e_l) = (\partial_i, \mathrm{d}x^i)$ and O(d, d)-invariant metric $\langle \partial_i, \mathrm{d}x^j \rangle = \delta_i{}^j$, axioms give fluxes (H, f, Q, R) and Bianchi identities of supergravity
- ► Type II supergravity can be entirely formulated in terms of

 Generalized Geometry (Graña, Minasian, Petrini & Waldram '08;

 Coimbra, Strickland-Constable & Waldram '11)
- \sim α' -corrections in heterotic supergravity also appear to be controllable geometrically (Liu & Minasian '18)
- ► S2. not a manifest symmetry: T-duality is an isomorphism between (twisted) Courant algebroids of T^d-bundles (Cavalcanti & Gualtieri '10)

(Duff '90; Tseytlin '90; Siegel '93; Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10; Hohm & Kwak '11; ...)

Duality-covariantization of supergravity:

$$O(d,d)$$
 symmetry is manifest

▶ Consequence of string field theory on torus T^d :

$$\psi(p, w) \xrightarrow{\text{Fourier}} \psi(x, \tilde{x})$$

▶ Strings see doubled spacetime $M \longrightarrow \mathcal{M} = M \times \widetilde{M}$:

$$\mathbb{X}^{I} = (x^{i}, \tilde{x}_{i})$$
 , $\partial_{I} = (\partial_{i}, \tilde{\partial}^{i})$

- Needed to describe non-geometric backgrounds and generalized T-duality; doubled geometry is physical and dynamical
- ▶ O(d,d)-structure η / generalized metric $\mathcal{H}(g,B)$

▶ Einstein-Hilbert type action from generalized Ricci scalar $\mathcal{R}(\mathcal{H})$:

$$\mathcal{S}_{ ext{ iny DFT}}[\mathcal{H}] = \int \, \mathrm{d}^{2d} \mathbb{X} \; \mathcal{R}(\mathcal{H})$$

► Invariance under generalized Lie derivative:

$$\delta_{\epsilon}\mathcal{H}^{IJ} = (\partial^{I}\epsilon_{K} - \partial_{K}\epsilon^{I})\mathcal{H}^{KJ} + (I \leftrightarrow J) + \epsilon^{K}\partial_{K}\mathcal{H}^{IJ} =: L_{\epsilon}\mathcal{H}^{IJ}$$

▶ Einstein-Hilbert type action from generalized Ricci scalar $\mathcal{R}(\mathcal{H})$:

$$\mathcal{S}_{ ext{ iny DFT}}[\mathcal{H}] = \int \, \mathrm{d}^{2d} \mathbb{X} \,\, \mathcal{R}(\mathcal{H})$$

► Invariance under generalized Lie derivative:

$$\delta_{\epsilon}\mathcal{H}^{IJ} = (\partial^{I}\epsilon_{K} - \partial_{K}\epsilon^{I})\mathcal{H}^{KJ} + (I \leftrightarrow J) + \epsilon^{K}\partial_{K}\mathcal{H}^{IJ} =: L_{\epsilon}\mathcal{H}^{IJ}$$

▶ Strong constraint: $\partial^I \partial_I f = 0$ (level matching) , $\partial^I f \partial_I g = 0$ Solutions select polarisations defining d-dimensional 'physical' null submanifolds of doubled space, DFT reduces to supergravity in different duality frames related by O(d,d)-transformations

▶ Einstein-Hilbert type action from generalized Ricci scalar $\mathcal{R}(\mathcal{H})$:

$$\mathcal{S}_{ ext{ iny DFT}}[\mathcal{H}] = \int \, \mathrm{d}^{2d} \mathbb{X} \,\, \mathcal{R}(\mathcal{H})$$

▶ Invariance under generalized Lie derivative:

$$\delta_{\epsilon}\mathcal{H}^{IJ} = (\partial^{I}\epsilon_{K} - \partial_{K}\epsilon^{I})\mathcal{H}^{KJ} + (I \leftrightarrow J) + \epsilon^{K}\partial_{K}\mathcal{H}^{IJ} =: \mathsf{L}_{\epsilon}\mathcal{H}^{IJ}$$

- ▶ Strong constraint: $\partial^I \partial_I f = 0$ (level matching) , $\partial^I f \partial_I g = 0$ Solutions select polarisations defining d-dimensional 'physical' null submanifolds of doubled space, DFT reduces to supergravity in different duality frames related by O(d,d)-transformations
- ▶ Supergravity frame: $\tilde{\partial}^i f = 0$ ($w^i = 0$), $S_{\text{DFT}}[\mathcal{H}] \longrightarrow S_{\text{SUGRA}}[g, B]$

▶ Einstein-Hilbert type action from generalized Ricci scalar $\mathcal{R}(\mathcal{H})$:

$$\mathcal{S}_{ ext{ iny DFT}}[\mathcal{H}] = \int \, \mathrm{d}^{2d} \mathbb{X} \; \mathcal{R}(\mathcal{H})$$

▶ Invariance under generalized Lie derivative:

$$\delta_{\epsilon}\mathcal{H}^{IJ} = (\partial^{I}\epsilon_{K} - \partial_{K}\epsilon^{I})\mathcal{H}^{KJ} + (I \leftrightarrow J) + \epsilon^{K}\partial_{K}\mathcal{H}^{IJ} =: \mathsf{L}_{\epsilon}\mathcal{H}^{IJ}$$

- ▶ Strong constraint: $\partial^I \partial_I f = 0$ (level matching) , $\partial^I f \partial_I g = 0$ Solutions select polarisations defining d-dimensional 'physical' null submanifolds of doubled space, DFT reduces to supergravity in different duality frames related by O(d,d)-transformations
- ▶ Supergravity frame: $\tilde{\partial}^i f = 0$ ($w^i = 0$), $S_{\text{DFT}}[\mathcal{H}] \longrightarrow S_{\text{SUGRA}}[g, B]$
- ▶ C-bracket: Closure $[L_{\epsilon_1}, L_{\epsilon_2}] = L_{[\epsilon_1, \epsilon_2]}$ after strong constraint:

$$\llbracket \epsilon_1, \epsilon_2 \rrbracket^J = \epsilon_1^K \partial_K \epsilon_2^J - \frac{1}{2} \epsilon_1^K \partial^J \epsilon_{2K} - (\epsilon_1 \leftrightarrow \epsilon_2)$$

Reduces to (standard) Courant bracket after polarisation

- ► What is full DFT with dynamical doubled geometry beyond strong constraint?
- ▶ When \mathcal{M} is T^{2d} or a T^{2d} -bundle, DFT on \mathcal{M} can be reduced to string theory on T^d or a T-fold
- ▶ Background independent formulation suggests writing DFT on more general doubled manifolds \mathcal{M} (Hohm, Hull & Zwiebach '10)
 - meaning of \tilde{x} for general spacetimes M?

- ► What is full DFT with dynamical doubled geometry beyond strong constraint?
- ▶ When \mathcal{M} is T^{2d} or a T^{2d} -bundle, DFT on \mathcal{M} can be reduced to string theory on T^d or a T-fold
- ▶ Background independent formulation suggests writing DFT on more general doubled manifolds \mathcal{M} (Hohm, Hull & Zwiebach '10) meaning of \tilde{x} for general spacetimes M?
- ▶ Strong constraint picks out rank d maximally η -isotropic $L_+ \subset T\mathcal{M}$, with $L_V f = V^I \partial_I f = 0$ for $V \in \Gamma(L_+)$, which is integrable:

$$\eta(V,W)=0 \quad , \quad [V,W] \in \Gamma(L_+)$$
 E.g. $V \; = \; \tilde{v}_i \, \tilde{\partial}^i$

Polarisation selects physical spacetime as a **quotient** $M = \mathcal{M}/\mathcal{F}$ by action on leaves of foliation $L_+ = T\mathcal{F}$ (Hull & Reid-Edwards '09; Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)

$$T\mathcal{M} = T\mathcal{F} \oplus T\mathcal{F}^{\perp}$$

T-fold: Singular quotient (e.g. orbifolds)

Essentially doubled space: No foliation

(Marotta & Sz '19)

Polarisation selects physical spacetime as a **quotient** $M = \mathcal{M}/\mathcal{F}$ by action on leaves of foliation $L_+ = T\mathcal{F}$ (Hull & Reid-Edwards '09; Vaisman '12: Park '13: Lee, Strickland-Constable & Waldram '15)

$$T\mathcal{M} = T\mathcal{F} \oplus T\mathcal{F}^{\perp}$$

T-fold: Singular quotient (e.g. orbifolds)

Essentially doubled space: No foliation

(Marotta & Sz '19)

Strong constraint implies \mathcal{H} bundle-like, defines a Riemannian foliation $(\mathcal{M}, \mathcal{H}, \mathcal{F})$ and $(\mathcal{M}, \mathcal{H}) \longrightarrow (M, g)$ is a Riemannian submersion (Marotta & Sz '19)

Polarisation selects physical spacetime as a **quotient** $M = \mathcal{M}/\mathcal{F}$ by action on leaves of foliation $L_+ = T\mathcal{F}$ (Hull & Reid-Edwards '09; Vaisman '12: Park '13: Lee, Strickland-Constable & Waldram '15)

$$T\mathcal{M} = T\mathcal{F} \oplus T\mathcal{F}^{\perp}$$

T-fold: Singular quotient (e.g. orbifolds)

Essentially doubled space: No foliation

(Marotta & Sz '19)

- ▶ Strong constraint implies \mathcal{H} bundle-like, defines a Riemannian foliation $(\mathcal{M}, \mathcal{H}, \mathcal{F})$ and $(\mathcal{M}, \mathcal{H}) \longrightarrow (\mathcal{M}, g)$ is a Riemannian submersion (Marotta & Sz '19)
- ► Flat metric η too restrictive: $\mathcal{M} = \mathbb{R}^{2d}/\Gamma$ locally

 ⇒ allow more general (Cederwall '14; Marotta & Sz '19)

$$\eta = 2 dx^i d\tilde{x}_i + h_{ii}(x) dx^i dx^j$$

- ▶ What is the geometric origin of DFT data and strong constraint?
- ► Precise geometric relation with Generalized Geometry: Is there a "DFT algebroid" with C-bracket reducing to Courant algebroid?

- ▶ What is the geometric origin of DFT data and strong constraint?
- Precise geometric relation with Generalized Geometry: Is there a "DFT algebroid" with C-bracket reducing to Courant algebroid?
- ▶ Bottom-up approach: Patch together flat $U \cong \mathbb{R}^{2d}$ using physical DFT symmetries (Park '13; Hohm, Lüst & Zwiebach '13; Berman, Cederwall & Perry '14: Papadopoulos '14: Hull '14)

- ▶ What is the geometric origin of DFT data and strong constraint?
- Precise geometric relation with Generalized Geometry: Is there a "DFT algebroid" with C-bracket reducing to Courant algebroid?
- ▶ Bottom-up approach: Patch together flat $U \cong \mathbb{R}^{2d}$ using physical DFT symmetries (Park '13; Hohm, Lüst & Zwiebach '13; Berman, Cederwall & Perry '14; Papadopoulos '14; Hull '14)
- ► Top-down approach: Para-Hermitian geometry (understand reduction to flat space DFT and Generalized Geometry, and emergence of non-geometric backgrounds)

Doubling, Splitting and Projecting

(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$

- ▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} \, \mathrm{d}\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$

- ▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} d\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$
- ▶ O(d, d)-vectors: Projection $p_+ : \mathbb{E} \longrightarrow L_+$

$$\mathbb{A} = \mathbb{A}^{I} \partial_{I} + \tilde{\mathbb{A}}_{I} d\mathbb{X}^{I} \longmapsto A := p_{+}(\mathbb{A}) = A_{i} (dx^{i} + \tilde{\partial}^{i}) + A^{i} (d\tilde{x}_{i} + \partial_{i})$$

(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

- Local model for doubled space: Quotient means $\mathcal{M}=T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}}\simeq TM\oplus T^*M=\mathbb{T}M$ Take Courant algebroid on $\mathbb{E}=\mathbb{T}\mathcal{M}=T\mathcal{M}\oplus T^*\mathcal{M}$ and sections $\mathbb{A}=(\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} \, \mathrm{d}\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$
- ▶ O(d, d)-vectors: Projection $p_+ : \mathbb{E} \longrightarrow L_+$

$$\mathbb{A} = \mathbb{A}^I \, \partial_I + \tilde{\mathbb{A}}_I \, d\mathbb{X}^I \; \longmapsto \; A := p_+(\mathbb{A}) = A_i \, (\mathrm{d} x^i + \tilde{\partial}^i) + A^i \, (\mathrm{d} \tilde{x}_i + \partial_i)$$

ightharpoonup O(d,d)-structure: $\langle \langle A,B \rangle \rangle := \langle p_+(\mathbb{A}), p_+(\mathbb{B}) \rangle = \eta_{IJ} A^I B^J$

- ▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} \, \mathrm{d}\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$
- ▶ O(d, d)-vectors: Projection $p_+ : \mathbb{E} \longrightarrow L_+$

$$\mathbb{A} = \mathbb{A}^I \, \partial_I + \tilde{\mathbb{A}}_I \, d\mathbb{X}^I \; \longmapsto \; A := p_+(\mathbb{A}) = A_i \, (\mathrm{d} x^i + \tilde{\partial}^i) + A^i \, (\mathrm{d} \tilde{x}_i + \partial_i)$$

- ightharpoonup O(d,d)-structure: $\langle \langle A,B \rangle \rangle := \langle p_+(\mathbb{A}), p_+(\mathbb{B}) \rangle = \eta_{IJ} A^I B^J$
- ▶ C-bracket: $\llbracket A, B \rrbracket := p_+(\llbracket p_+(\mathbb{A}), p_+(\mathbb{B}) \rrbracket)$

- ▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} d\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$
- ▶ O(d, d)-vectors: Projection $p_+ : \mathbb{E} \longrightarrow L_+$

$$\mathbb{A} = \mathbb{A}^{I} \partial_{I} + \tilde{\mathbb{A}}_{I} d\mathbb{X}^{I} \longmapsto A := p_{+}(\mathbb{A}) = A_{i} (dx^{i} + \tilde{\partial}^{i}) + A^{i} (d\tilde{x}_{i} + \partial_{i})$$

- ightharpoonup O(d,d)-structure: $\langle \langle A,B \rangle \rangle := \langle p_+(\mathbb{A}), p_+(\mathbb{B}) \rangle = \eta_U A^I B^J$
- ▶ C-bracket: $\llbracket A, B \rrbracket := p_+(\llbracket p_+(\mathbb{A}), p_+(\mathbb{B}) \rrbracket)$
- ▶ Generalized Lie derivative: $L_AB := p_+(\mathcal{L}_{p_+(\mathbb{A})}p_+(\mathbb{B}))$

- ▶ Local model for doubled space: Quotient means $\mathcal{M} = T^*M$ (or quotients) with fibres \mathcal{F} ; then $T\mathcal{M}\big|_{\mathcal{M}} \simeq TM \oplus T^*M = \mathbb{T}M$ Take Courant algebroid on $\mathbb{E} = \mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ and sections $\mathbb{A} = (\mathbb{A}^{\hat{I}})_{\hat{I}=1,\dots,4d}$
- ► Frame: $e_I^{\pm} = \partial_I \pm \eta_{IJ} d\mathbb{X}^J$ defines splitting $\mathbb{E} = L_+ \oplus L_-$
- ▶ O(d, d)-vectors: Projection $p_+ : \mathbb{E} \longrightarrow L_+$

$$\mathbb{A} = \mathbb{A}^I \, \partial_I + \tilde{\mathbb{A}}_I \, \mathrm{d}\mathbb{X}^I \ \longmapsto \ A := p_+(\mathbb{A}) = A_i \, (\mathrm{d} x^i + \tilde{\partial}^i) + A^i \, (\mathrm{d} \tilde{x}_i + \partial_i)$$

- ightharpoonup O(d,d)-structure: $\langle \langle A,B \rangle \rangle := \langle p_+(\mathbb{A}), p_+(\mathbb{B}) \rangle = \eta_U A^I B^J$
- ► C-bracket: $\llbracket A, B \rrbracket := p_+(\llbracket p_+(\mathbb{A}), p_+(\mathbb{B}) \rrbracket)$
- ▶ Generalized Lie derivative: $L_AB := p_+(\mathcal{L}_{p_+(\mathbb{A})}p_+(\mathbb{B}))$
- ► Structure maps: $\rho_{\hat{I}}^J = (\rho_J{}^I, \tilde{\rho}^{IJ}) \longmapsto (\rho_+)_I{}^J = \rho_I{}^J + \eta_{IK} \, \tilde{\rho}^{JK}$

▶ $(L_+ \xrightarrow{\mathbb{R}^{2d}} \mathcal{M}, \llbracket -, - \rrbracket, \langle \langle -, - \rangle \rangle, \rho_+ : L_+ \longrightarrow T\mathcal{M})$ is a "DFT algebroid"; When strong constraint is imposed, ρ_+ is a homomorphism and L_+ is a Courant algebroid over $\mathcal{M} = T^*M$

- ▶ $(L_+ \xrightarrow{\mathbb{R}^{2d}} \mathcal{M}, \llbracket -, \rrbracket, \langle \langle -, \rangle \rangle, \rho_+ : L_+ \longrightarrow T\mathcal{M})$ is a "DFT algebroid"; When strong constraint is imposed, ρ_+ is a homomorphism and L_+ is a Courant algebroid over $\mathcal{M} = T^*M$
- ▶ Violate Courant algebroid axioms 1, 4, 5 independently:

- ▶ $(L_+ \xrightarrow{\mathbb{R}^{2d}} \mathcal{M}, \llbracket -, \rrbracket, \langle \langle -, \rangle \rangle, \rho_+ : L_+ \longrightarrow T\mathcal{M})$ is a "DFT algebroid"; When strong constraint is imposed, ρ_+ is a homomorphism and L_+ is a Courant algebroid over $\mathcal{M} = T^*M$
- ▶ Violate Courant algebroid axioms 1, 4, 5 independently:

▶ DFT algebroid: A pre-DFT algebroid where all violations controlled by strong constraint:

Doubled Courant algebroid $\mathbb{E} \xrightarrow{p_+} \mathsf{DFT}$ algebroid $\xrightarrow{5}$ Courant algebroid

- ▶ $(L_+ \xrightarrow{\mathbb{R}^{2d}} \mathcal{M}, \llbracket -, \rrbracket, \langle \langle -, \rangle \rangle, \rho_+ : L_+ \longrightarrow T\mathcal{M})$ is a "DFT algebroid"; When strong constraint is imposed, ρ_+ is a homomorphism and L_+ is a Courant algebroid over $\mathcal{M} = T^*M$
- ▶ Violate Courant algebroid axioms 1, 4, 5 independently:

▶ DFT algebroid: A pre-DFT algebroid where all violations controlled by strong constraint:

Doubled Courant algebroid $\mathbb{E} \xrightarrow{p_+} \mathsf{DFT}$ algebroid $\xrightarrow{5}$ Courant algebroid

► Pre-Courant algebroid (Vaisman '05; Hansen & Strobl '09; Liu, Sheng & Xu '12) is a 'symplectic almost Lie 2-algebroid' (Bruce & Gabrowski '16)

- ▶ $(L_+ \xrightarrow{\mathbb{R}^{2d}} \mathcal{M}, \llbracket -, \rrbracket, \langle \langle -, \rangle \rangle, \rho_+ : L_+ \longrightarrow T\mathcal{M})$ is a "DFT algebroid"; When strong constraint is imposed, ρ_+ is a homomorphism and L_+ is a Courant algebroid over $\mathcal{M} = T^*M$
- ▶ Violate Courant algebroid axioms 1, 4, 5 independently:

▶ DFT algebroid: A pre-DFT algebroid where all violations controlled by strong constraint:

Doubled Courant algebroid $\mathbb{E} \xrightarrow{p_+} \mathsf{DFT} \mathsf{algebroid} \xrightarrow{5} \mathsf{Courant} \mathsf{algebroid}$

- ▶ Pre-Courant algebroid (Vaisman '05; Hansen & Strobl '09; Liu, Sheng & Xu '12) is a 'symplectic almost Lie 2-algebroid' (Bruce & Gabrowski '16)
- ► Pre-DFT algebroid related to 'metric algebroid' (Vaisman '12) corresponds to 'symplectic nearly Lie 2-algebroid' (Bruce & Gabrowski '16)

- Para-Hermitian Geometry: A "real version" of complex Hermitian geometry
- ► Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds

 (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18; Address Sz '18; Svoboda '18; Marotta & Sz '18; Svoboda '18; M
 - Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19; ...)

- Para-Hermitian Geometry: A "real version" of complex Hermitian geometry
- ► Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18; Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19; ...)
- ▶ Other applications of para-Hermitian geometry:
 - Formulation of $\mathcal{N}=2$ vector multiplets in Euclidean spacetimes (Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)
 - ► Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)

- Para-Hermitian Geometry: A "real version" of complex Hermitian geometry
- ► Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18; Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19; ...)
- Other applications of para-Hermitian geometry:
 - Formulation of $\mathcal{N}=2$ vector multiplets in Euclidean spacetimes (Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)
 - ► Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)
- ▶ Modern perspective: Geometry on $\mathbb{T}M \longleftrightarrow$ Geometry on TM

- Para-Hermitian Geometry: A "real version" of complex Hermitian geometry
- Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds

 (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18; Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19; ...)
- Other applications of para-Hermitian geometry:
 - Formulation of $\mathcal{N}=2$ vector multiplets in Euclidean spacetimes (Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)
 - ► Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)
- ightharpoonup Modern perspective: Geometry on $\mathbb{T}M \longleftrightarrow$ Geometry on $T\mathcal{M}$
- **Examples:** Fibre bundles $(T^*M, TM, ...)$, Doubled Lie groups, Drinfel'd doubles, and quotients $(T^{2d}, doubled twisted torus, ...)$

- ▶ Para-complex structure $K: T\mathcal{M} \longrightarrow T\mathcal{M}$ on 2*d*-dim manifold \mathcal{M} with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank *d*
- ▶ Splits $T\mathcal{M} = L_+ \oplus L_-$, integrability of L_+ and L_- independent

- ▶ Para-complex structure $K: T\mathcal{M} \longrightarrow T\mathcal{M}$ on 2*d*-dim manifold \mathcal{M} with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank *d*
- ▶ Splits $T\mathcal{M} = L_+ \oplus L_-$, integrability of L_+ and L_- independent
- ▶ Para-Hermitian structure (K, η) : metric η with signature (d, d) satisfying compatibility $K^{\top} \eta K = -\eta$
- Fundamental 2-form $\omega = \eta K$ (almost symplectic); if symplectic ($d\omega = 0$) then (K, η) para-Kähler structure
- \blacktriangleright L_{\pm} maximally isotropic with respect to η and ω

- ▶ Para-complex structure $K: T\mathcal{M} \longrightarrow T\mathcal{M}$ on 2*d*-dim manifold \mathcal{M} with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank *d*
- ▶ Splits $T\mathcal{M} = L_+ \oplus L_-$, integrability of L_+ and L_- independent
- ▶ Para-Hermitian structure (K, η) : metric η with signature (d, d) satisfying compatibility $K^{\top} \eta K = -\eta$
- ► Fundamental 2-form $\omega = \eta K$ (almost symplectic); if symplectic ($d\omega = 0$) then (K, η) para-Kähler structure
- $ightharpoonup L_{\pm}$ maximally isotropic with respect to η and ω
- ▶ Canonical C-bracket: Compatible with K, metric-compatible, L_{\pm} involutive (Dirac structures), . . . ; gives metric algebroid on $T\mathcal{M}$

- ▶ Para-complex structure $K: T\mathcal{M} \longrightarrow T\mathcal{M}$ on 2*d*-dim manifold \mathcal{M} with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank *d*
- ▶ Splits $T\mathcal{M} = L_+ \oplus L_-$, integrability of L_+ and L_- independent
- ▶ Para-Hermitian structure (K, η) : metric η with signature (d, d) satisfying compatibility $K^{\top} \eta K = -\eta$
- ► Fundamental 2-form $\omega = \eta K$ (almost symplectic); if symplectic ($d\omega = 0$) then (K, η) para-Kähler structure
- $ightharpoonup L_{\pm}$ maximally isotropic with respect to η and ω
- ▶ Canonical C-bracket: Compatible with K, metric-compatible, L_{\pm} involutive (Dirac structures), . . . ; gives metric algebroid on $T\mathcal{M}$
- ► (Generalized) Fluxes (Lie algebroid 3-forms) measure (lack of) weak integrability of para-Hermitian structures with respect to C-bracket

Born Geometry

• Generalized metric on a para-Hermitian manifold $(\mathcal{M}, \mathcal{K}, \eta)$: Riemannian metric \mathcal{H} on \mathcal{M} satisfying compatibility conditions

$$\mathcal{H}^{-1} = \eta^{-1} \mathcal{H} \eta^{-1} = -\omega^{-1} \mathcal{H} \omega^{-1}$$

• $(\eta, \omega, \mathcal{H})$ is a Born geometry

Born Geometry

• Generalized metric on a para-Hermitian manifold (\mathcal{M}, K, η) : Riemannian metric \mathcal{H} on \mathcal{M} satisfying compatibility conditions

$$\mathcal{H}^{-1} = \eta^{-1} \mathcal{H} \eta^{-1} = -\omega^{-1} \mathcal{H} \omega^{-1}$$

- $(\eta, \omega, \mathcal{H})$ is a Born geometry
- Natural symmetries: O(d, d)(M) ⊂ Aut(TM) isometries of η preserving Born geometry structure
 Gives notion of generalized T-duality

Born Geometry

▶ Generalized metric on a para-Hermitian manifold (\mathcal{M}, K, η) : Riemannian metric \mathcal{H} on \mathcal{M} satisfying compatibility conditions

$$\mathcal{H}^{-1} = \eta^{-1} \mathcal{H} \eta^{-1} = -\omega^{-1} \mathcal{H} \omega^{-1}$$

- $(\eta, \omega, \mathcal{H})$ is a Born geometry
- Natural symmetries: O(d, d)(M) ⊂ Aut(TM) isometries of η preserving Born geometry structure
 Gives notion of generalized T-duality
- ▶ Double Field Theory is a limit of Born geometry:

▶ Flat space limit:
$$\eta = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$$
 , $\mathcal{H}(g) = \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix}$

- $O(d,d)(\mathcal{M})$ B-transformation gives DFT generalized metric $\mathcal{H}(g,B)$
- Canonical C-bracket reduces to C-bracket of DFT

- Polarization: Choice of para-Hermitian structure (K, η) on \mathcal{M} (splitting $T\mathcal{M} = L_+ \oplus L_-$ into maximally isotropic sub-bundles)
- Strong constraint: Compatibility condition of Dirac structures (L_+, L_-) in metric algebroid, such that $T\mathcal{M}$ is a Courant algebroid

- ▶ Polarization: Choice of para-Hermitian structure (K, η) on \mathcal{M} (splitting $T\mathcal{M} = L_+ \oplus L_-$ into maximally isotropic sub-bundles)
- ▶ Strong constraint: Compatibility condition of Dirac structures (L_+, L_-) in metric algebroid, such that $T\mathcal{M}$ is a Courant algebroid
- ▶ If L_+ is (Frobenius) integrable, then $L_+ = T\mathcal{F}$ for a d-dim Lagrangian foliation \mathcal{F} of \mathcal{M} (if also L_- integrable then $L_- = T\widetilde{\mathcal{F}}$)
- $lackbox{O}(d,d)$ -metric $\eta:T\mathcal{M}\longrightarrow T^*\mathcal{M}$ identifies $L_-\cong L_+^*=T^*\mathcal{F}$
- $T\mathcal{M} \xrightarrow{\cong} \mathbb{T}\mathcal{F} = T\mathcal{F} \oplus T^*\mathcal{F} \text{ under } X \longmapsto P_+(X) + \eta \big(P_-(X)\big)$

- ▶ Polarization: Choice of para-Hermitian structure (K, η) on \mathcal{M} (splitting $T\mathcal{M} = L_+ \oplus L_-$ into maximally isotropic sub-bundles)
- Strong constraint: Compatibility condition of Dirac structures (L_+, L_-) in metric algebroid, such that $T\mathcal{M}$ is a Courant algebroid
- ▶ If L_+ is (Frobenius) integrable, then $L_+ = T\mathcal{F}$ for a d-dim Lagrangian foliation \mathcal{F} of \mathcal{M} (if also L_- integrable then $L_- = T\widetilde{\mathcal{F}}$)
- $lackbox{O}(d,d)$ -metric $\eta:T\mathcal{M}\longrightarrow T^*\mathcal{M}$ identifies $L_-\cong L_+^*=T^*\mathcal{F}$
- $T\mathcal{M} \xrightarrow{\cong} \mathbb{T}\mathcal{F} = T\mathcal{F} \oplus T^*\mathcal{F} \text{ under } X \longmapsto P_+(X) + \eta \big(P_-(X)\big)$
- ▶ Recovers Generalized Geometry: Gives (standard) Courant algebroid on \mathcal{F} , with P_+ -projected C-bracket \longmapsto Courant bracket on $\mathbb{T}\mathcal{F}$

- ▶ Polarization: Choice of para-Hermitian structure (K, η) on \mathcal{M} (splitting $T\mathcal{M} = L_+ \oplus L_-$ into maximally isotropic sub-bundles)
- ▶ Strong constraint: Compatibility condition of Dirac structures (L_+, L_-) in metric algebroid, such that $T\mathcal{M}$ is a Courant algebroid
- ▶ If L_+ is (Frobenius) integrable, then $L_+ = T\mathcal{F}$ for a d-dim Lagrangian foliation \mathcal{F} of \mathcal{M} (if also L_- integrable then $L_- = T\widetilde{\mathcal{F}}$)
- $lackbox{O}(d,d)$ -metric $\eta:T\mathcal{M}\longrightarrow T^*\mathcal{M}$ identifies $L_-\cong L_+^*=T^*\mathcal{F}$
- $T\mathcal{M} \xrightarrow{\cong} \mathbb{T}\mathcal{F} = T\mathcal{F} \oplus T^*\mathcal{F} \text{ under } X \longmapsto P_+(X) + \eta \big(P_-(X)\big)$
- ▶ Recovers Generalized Geometry: Gives (standard) Courant algebroid on \mathcal{F} , with P_+ -projected C-bracket \longmapsto Courant bracket on $\mathbb{T}\mathcal{F}$
- ► Change of polarization (generalized T-duality): $(K, \eta) \longmapsto (K_{\vartheta}, \eta) , \quad K_{\vartheta} = \vartheta^{-1} K \vartheta , \quad \vartheta \in O(d, d)(\mathcal{M})$

► Doubled sigma-models (Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)

- ► Doubled sigma-models (Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)
- ▶ D-branes and non-geometry/doubled geometry Lowe, Natase & Ramgoolam '03; Ellwood & Hashimoto '06; Grange & Schäfer-Nameki '06; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19)

Background	D <i>p</i> -brane	X	у	Z	\widetilde{x}	\widetilde{y}	\widetilde{z}
T ³ with H-flux	D0-brane	_	_	-	×	×	×
Nilfold	D1-brane	_	X	_	×	_	×
T-fold	D2-brane	_	×	×	×	_	_
Essentially doubled space	D3-brane	×	X	×	_	_	_

- ► Doubled sigma-models (Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)
- ▶ D-branes and non-geometry/doubled geometry Lowe, Natase & Ramgoolam '03; Ellwood & Hashimoto '06; Grange & Schäfer-Nameki '06; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19)

Background	D <i>p</i> -brane	X	у	Z	\widetilde{x}	\widetilde{y}	ĩ
T^3 with H -flux	D0-brane	_	_	_	×	×	×
Nilfold	D1-brane	_	×	_	×	_	×
T-fold	D2-brane	_	×	×	×	_	_
Essentially doubled space	D3-brane	×	×	×	-	_	_

▶ D-branes on T-folds: T-duality monodromies of non-geometric background ⇒ Morita duality monodromies of noncommutative Yang-Mills theory on D-brane

- ► Doubled sigma-models (Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)
- ▶ D-branes and non-geometry/doubled geometry Lowe, Natase & Ramgoolam '03; Ellwood & Hashimoto '06; Grange & Schäfer-Nameki '06; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19)

Background	D <i>p</i> -brane	X	у	Z	\widetilde{x}	\widetilde{y}	ĩ
T ³ with <i>H</i> -flux	D0-brane	_	_	-	×	×	×
Nilfold	D1-brane	_	X	_	×	_	×
T-fold	D2-brane	_	X	×	×	_	-
Essentially doubled space	D3-brane	×	X	×	_	_	_

- ▶ D-branes on T-folds: T-duality monodromies of non-geometric background ⇒ Morita duality monodromies of noncommutative Yang-Mills theory on D-brane
- ▶ D-branes on essentially doubled spaces: D-brane gauge theory depends on \widetilde{x} , no conventional formulation in spacetime

(Hohm & Kwak '11)

Heterotic DFT

```
Type II DFT
                               (Hull '07: Hohm, Kwak & Zwiebach '11; Thompson '11;
                                                         Jeon, Lee, Park & Suh '12)

    Exceptional Generalized Geometry/Field Theory for M-theory

   (Hull '07; Pacheco & Waldram '08; Berman & Perry '10; Hohm and Samtleben '13; ...)
► Membrane/threebrane sigma-models
                                                       (Mylonas, Schupp & Sz '12;
           Chatzistavrakidis, Jonke & Lechtenfeld '15: Besso, Heller, Ikeda & Watamura '15:
                   Kökényesi, Sinkovics & Sz '18; Chatzistavrakidis, Jonke, Khoo & Sz '18;
                                              Chatzistavrakidis, Jonke, Lüst & Sz '19)
► DFT and supergeometry
                                          (Deser & Stasheff '14; Deser & Sämann '16;
                                                      Heller, Ikeda & Watamura '16)
▶ DFT classification of non-Riemannian geometries
   (e.g. Newton-Cartan geometry for non-relativistic strings)
                                     (Morand & Park '17; Berman, Blair & Otsuki '19)
▶ Non-geometry as closed string/M2-brane noncommutative and
   nonassociative geometries
                                           (Blumenhagen & Plauschinn '10: Lüst '10:
       Mylonas, Schupp & Sz '12; Günaydin, Lüst & Malek '16; Kupriyanov & Sz '17; ...)
```