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String Geometry ¢ T T T T >

» Strings see geometry in different ways than particles do
» Sometimes strings see deformations of geometry

» E.g. Resolutions of singularities:

P! —

» Probes of Planck scale quantum geometry:

Spacetime uncertainty Ax > /s related to noncommutative
spacetime structure?



String Geometry ¢« — T >
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Spacetime geometry in string theory is an approximate notion:

Valid at sizes R > /;, but breaks down at R ~ /5 due to non-locality

Isolate geometry from non-locality: Geometry makes sense in
decoupling limit o/ = £2 — 0 with R finite

Not all spacetime geometries are ordinary geometric spaces,

e.g. noncommutative spaces can arise as decoupling limits

One can use effective field theories as probes of geometry:

Introduce D-branes and take decoupling limit —-
Noncommutative worldvolume gauge theories in an NS-NS B-field

background (Douglas & Hull '97; Seiberg & Witten '99; Cornalba & Schiappa '01;
Herbst, Kling & Kreuzer '01; ...)
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T-Duality
T-duality is a string symmetry relating distinct spacetimes,
some of which are “non-geometric”
Simplest example: T: R — R' =(2?/R

String theory on S! of radius R is physically equivalent to string
theory on S! of radius £2/R (automorphism of CFT)

Exchanges discrete momentum p and winding w

@~ @

Exchanges S! coordinate x with dual S! coordinate X

Acts on a “doubled circle” with coordinates (x, X):

Strings “see” a doubled geometry
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T-Duality
For a d-torus T¢ with background fields (g, B), worldsheet theory is
S= / d?o Ej(x)0,x'0_x , E=g+B
T-duality symmetry O(d, d; Z):

1 a b
CEid ) (C d)eO(d,d,Z)

Acts on d discrete momenta and d winding numbers,

E'=(aE+Db)

preserves 7 = 2dx’d%;: String theory “sees” a doubled torus 729

More generally, if M is a T9-bundle, then string theory “sees” a
torus bundle with doubled torus fibres T29:

T-duality O(d,d;Z) C GL(2d,Z) acts geometrically



Non-Geometric Backgrounds

(Hellerman, McGreevy & Williams '02; Dabholkar & Hull '02;
Kachru, Schulz, Tripathy & Trivedi '02; Hull '04)

> New features of T-duality when H =dB # 0

d
» Prototypical examples come from torus bundles M I w
(with H-flux [H] € H3(M,Z))



Non-Geometric Backgrounds
(Hellerman, McGreevy & Williams '02; Dabholkar & Hull '02;
Kachru, Schulz, Tripathy & Trivedi '02; Hull '04)

> New features of T-duality when H =dB # 0

d
» Prototypical examples come from torus bundles M I w
(with H-flux [H] € H3(M,Z))

» Eg W=S! M = twisted torus, H = 0:

Twisted torus T-fold

Sy Sy

Patching: Diffeos Patching: T-duality



Non-Geometric Backgrounds

Twisted torus T-fold

T,
o -

Sy St

X X

Essentially doubled space



Generalized Flux Backgrounds

M = T3 with H-flux H=mdxAdyAdz, B=mxdy Adz gives
geometric and non-geometric fluxes (Hull "05; Shelton, Taylor & Wecht '05;
Dabholkar & Hull '06; ...)
TS . T .. T ..
H,'J'k — fljk —j> QUk —k> lek

(T3, H-flux): [H] = m

Nilfold (f) T-fold (Q)
TZ
m| sl —
T2 Sl

Essentially doubled (R)



Doubled Geometry

T
» Doubled torus — S}: (Hull 05)

Twisted torus —> T-fold

o O



Doubled Geometry

T
» Doubled torus — S}: (Hull 05)

Twisted torus —> T-fold

N

. T
» Doubled twisted torus —— S} x S (Hull & Reid-Edwards '07)

Tx .
Doubled torus ——— Essentially doubled torus

st 1

X



Doubled Geometry

T
» Doubled torus — S}: (Hull 05)

Twisted torus —> T-fold

o O

. T
» Doubled twisted torus —— S} x S (Hull & Reid-Edwards '07)

Tx .
Doubled torus ——— Essentially doubled torus

st s

» Geometrization of non-geometry: GL(4,Z) D 0(2,2;Z) C 0(3,3)



Target Space Perspective: Supergravity
> (g, B) satisfy field equations that determine a CFT

» Reproduced from target space theory (d = 10):

1
Sevanale, B]:/ddX\/E (R(g)—EHQ) , H=dB

Low energy effective theory = supergravity
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Target Space Perspective: Supergravity
(g, B) satisfy field equations that determine a CFT

Reproduced from target space theory (d = 10):

1
Sevanale, B]:/ddX\/E (R(g)—ﬁHz) , H=dB

Low energy effective theory = supergravity

(g,B) and (g’, B’) give same CFT if related by:

S1. Diffeomorphisms and B-field gauge transformations

S2. (Factorized) T-dualities

S1. captured as transition functions in Generalized Geometry
(Hitchin '02; Gualtieri '04)



Target Space Perspective: Supergravity

» String Hamiltonian h = %HU P! P/ with:

—Bg'B Bg! w'
H(ng)—<g_g—ng gg—1> ) P_<Pi>
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Target Space Perspective: Supergravity

String Hamiltonian h = %HU P! P/ with:
g—Bg'B Bg1> <Wi>
H(g,B) = Z > , P=
(&, B) < —g'B g ! pi

Generalized Geometry doubles tangent bundle
™ —TM=TM® T*M

with structure of a Courant algebroid, twisted by a B-field

(0 1
=11 o
H™1 = n~'Hn"! . bracket of sections is the Courant bracket

O(d, d)-structure (fibre metric of TM),

H(g, B) € O(d,d)/O(d) x O(d) Generalized metric on TM,
P is a section of TM



Courant Algebroids
(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)
Quadruple (E M , = -], (—,—), p: E— TM) satisfying:
1. Jacobi: [[A, B], C] + cyclic = 1 D([A, B], C) + cyclic
2. Leibniz: [A,f B] = f[A, B] + (p(A)f)B — (A, B) Df

3. Compatibility:

p(C)(A, By = ([C,Al + D(C,A),B) + ([C,B] + D(C, B), A)



Courant Algebroids

(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)
2d
Quadruple (E £ m, [—,-], (—,—), p: E— TM) satisfying:
1. Jacobi: [[A, B], C] + cyclic = 1 D([A, B], C) + cyclic
2. Leibniz: [A,f B] = f[A, B] + (p(A)f)B — (A, B) Df
3. Compatibility:

p(C)(A, By = ([C,Al + D(C,A),B) + ([C,B] + D(C, B), A)

Additional properties:
4. Homomorphism: p([A, B]) = [p(A),p(B)] (A, B,C €T(E))
5. “Strong constraint”: (Df,Dg) =0 (f,g € C>®(M))



Courant Algebroids

(Courant '90; Liu, Weinstein & Xu '97; Uchino '02)
2d
Quadruple (E £ m, [—,-], (—,—), p: E— TM) satisfying:
1. Jacobi: [[A, B], C] + cyclic = 1 D([A, B], C) + cyclic
2. Leibniz: [A,f B] = f[A, B] + (p(A)f)B — (A, B) Df
3. Compatibility:

p(C)(A, B) = ([C,A]+D(C,A), B) + ([C, B] + D(C, B), A)
Additional properties:
4. Homomorphism: p([A, B]) = [p(A),p(B)] (A, B,C €T(E))
5. “Strong constraint”: (Df,Dg) =0 (f,g € C>®(M))

Courant bracket:
[A, Blk = (p)/ A1 0;Bk — % p' A?0,B)) — (A <> B) + T(A, B, ex)



Supergravity on Courant Algebroids

» When E=TM = TM @ T*M with natural frame
(e1) = (0;,dx’) and O(d, d)-invariant metric (9;,dx/) = 4§/,
axioms give fluxes (H,f, @, R) and Bianchi identities of
supergravity

> Type Il supergravity can be entirely formulated in terms of

Generalized Geometry (Grafia, Minasian, Petrini & Waldram '08;
Coimbra, Strickland-Constable & Waldram '11)

» o'-corrections in heterotic supergravity also appear to be
controllable geometrically (Liu & Minasian '18)



Supergravity on Courant Algebroids

When E=TM = TM @ T*M with natural frame

(e1) = (0;,dx’) and O(d, d)-invariant metric (9;,dx/) = 4§/,
axioms give fluxes (H,f, @, R) and Bianchi identities of
supergravity

Type Il supergravity can be entirely formulated in terms of

Generalized Geometry (Grafia, Minasian, Petrini & Waldram '08;
Coimbra, Strickland-Constable & Waldram '11)

o’-corrections in heterotic supergravity also appear to be
controllable geometrically (Liu & Minasian '18)

S2. not a manifest symmetry: T-duality is an isomorphism between
(twisted) Courant algebroids of T9-bundles  (Cavalcanti & Gualtieri '10)
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Double Field Theory

(Duff '90; Tseytlin '90; Siegel '93;
Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10; Hohm & Kwak '11; ...)

Duality-covariantization of supergravity:
O(d, d) symmetry is manifest

Consequence of string field theory on torus T7:

,(/)(p7 W) Fourier ’(/)(X, )?)

Strings see doubled spacetime M — M = M x M:

X'=(\%) , 0 =9,

Needed to describe non-geometric backgrounds and
generalized T-duality; doubled geometry is physical and dynamical

O(d, d)-structure 7 / generalized metric H(g, B)



Double Field Theory
» Einstein-Hilbert type action from generalized Ricci scalar R(H):
Sorslt) = [ @x R(H)

> Invariance under generalized Lie derivative:

SHY = (e — O Y HY + (1 & J) + X0 = LHY



Double Field Theory

» Einstein-Hilbert type action from generalized Ricci scalar R(H):
Sorslt) = [ @x R(H)
> Invariance under generalized Lie derivative:
SHY = (0'ex — Ok VM + (1 & ) + Mok H” = LHY

» Strong constraint: 9'9;f =0 (level matching) , 9'fd;g =0
Solutions select polarisations defining d-dimensional ‘physical’ null
submanifolds of doubled space, DFT reduces to supergravity in
different duality frames related by O(d, d)-transformations
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Double Field Theory
Einstein-Hilbert type action from generalized Ricci scalar R(H):
Sorslt) = [ @x R(H)
Invariance under generalized Lie derivative:
SHY = (0'ex — Ok VM + (1 & ) + Mok H” = LHY

Strong constraint: 9'9;f =0 (level matching) , 9'fd;g =0
Solutions select polarisations defining d-dimensional ‘physical’ null
submanifolds of doubled space, DFT reduces to supergravity in
different duality frames related by O(d, d)-transformations

Supergravity frame: 0'f =0 (w' =0), Sprr[H] — Ssucralg, B]
C-bracket: Closure [L¢,,Lc,] = L, ) after strong constraint:
[er, &2]? = e okes — %ef eri — (e1 ¢ €2)

Reduces to (standard) Courant bracket after polarisation



Global Aspects of Double Field Theory

» What is full DFT with dynamical doubled geometry beyond strong
constraint?

» When M is T29 or a T29-bundle, DFT on M can be reduced to
string theory on T or a T-fold

» Background independent formulation suggests writing DFT on more
general doubled manifolds M (Hohm, Hull & Zwiebach '10)
— meaning of X for general spacetimes M?



Global Aspects of Double Field Theory

What is full DFT with dynamical doubled geometry beyond strong
constraint?

When M is T29 or a T29-bundle, DFT on M can be reduced to
string theory on T or a T-fold

Background independent formulation suggests writing DFT on more
general doubled manifolds M (Hohm, Hull & Zwiebach '10)
— meaning of X for general spacetimes M?

Strong constraint picks out rank d maximally n-isotropic L, C TM,
with Ly f = V! 9;f =0 for V € [(Ly), which is integrable:
n(V,w)y=0 , [V,W]el(L)

E.g. V = \7/8i



Global Aspects of Double Field Theory

> Polarisation selects physical spacetime as a quotient M = M/F

by action on leaves of foliation L, = TF (Hull & Reid-Edwards '09;
Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)

TM=TF&TF*

T-fold: Singular quotient (e.g. orbifolds)

Essentially doubled space: No foliation
(Marotta & Sz '19)
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Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)

Ft
@\,5 TM=TFaTF:
N/ 3
f‘l

T-fold: Singular quotient (e.g. orbifolds)

F Essentially doubled space: No foliation
(Marotta & Sz '19)

» Strong constraint implies H bundle-like,
defines a Riemannian foliation (M, H,F) and
(M,H) — (M, g) is a Riemannian submersion (Marotta & Sz '19)



Global Aspects of Double Field Theory

> Polarisation selects physical spacetime as a quotient M = M /F

by action on leaves of foliation L, = TF (Hull & Reid-Edwards '09;
Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)

Ft
@\, TM=TFaTF:
N/ 3
?‘I

T-fold: Singular quotient (e.g. orbifolds)

F Essentially doubled space: No foliation
(Marotta & Sz '19)

» Strong constraint implies H bundle-like,
defines a Riemannian foliation (M, H,F) and
(M,H) — (M, g) is a Riemannian submersion (Marotta & Sz '19)

» Flat metric 7 too restrictive: M = R4 /T locally
allow more general (Cederwall '14; Marotta & Sz '19)

n=2dx' d% + hy(x) dx' dx/



Global Aspects of Double Field Theory

» What is the geometric origin of DFT data and strong constraint?

> Precise geometric relation with Generalized Geometry: Is there a
“DFT algebroid” with C-bracket reducing to Courant algebroid?



Global Aspects of Double Field Theory
What is the geometric origin of DFT data and strong constraint?

Precise geometric relation with Generalized Geometry: Is there a
“DFT algebroid” with C-bracket reducing to Courant algebroid?

Bottom-up approach: Patch together flat U = R?? using physical
DFT symmetries (Park '13; Hohm, Liist & Zwiebach '13;
Berman, Cederwall & Perry '14; Papadopoulos '14; Hull '14)



Global Aspects of Double Field Theory

What is the geometric origin of DFT data and strong constraint?

Precise geometric relation with Generalized Geometry: Is there a
“DFT algebroid” with C-bracket reducing to Courant algebroid?

Bottom-up approach: Patch together flat U = R?? using physical
DFT symmetries (Park '13; Hohm, Liist & Zwiebach '13;
Berman, Cederwall & Perry '14; Papadopoulos '14; Hull '14)

Top-down approach: Para-Hermitian geometry (understand
reduction to flat space DFT and Generalized Geometry, and
emergence of non-geometric backgrounds)



Doubling, Splitting and Projecting

(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

Local model for doubled space: Quotient means M = T*M

(or quotients) with fibres F; then TM|M ~TM® T*M =TM
Take Courant algebroid on E=TM = TM & T*M

and sections A = (A’A)izl,m’“d
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(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

Local model for doubled space: Quotient means M = T*M

(or quotients) with fibres F; then TM|M ~TM® T*M =TM
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and sections A = (A’A)izl,m’“d

Frame: e,i = 0y £ dX’ defines splitting E = L, ©L_

O(d, d)-vectors: Projection p;y :E — L

A=Ad+AdX" — A:=pi(A)=A (dx' + )+ A (dX; + 0))

O(d, d)-structure: (A, B)) := (p+(A),p+(B)) = ny A B’
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Doubling, Splitting and Projecting

(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

Local model for doubled space: Quotient means M = T*M

(or quotients) with fibres F; then TM|M ~TM® T*M =TM
Take Courant algebroid on E=TM = TM & T*M

and sections A = (Ai)le,“.Ad

Frame: e,i = 0y £ dX’ defines splitting E = L, ©L_

O(d, d)-vectors: Projection py :E — Ly
A=Ad+AdX" — A:=pi(A)=A (dx' + )+ A (dX; + 0))
O(d, d)-structure: (A, B)) := (p+(A),p+(B)) = ny A B’

C-bracket: [A,B] = pi([p+(A), p+(B)])

Generalized Lie derivative: LaB := pi(Ly, (a)p+(B))



Doubling, Splitting and Projecting

(Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18)

Local model for doubled space: Quotient means M = T*M

(or quotients) with fibres F; then TM|M ~TM® T*M =TM
Take Courant algebroid on E=TM = TM & T*M

and sections A = (Ai)le,“.Ad

Frame: e,i = 0y £ dX’ defines splitting E = L, ©L_

O(d, d)-vectors: Projection p;y :E — L

A=Ad+AdX" — A:=pi(A)=A (dx' + )+ A (dX; + 0))

O(d, d)-structure: (A, B)) := (p+(A),p+(B)) = ny A B’
C-bracket: [A,B] = pi([p+(A), p+(B)])
Generalized Lie derivative: LaB := pi(Ly, (a)p+(B))

Structure maps: piJ = (p,, ") — (p)i? = pi? + ik pK



Pre-Courant and Metric Algebroids
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“DFT algebroid”; When strong constraint is imposed, py is a
homomorphism and L, is a Courant algebroid over M = T*M
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Pre-Courant and Metric Algebroids

R .
s (L M [T (=) s pri L — TM) s a
“DFT algebroid”; When strong constraint is imposed, py is a
homomorphism and L, is a Courant algebroid over M = T*M

» Violate Courant algebroid axioms 1, 4, 5 independently:

Pre-DFT Ante-Courant (_L Pre-Courant Courant
algebroid algebroid algebroid algebroid

» DFT algebroid: A pre-DFT algebroid where all violations controlled
by strong constraint:

Doubled Courant algebroid E L2 DFT algebroid . Courant algebroid
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by strong constraint:

Doubled Courant algebroid E L2 DFT algebroid . Courant algebroid

Pre-Courant algebroid (Vaisman '05; Hansen & Strobl '09; Liu, Sheng & Xu '12)
is a ‘symplectic almost Lie 2-algebroid’ (Bruce & Gabrowski '16)
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Pre-Courant and Metric Algebroids

R .
(L+ — M ) |I_a_]] ’ <<_7_>> y P+t L+ — TM) IS a
“DFT algebroid”; When strong constraint is imposed, py is a
homomorphism and L, is a Courant algebroid over M = T*M

Violate Courant algebroid axioms 1, 4, 5 independently:

Pre-DFT Ante-Courant (_L Pre-Courant Courant
algebroid algebroid algebroid algebroid

DFT algebroid: A pre-DFT algebroid where all violations controlled
by strong constraint:

Doubled Courant algebroid E L2 DFT algebroid . Courant algebroid
Pre-Courant algebroid (Vaisman '05; Hansen & Strobl '09; Liu, Sheng & Xu '12)
is a ‘symplectic almost Lie 2-algebroid’ (Bruce & Gabrowski '16)

Pre-DFT algebroid related to ‘metric algebroid’ (Vaisman '12)
corresponds to ‘symplectic nearly Lie 2-algebroid’ (Bruce & Gabrowski '16)



Double Field Theory and Para-Hermitian Geometry

» Para-Hermitian Geometry: A “real version” of complex Hermitian

geometry

» Addresses global issues of doubled geometry, provides simple elegant
framework for generalized flux compactifications and non-geometric
backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17;

Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18;
Mori, Sasaki & Shiozawa '19; Hassler, Liist & Rudolph '19; ...)
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Double Field Theory and Para-Hermitian Geometry

» Para-Hermitian Geometry: A “real version” of complex Hermitian
geometry

» Addresses global issues of doubled geometry, provides simple elegant
framework for generalized flux compactifications and non-geometric

backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17;
Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18;
Mori, Sasaki & Shiozawa '19; Hassler, Liist & Rudolph '19; ...)

» Other applications of para-Hermitian geometry:

» Formulation of N' = 2 vector multiplets in Euclidean spacetimes
(Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)

» Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)

» Modern perspective: Geometry on TM <+— Geometry on T M

» Examples: Fibre bundles (T*M, TM, ...), Doubled Lie groups,
Drinfel'd doubles, and quotients (729, doubled twisted torus, ...)
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Para-complex structure K : TM — TM on 2d-dim manifold M
with K2 = 41, whose + 1-eigenbundles L. have same rank d

Splits TM =L, & L_, integrability of L, and L_ independent

Para-Hermitian structure (K,n): metric n with signature (d, d)
satisfying compatibility KT nK = —7

Fundamental 2-form w = 1 K (almost symplectic);
if symplectic (dw = 0) then (K, n) para-Kahler structure

L+ maximally isotropic with respect to 7 and w

Canonical C-bracket: Compatible with K, metric-compatible,
Ly involutive (Dirac structures), ...; gives metric algebroid on T M

(Generalized) Fluxes (Lie algebroid 3-forms) measure (lack of) weak
integrability of para-Hermitian structures with respect to C-bracket
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Born Geometry

Generalized metric on a para-Hermitian manifold (M, K, n):
Riemannian metric H on M satisfying compatibility conditions

H71 _ 77717_[7771 _ _wlewfl
(n,w,H) is a Born geometry

Natural symmetries:  O(d, d)(M) C Aut(T M) isometries of 7
preserving Born geometry structure

Gives notion of generalized T-duality
Double Field Theory is a limit of Born geometry:

» Flat space limit: n = (g %) L Hig) = (g g91>

» O(d, d)(M) B-transformation gives DFT generalized metric #(g, B)

» Canonical C-bracket reduces to C-bracket of DFT
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Recovering the Physical Spacetime

Polarization: Choice of para-Hermitian structure (K,n) on M
(splitting TM =L, @ L_ into maximally isotropic sub-bundles)

Strong constraint: Compatibility condition of Dirac structures
(L4, L) in metric algebroid, such that TM is a Courant algebroid

If L, is (Frobenius) integrable, then L, = TF for a d-dim
Lagrangian foliation F of M (if also L_ integrable then L_ = TF)

O(d,d)-metric n: TM — T*M identifies L_ = L% = T*F
TM =5 TF=TF& T*F under X —s P (X) +n(P_(X))

Recovers Generalized Geometry: Gives (standard) Courant algebroid
on F, with P;-projected C-bracket — Courant bracket on TF

Change of polarization (generalized T-duality):
(K,n)— (Ko,n), Kyg=0"1K9, 9e0(d,d)(M)
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Background Dp-brane X y z|x 'y z
T2 with H-flux DO-brane | — — — [ x x x
Nilfold Dl-brane | — x — | X — X
T-fold D2-brane | — x X | x — -—
Essentially doubled space | D3-brane | x x X | — — —




Further Developments

» Doubled sigma-models

(Hull '05; Berman, Copland & Thompson '07;
Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)

» D-branes and non-geometry/doubled geometry
Lowe, Natase & Ramgoolam '03; Ellwood & Hashimoto '06; Grange & Schafer-Nameki '06;

(Hull '04;

Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19)
Background Dp-brane X y z|x 'y z
T2 with H-flux DO-brane | — — — [ x x x
Nilfold Dl-brane | — x — | X — X
T-fold D2-brane | — x X | x — -—
Essentially doubled space | D3-brane | x x X | — — —

» D-branes on T-folds: T-duality monodromies of non-geometric

background

Yang-Mills theory on D-brane

Morita duality monodromies of noncommutative



Further Developments

» Doubled sigma-models

(Hull '05; Berman, Copland & Thompson '07;
Hull & Reid-Edwards '09; Copland '11; Lee & Park '13; Marotta & Sz '19; ...)

» D-branes and non-geometry/doubled geometry
Lowe, Natase & Ramgoolam '03; Ellwood & Hashimoto '06; Grange & Schafer-Nameki '06;

(Hull '04;

Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19)
Background Dp-brane X y z|x 'y z
T2 with H-flux DO-brane | — — — [ x x x
Nilfold Dl-brane | — x — | X — X
T-fold D2-brane | — x X | x — -—
Essentially doubled space | D3-brane | x x X | — — —

» D-branes on T-folds: T-duality monodromies of non-geometric

background

Yang-Mills theory on D-brane

» D-branes on essentially doubled spaces:
depends on X, no conventional formulation in spacetime

Morita duality monodromies of noncommutative

D-brane gauge theory



Further Developments

Heterotic DFT (Hohm & Kwak '11)

Type Il DFT (Hull '07; Hohm, Kwak & Zwiebach '11; Thompson '11;
Jeon, Lee, Park & Suh '12)

Exceptional Generalized Geometry/Field Theory for M-theory
(Hull '07; Pacheco & Waldram '08; Berman & Perry '10; Hohm and Samtleben '13; ...)

Membrane/threebrane sigma-models (Mylonas, Schupp & Sz '12;
Chatzistavrakidis, Jonke & Lechtenfeld '15; Besso, Heller, lkeda & Watamura '15;
Kokényesi, Sinkovics & Sz '18; Chatzistavrakidis, Jonke, Khoo & Sz '18;

Chatzistavrakidis, Jonke, Liist & Sz '19)

DFT and supergeometry (Deser & Stasheff '14; Deser & Simann '16;
Heller, lkeda & Watamura '16)

DFT classification of non-Riemannian geometries

(e.g. Newton-Cartan geometry for non-relativistic strings)
(Morand & Park '17; Berman, Blair & Otsuki '19)

Non-geometry as closed string/M2-brane noncommutative and
nonassociative geometries (Blumenhagen & Plauschinn '10; Liist '10;
Mylonas, Schupp & Sz '12; Giinaydin, Liist & Malek '16; Kupriyanov & Sz '17; ...)



