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1.Introduction� �

• Typical inflation scale: H ≲ 1014GeV (cf. GUT scale ∼ 1015GeV, string scale ∼ 1016 GeV)

• Primordial non-Gaussianities can be used to probe the particle spectrum at the inflation scale.
(cf. Pimentel’s talk, Suro Kim’s talk, Toshiaki Takeuchi’ talk)

• The coefficients of the effective couplings of inflaton depend on intermediate particles, and tell us the spin of particles at the inflation
scale. (cf. Suro Kim’s talk)

• The method discussed by Suro Kim cannot be applied to the Kaluza-Klein graviton case directly because the Froissart-Martin bound
was assumed there.

In this poster� �

we discuss the four-point amplitude mediated by Kaluza-Klein graviton, and show its signs are the same as the massive spin-2 exchange
although it violate the bound < s2.� �� �

2.Inflation� �

Inflation is the era when the universe expanded exponentially, and its simplest model
is slow-roll inflation;
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Inflaton� �

is the scalar field ϕ which has an approximately flat potential.
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3.Effective Couplings and Amplitudes� �

The IR effective Lagrangian of inflaton ϕ� �
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The four-point amplitudes of inflaton are given by M(s, t) = 4α
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)
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)
in terms of IR coefficients.

� �

For example, if the three-point amplitude of two inflaton and one massive scalar is given as

Aϕϕσ(k1, k2, k3) = g, (3)

the four-point amplitudes by integrating out the intermediate massive scalar at IR can be expressed as
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IR coefficients from UV analysis (cf. Suro Kim’s talk)� �

In general, the coefficients of the four-point amplitudes with intermediate particles, which are labeled by n, can be expressed in the
following way.

IR coefficients� �

The IR coefficients of s2 and s2t terms can be obtained as
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= 2
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where the UV amplitudes should be bounded as (cf. Froissart-Martin bound)

|M(s, t)| < |s|2.
� �� �

This analysis implies

• The sign of four-derivative effective coupling is always positive. (cf. positivity bound by arXiv:hep-th/0602178)

• The sign of six-derivative effective coupling depend on the spin of intermediate particles.

KK gravitons do not satisfy the preceding Froissart-Martin bound because the UV amplitude mediated by KK gravitons behaves as ∼ s2,
but they are one of the main targets in the cosmological collider program.

What is the sign of effective coupling mediated by KK graviton??
� �
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4.Kaluza-Klein Graviton� �

The Lagrangian of KK graviton and inflaton reads
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1
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4
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8

(
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)
+ L int, (6)

where E is kinetic operator of massive spin-2 particle (arXiv:1401.4173):
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The coupling between 4D graviton hµν and scalar field is expressed as

x y

x1

x2

x3

x4

γμν

∂μϕ

∂νϕ ∂ρϕ

∂λϕ

IR−→ x

x1

x2

x3

x4
∂μϕ

∂μϕ ∂νϕ

∂νϕ

Sint =
δSint

δgρσ
hρσ =

∫
d4x

√
−g Tρσh

ρσ, Tρσ = ∂ρϕ∂σϕ− 1

2
ηρσ∂αϕ∂

αϕ (8)

Similarly, the coupling between KK graviton and scalar field can be expressed as,

Sint =

∫
d4x

√
−g CTρσγ

ρσ + · · · , C : coupling constant, γµν : KK graviton. (9)

Four-point amplitude mediated by KK graviton at IR� �
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� �

We find that the signs of effective couplings are the same as previous discussion even though their values are different from eq.(5).
� �

5.Bispectrum� �

Bispectrum� �

From the effective Lagrangian eq.(2), we get bispectra as follows.
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where A3pt and B3pt are contributions from the four-derivative and six-derivative operators, respectively.
� �
Shape Function� �

Fig 1: Bispectra of the 4th derivative term (left) and the 6th derivative term (right) respectively.
� �

We can distinguish them due to the ratio between the equilat-
eral configuration and the folded one.

A3 pt(0.5, 0.5, 1)

A3 pt(1, 1, 1)
∼ 0.32,
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� �

6.Trispectrum� �

Trispectrum� �

From the effective Lagrangian eq.(2), we get trispectra as follows.
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In equilateral limit,
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Fig 2: Equilateral configurations of four momenta

The coefficient cos3 θ can be used to probe the sixth derivative operator without swamped by the fourth derivative one.� �

7.Conclusion� �

• The signs of higher order derivatives coupling depend on the spin of intermediating particles.

• Fourth order derivative term is universally positive α > 0 independent of spin of intermediating particles.

• Sixth order derivative term depends on the spin of intermediating particles. (β > 0 for scalars, β < 0 for spin 2, 4, ...)

• This conclusion applies to KK graviton even though it violates the Froissart-Martin bound.

• Non-Gaussianities generated by these effective couplings can be used to probe the spin of heavy particles.
� �
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