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Introduction

• Inflation: most-accepted theory of early universe, resolves flatness problem,
horizon problem; predicts a near scale-invariant power spectrum, verified by
observations.
•Potential Puzzles: trans-Planckian problem, past-incompleteness problem,
initial condition problem.
•Could we explain the puzzles within the framework of inflationary cosmology,
or with some new ideas?
•Alternative to Inflation Theories: May provide different viewpoints on the
physics of very early universe, and helps to understand inflation better.
• In this work, we present a toy alternative to inflation models, and verify it in
both conceptual and experimental aspects.

Motivations

•Our model is inspired by the work [1].
•First principle in Quantum Gravity region: the Euclidean Quantum
Gravity(EQG) formalism. Advantage: predicts the relative probability of
certain configuration of the universe.
•Boundary Condition: no-boundary proposal from Hawking. Can intepret the
initial singularity. The horizon problem also disappears.
•UV complete action: Horava-Lifshitz(HL) theory. Supposed to solve the
flatness problem, and generate near scale invariant power spectrum.

Introduction to EQG Formalism

•The spacetime should allow an ADM decomposition:
ds2 = −N 2dt2 + hij(dxi + N idt)(dxj + N jdt)

Here the lapse function N and shift vector N i can be set to 1 and 0 by the
symmetry of time reparametrization and spatial diffeomorphism respectively.
In this case hij uniquely describes the geometry.
•The universe starts in the quantum gravity(QG) region(or the Euclidean region
since time is imaginary), during which the state of the universe is described by
its wave function Ψ[hij, φ], defined as the path integral over possible compact
configurations where geometry and matter are described by hij and φ:

Ψ[hij, φ] =
∫
d[gµν]d[φ]e−Î

Î is Euclidean action from a Wick rotation τ = it.
•The relative possibility of a universe in a configuration [hij, φ] is

P [hij, φ] ∝ |Ψ[hij, φ]|2

Flatness problem can be explained if the model prefers a flat universe(i.e.
universes with smaller curvature parameter Ωk has larger relative probability).
•The starting point of path integral 1 is a(0) = 0 from no-boundary proposal,
and the ending spacetime point is the quantum tunneling, where the universe
tunnels from the Euclidean spacetime to the Lorentzian spacetime and time
becomes real.
•After the quantum tunneling, the dynamics of the universe is predicted by the
standard cosmology.
•The evolution of the universe is shown in the following figure. The figure is
from [2]

An Illustrative Figure of EQG Formalism

Background Cosmology

•We apply spectator field approximation throughout the work. "Spectator"
means gravity is just a background and do not receive back-reaction from the
scalar field. Besides, there is no metric perturbation.
•The dynamics of background is determined by the HL gravity. The action is
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•Euclidean action of universe reaches its minimum when the universe is in the
maximum symmetric configuration [3], so the most probable geometric
configuration of the universe is that of FRW type:

ds2 = −dt2 + a2(t)
 dr̄2

1− r̄2 + r̄2dΩ2


•WKB approximation is applied, which states that the most probable trajectory
of the universe is described by the classical equation of motion(EoM):

3λ− 1
2

(2∂tH + 3H2) = γ

a6 −
1
a2 + Λ, H ≡ ∂ta

a
(1)

• Integrate Eq.1 and we have(set Λ = 0 for convenience):

λ̃H2 = C

a3 −
γ

a6 −
3
a2 + Λ (2)

where λ̃ ≡ 3
2(3λ− 1). C is effectively a dark matter term.

• In Euclidean spacetime the EoM becomes

λ̃H2 = −C
a3 + γ

a6 + 3
a2,H ≡

∂τa

a
(3)

Initial condition of Eq.3 is a(0) = 0, and the quantum tunneling condition is
H = 0.

Explanation of Flatness Problem

•Condition 1: a subdominant curvature component at quantum tunneling:
3/a(τT )2

C/a(τT )3 � 1. This gives the constraint γ
C4 � 1.

•Condition 2: predict a small enough curvature parameter ΩK ≡ 1
a2H2 at the

beginning of standard cosmology. This gives the constraint γ
C � 1.
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Perturbation

•Under spectator field approximation, only the matter section generates scalar
perturbation. The most general action of scalar field compatible with HL
theory is

Im =
∫
dtd3x

1
2
a3

(∂tφ)2 −
3∑

n=0
(−1)n λ2,n

M 2n−2∆n ? φ2


•Expand the perturbation as a summation of normalized spherical harmonics:
φ(t, ~x) = φ̄(t) + δφ(t, ~x) = φ̄(t) +

∑
k

fk(t)Qk(~x)

the quadratic Euclidean action for wavelength k is:

Îm,2k =
∫
dτ
a3

2
[
f ′2k + ω2

kf
2
k

]

ω2
k ≡

3∑
n=0

λ2,n

M 2n−2(k2 − 1)n ≈
3∑

n=0

λ2,n

M 2

 k
M

2n
(4)

•Classical EoM for perturbation mode is
f ′′k + 3Hf ′k − ω2fk = 0 (5)

for later convenience, we shall introduce gk ≡ f ′k
fk
, 5 then becomes:

g′k + g2
k + 3Hgk − ω2

k = 0 (6)
The initial condition of Eq.5 is uniquely determined by the asymptotic
behavior of a(τ )

fk(τ ) = J0(iωkτ ), τ → 0

•The wave function of perturbation up to quadratic order is
Ψm[fk] =

∫
d[fk]e

1
2a(τT )3gk(τT )f 2

k

which gives two-point correlation function of fk at quantum tunneling event:

〈fkfk〉 =
∫ [dfk]fkfke−

1
2a(τT )3gk(τT )f 2

k∫ [dfk]e−
1
2a(τT )3gk(τT )f 2

k

= a(τT )−3g−1
k (τT )

where τT is the time of quantum tunneling.
•Finally we find that near the quantum tunneling event, Eq.6 has asymptotic
solution gk(τ ) ∼ ωk. The two-point correlation function is then related to the
model parameter by

〈fkfk〉 = a(τT )−3ω−1
k = C

γωk
(7)

•Compare Eq.7 with the definition of power spectrum

〈fk1fk2〉 ≡ (2π)3δ(~k1 + ~k2)
2π2

k3 Pφ(k) (8)

we find that the dominance of λ2,3k
6

M 8 in Eq.4 can help to generate a near
scale-invariant power spectrum. The rest terms may contribute to the tilt.

Numerical Study

•We take the parameter in gravity section as C = 5× 1051lp, γ = 2× 1048l4p and
λ = 5

9. These parameter give a(τT ) = 7.4× 1048lp.
•We check the conditions for evading flatness problem. For condition 1,

3/a(τT )2

C/a(τT )3 = 4.4× 10−3 is relatively small. For condition 2, the curvature
parameter at the beginning of standard cosmology is |ΩK|(tr) = 3.4× 10−18,
which is much larger compared to that predicted by standard Big Bang
cosmology.
•We numerically solve Eq.3 and Eq.6 and plot the evolution of gk(τ )
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the results support our approximation gk(τT ) ∼ ωk.

Outlook

•A further investigation without spectator approximation.
•Find other mechanisms to replace C.
•Could metric perturbation of HL gravity alone give the feature?
•Spectrum index and non-Gaussianity.
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