
Anomaly and Superconnection

Hayato Kanno

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

Based on arXiv:2106.01591 [hep-th]

Work with Shigeki Sugimoto (YITP).

Strings and Fields 2021  YITP workshop, @online 2021. 8. 23.



Introduction (5) Fujikawa method (4) Superconnection (3) Application (5) Conclusion (1)

What is “anomaly”? (1)

Introduction (1/5)

Anomaly (Quantum Anomaly)

An classical action have some symmetries, but sometimes 
these symmetries disappear in quantum theory.

e.g.) 𝜋0 → 2𝛾

• In massless QCD, there is a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

𝑁𝑓: # of flavors
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What is “anomaly”? (2)

Introduction (2/5)

e.g.) 𝜋0 → 2𝛾

• In massless QCD, there is a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

• If you add mass term, this chiral symmetry is broken.

• In massless QCD, if there is NO anomaly, 𝜋0 never decay.

• However, 𝜋0 decay into 2𝛾, because of an anomaly!
Even if QCD is massless, 𝜋0 → 2𝛾 is not prohibited.

𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

⊃ 𝑈 1 𝐴 has an anomaly.

• Anomaly is very important!
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Theories what we want to think (1)

Introduction (3/5)

Let us consider 4dim action contains fermions.

• This action is massless, so it has a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

• There also be a 𝑈 1 𝐴 anomaly.

• Add mass term
• Mass term breaks the chiral symmetry.

• Let the mass depend on the spacetime.
• This mass is almost same as the Higgs field.

• How change the symmetry and the anomaly?
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The spacetime dependent mass

Introduction (4/5)

𝑥: the fifth 
direction

What is “the spacetime dependent mass”?
• e.g.) Domain wall fermions

• One way to realize chiral fermions on the lattice.
• Consider 5dim spacetime, and realize 4dim 

fermions on 𝑚 𝑥 = 0 subspace.

• Chiral anomalies on Higgs fields
• If Higgs fields change as bifundamental under the 
𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry, the action is 

invariant for the symmetry.
• It is known that chiral anomalies are not changed 

by adding Higgs fields.
• See Fujikawa-san’s text book.
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Theories what we want to think (2)

Introduction (5/5)

How about the spacetime dependent mass?
• The chiral anomaly is changed by the mass!!

• Deference between Higgs and mass
• Higgs field : bounded (the value of the field never diverge!)

• Spacetime dependent mass : unbounded

• If the mass diverge at some points, it contribute to 
the anomaly.
• This contribution might be unknown.

• We can find the anomaly in any dimension.

• The anomaly can be written by “superconnection.”
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How to calculate anomalies

Fujikawa method
• There are some ways to calculate 

anomalies.

• Today, we focus on Fujikawa method.
• Consider path integral for fermions.
• Anomaly = Jacobian comes from path 

integral measure
• We only consider perturbative 

anomalies.

• We calculate log 𝒥 for anomalies in 
the last part of this talk.

• We focus on 4dim case at first.

[’79 Fujikawa]

anomaly

e.g.) 𝑈 1 𝑉

transformation

Fujikawa method (1/4)
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The anomalies for massless cases

e.g.) fermions in 4dim
• Mass less case

• With 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral sym.

• 𝑈 1 𝑉 anomaly is written by the 
field strengths.

• With a Higgs field
• With 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral sym.

• The 𝑈 1 𝑉 anomaly is same for 
massless case.

• How about the massive case?

Fujikawa method (2/4)
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For massive case

Let us consider spacetime dependent mass!
• The action for general even dim has 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
symmetry.

• For odd dim case, there is only 𝑈(𝑁𝑓) sym, we put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†.

• We take 𝑚(𝑥) divergent.
• 𝐼 is some directions 𝑚(𝑥) change the values.

• We calculated 𝑈 1 𝑉 anomaly for this action by Fujikawa method.
• It is easy to get the anomaly for any dimension.

• It is also easy to get the anomaly for 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

, not only for 𝑈 1 𝑉.

Fujikawa method (3/4)
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The anomaly for massive case

The 𝑈 1 𝑉 anomaly is,

• This result seems very complicated...

• Can we write it more simple way?

Λ is UV cut-off 
comes from 
heat kernel 

regularization.

Fujikawa method (4/4)
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3. Superconnection

Superconnection (3)
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Superconnection (1)

• We define the superconnections for even and odd dimensions.

• This is made by Quillen, who is a mathematician, in 1985.

Even dimension
• Superconnection

• Field strength

[’85 Quillen]

𝐴𝑅 : 𝑈 𝑁𝑓 𝑅
gauge field (1-form)

𝐴𝐿 : 𝑈 𝑁𝑓 𝐿
gauge field (1-form)

𝑇 : 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

bifundamental scalar field (0-form)

• Supertrace

Superconnection (1/3)
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Superconnection (2)

Odd dimension
• Superconnection

• Field strength

• Supertrace

We apply superconnection to write the anomaly.

[’85 Quillen]

𝐴 : 𝑈(𝑁𝑓) gauge field (1-form)

𝑇 : 𝑈(𝑁𝑓) adjoint scalar field (0-form)

Superconnection (2/3)
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Rewrite the anomaly

• We can rewrite the 𝑈 1 𝑉 anomaly by superconnection.

• For odd dimension case, put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†. Then, we get 𝑈(1)
anomaly.
• In odd dimension, the definition of Str is different from even dim case.

• It is easy to check this for 4dim massless case.

Superconnection (3/3)
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4. Application

Application (5)
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How can we apply the anomaly?

Mass means a wall for some cases!
• If a fermion is massive enough, it does not have any propagating mode.

• If the mass depends on spacetime, fermions are massless in some regions, but 
they can be massive in the others.

• That means fermions localize in some areas!

→We can make fermions localize by the mass!

• We can make some systems to decide mass configurations.
• Kink, vortex and general codimension case

• With boundary

• We also discuss about some index theorems.
• APS index theorem

• Callias type index theorem

Application (1/5)
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Kink (1)

Mass kink for our set up
• For example, let’s consider 5dim case.

• In this set up, “kink” means this mass configuration.

• This “mass” diverges at 𝑦 → ±∞.

• 5dim fermions with 𝑈(𝑁𝑓) sym, and the mass depends on only 𝑦 direction.

• The 𝑈(1) anomaly is,

• Recall 4dim 𝑈 1 𝑉 anomaly, Corresponds to the sign of 𝑢 .

Application (2/5)
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Kink (2)

What is the meaning of the anomaly?
• 4dim Weyl fermions are localizing at 𝑦 = 0.

• When 𝑢 > 0 corresponds to chirality + (right-
handed) fermion, and 𝑢 < 0 corresponds to 
chirality – (left-handed) fermion.

Domain wall fermion
• This Weyl fermions correspond to domain wall 

fermions.
• But the regularization is different, so that I don’t 

know the correspondence in detail.

Application (3/5)
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Vortex

Next, we check codim-2 case.
• Vortex is 2dim topological object.

• Let us consider 2𝑟 + 2 dim.
• 𝑚(𝑧) depends on 2 directions, and it is complex valued “mass”.

• This mass diverges at 𝑧 → ∞.

• For simplicity, we put 𝐴𝐿 = 𝐴𝑅 in 2𝑟 + 2dim.

• The 𝑈 1 𝑉 anomaly is,

• This is 2𝑟dim 𝑈(1) anomaly with 𝑈 𝑁𝑓 𝑅
gauge field.

• If you want to get chirality – (left-handed) result, use 𝑚 ҧ𝑧 = 𝑢 ҧ𝑧, instead.

Application (4/5)
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General defects

We can apply this formula to general codimension cases.
• When we think 𝑑 dim system with 𝑛 dim topological defects, we get 𝑑 − 𝑛

dim 𝑈(1) anomalies.
• If 𝑑 − 𝑛 is odd, we get nothing because odd dim mass less fermions are 

anomaly-free.

• The mass configurations for general codimension is,

• This results correspond to “tachyon condensation” in string theory.
• We will discuss it in the next section.

Application (5/5)
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Conclusion

• We discussed about perturbative anomaly with spacetime dependent mass.

• 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral symmetry for even dimension

• 𝑈(𝑁𝑓) flavor symmetry for odd dimension

• We focused on 𝑈(1) anomalies for these systems.

• The anomaly can be written by superconnection.

• There are some applications.
• Kink, vortex, ...

• With boundary

• Index theorem

Conclusion


