Anomaly and Superconnection

Hayato Kanno

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

Based on arXiv:2106.01591 [hep-th]

Work with Shigeki Sugimoto (YITP).

2021. 8. 23.

What is "anomaly"? (1)

Anomaly (Quantum Anomaly)

An classical action have some symmetries, but sometimes these symmetries disappear in quantum theory.

e.g.) $\pi^0 \rightarrow 2\gamma$

• In massless QCD, there is a chiral symmetry $U(N_f)_L \times U(N_f)_R$.

$$\begin{split} N_{f}: \# \text{ of flavors} \\ S &= \int d^{4}x \left\{ \bar{\psi}i \not{D}\psi - \frac{1}{2g^{2}} \text{tr} \left[F_{\mu\nu}F^{\mu\nu} \right] \right\} \\ &= \int d^{4}x \left\{ \bar{\psi}i\gamma^{\mu} (\partial_{\mu} + A_{\mu})\psi - \frac{1}{2g^{2}} \text{tr} \left[F_{\mu\nu}F^{\mu\nu} \right] \right\} \\ \\ \text{Introduction (1/5)} \quad \text{Fujikawa method (4)} \quad \text{Superconnection (3)} \quad \text{Application (5)} \quad \text{Conclusion (1)} \end{split}$$

What is "anomaly"? (2)

e.g.) $\pi^0 \rightarrow 2\gamma$

- In massless QCD, there is a chiral symmetry $U(N_f)_I \times U(N_f)_R$.
 - If you add mass term, this chiral symmetry is broken.

$$S = \int d^4x \left\{ \bar{\psi} i \not{\!\!\!D} \psi - \frac{1}{2g^2} \mathrm{tr} \Big[F_{\mu\nu} F^{\mu\nu} \Big] + m \bar{\psi} \psi \right\}$$

- In massless QCD, if there is NO anomaly, π^0 never decay.
- However, π^0 decay into 2γ , because of an anomaly! Even if QCD is massless, $\pi^0 \to 2\gamma$ is not prohibited. $U(N_f)_L \times U(N_f)_R \supset U(1)_A$ has an anomaly.
- Anomaly is very important!

Introduction (2/5)

Fujikawa method (4) Superconnection (3)

 j^5_μ

Theories what we want to think (1)

Let us consider 4dim action contains fermions.

$$S = \int d^4x \bar{\psi} i D \!\!\!/ \psi = \int d^4x \bar{\psi} i \gamma^{\mu} (\partial_{\mu} + A_{\mu}) \psi$$

- This action is massless, so it has a chiral symmetry $U(N_f)_L \times U(N_f)_R$.
- There also be a $U(1)_A$ anomaly.
- Add mass term
 - Mass term breaks the chiral symmetry.
- Let the mass depend on the spacetime.
 - This mass is almost same as the Higgs field.
 - How change the symmetry and the anomaly?

$$S = \int d^4x \bar{\psi} \Big(i D + D \Big) \psi$$

$$S = \int d^4x \bar{\psi} \Big(i D + m(x) \Big) \psi$$

Conclusion (1)

Introduction (3/5) Fuj

Fujikawa method (4) Superconnection (3)

Application (5)

The spacetime dependent mass

What is "the spacetime dependent mass"?

- e.g.) Domain wall fermions
 - One way to realize chiral fermions on the lattice.
 - Consider 5dim spacetime, and realize 4dim fermions on m(x) = 0 subspace.
- Chiral anomalies on Higgs fields
 - If Higgs fields change as bifundamental under the $U(N_f)_L \times U(N_f)_R$ chiral symmetry, the action is invariant for the symmetry.
 - It is known that chiral anomalies are not changed by adding Higgs fields.

Superconnection (3)

• See Fujikawa-san's text book.

Fujikawa method (4)

Introduction (4/5)

Conclusion (1)

 $S = \int d^4x \bar{\psi} \Big(i D \!\!\!/ + h(x) \Big) \psi$

Application (5)

m(x)

 m_0

The spacetime dependent mass

Introduction (4/5)

Fujikawa method (4) Superconnection (3)

Application (5)

Theories what we want to think (2)

How about the spacetime dependent mass?

- The chiral anomaly is changed by the mass!!
 - Deference between Higgs and mass
 - Higgs field : bounded (the value of the field never diverge!)
 - Spacetime dependent mass : unbounded

$$S = \int d^d x \bar{\psi} \Big(i D + m(x) \Big) \psi$$

Conclusion (1)

- If the mass diverge at some points, it contribute to the anomaly.
 - This contribution might be unknown.

Introduction (5/5)

- We can find the anomaly in any dimension.
- The anomaly can be written by "superconnection." $\mathcal{A} = \begin{pmatrix} A_R & iT' \\ iT & A_T \end{pmatrix}$

Fujikawa method (4) Superconnection (3)

Application (5)

Plan

1. Introduction (5)

- What is anomaly?
- Theories what we want to think

2. Fujikawa method (4)

- How to calculate the anomaly
- Calculation for massive case

3. Superconnection (3)

- Definition of superconnection
- Application for the anomaly

4. Application (5)

- Kink
- Vortex
- General codimension case

5. Conclusion (1)

Fujikawa method (4) Super

Superconnection (3)

Application (5)

How to calculate anomalies

['79 Fujikawa]

Conclusion (1)

Fujikawa method

- There are some ways to calculate anomalies.
- Today, we focus on Fujikawa method.
 - Consider path integral for fermions.
 - Anomaly = Jacobian comes from path integral measure
 - We only consider perturbative anomalies.
- We calculate $\log \mathcal{J}\,$ for anomalies in the last part of this talk.
- We focus on 4dim case at first.

 $Z[A] = \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S}$ $\psi(x) \to e^{i\alpha(x)} \overline{\psi(x)},$ e.g.) $U(1)_{V}$ transformation $\bar{\psi}(x) \rightarrow \bar{\psi}(x) e^{-i\alpha(x)}$ $\mathcal{D}\psi\mathcal{D}\bar{\psi} \xrightarrow{\bullet} \mathcal{D}\psi'\mathcal{D}\bar{\psi}' = \mathcal{J}\mathcal{D}\psi\mathcal{D}\bar{\psi}$ $= \mathrm{e}^{-i \int d^4 x \alpha(x) \mathcal{A}(x)} \mathcal{D} \psi \mathcal{D} \bar{\psi}$ anomaly $\log \mathcal{J} = -i \int d^4 x \alpha(x) \mathcal{A}(x)$

Fujikawa method (1/4) Su

Superconnection (3)

Application (5)

The anomalies for massless cases

e.g.) fermions in 4dim

- Mass less case
 - With $U(N_f)_L \times U(N_f)_R$ chiral sym.
 - $U(1)_V$ anomaly is written by the field strengths.

$$S = \int d^4x \bar{\psi} i \gamma^{\mu} \bigg\{ \partial_{\mu} + \left(\begin{array}{cc} A^R_{\mu} & 0 \\ 0 & A^L_{\mu} \end{array} \right) \bigg\} \psi$$

$$\log \mathcal{J} = \frac{i}{32\pi^2} \int d^4 x \alpha(x) \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} \left[F^R_{\mu\nu} F^R_{\rho\sigma} - F^L_{\mu\nu} F^L_{\rho\sigma} - \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F^R \wedge F^R - F^L \wedge F^L \right] \right]$$

- With a Higgs field
 - With $U(N_f)_L \times U(N_f)_R$ chiral sym.
 - The $U(1)_V$ anomaly is same for massless case.
- How about the massive case?

$$S = \int d^4x \bar{\psi} \Big(i D \!\!\!/ + h(x) \Big) \psi$$

Superconnection (3)

Application (5)

For massive case

Let us consider spacetime dependent mass!

• The action for general even dim has $U(N_f)_L \times U(N_f)_R$ symmetry.

$$S = \int d^4x \bar{\psi} \left[i\gamma^{\mu} \left\{ \partial_{\mu} + \left(\begin{array}{cc} A^R_{\mu} & 0\\ 0 & A^L_{\mu} \end{array} \right) \right\} + \left(\begin{array}{cc} im(x) & 0\\ 0 & im^{\dagger}(x) \end{array} \right) \right] \psi$$

- For odd dim case, there is only $U(N_f)$ sym, we put $A_{\mu} = A_{\mu}^R = A_{\mu}^L$ and $m = m^{\dagger}$.
- We take m(x) divergent.

$$|m(x^{I})| \to \infty \quad (|x^{I}| \to \infty)$$

- I is some directions m(x) change the values.
- We calculated $U(1)_V$ anomaly for this action by Fujikawa method.
 - It is easy to get the anomaly for any dimension.
 - It is also easy to get the anomaly for $U(N_f)_L \times U(N_f)_R$, not only for $U(1)_V$.

The anomaly for massive case

The
$$U(1)_V$$
 anomaly is,

$$\begin{split} \tilde{m} &= m/\Lambda \quad \stackrel{\Lambda \text{ is constrained}}{\longrightarrow} \\ \log \mathcal{J} &= \frac{i}{(2\pi)^2} \int d^4 x \alpha(x) \text{tr} \left[\epsilon^{\mu\nu\rho\sigma} \left\{ \frac{1}{8} \left(F^R_{\mu\nu} F^R_{\rho\sigma} - F^L_{\mu\nu} F^L_{\rho\sigma} \right) \right\} \right] \\ &+ \frac{1}{12} \left(D_\mu \tilde{m}^\dagger D_\nu \tilde{m} F^R_{\rho\sigma} - D_\mu \tilde{m} D_\nu \tilde{m}^\dagger F^L_{\rho\sigma} + F^R_{\mu\nu} D_\rho \tilde{m}^\dagger D_\sigma \tilde{m} \right) \\ &- F^L_{\mu\nu} D_\rho \tilde{m} D_\sigma \tilde{m}^\dagger - D_\mu \tilde{m} F^R_{\nu\rho} D_\sigma \tilde{m}^\dagger + D_\mu \tilde{m}^\dagger F^L_{\nu\rho} D_\sigma \tilde{m} \right) \\ &+ \frac{1}{24} \left(D_\mu \tilde{m}^\dagger D_\nu \tilde{m} D_\rho \tilde{m}^\dagger D_\sigma \tilde{m} - D_\mu \tilde{m} D_\nu \tilde{m}^\dagger D_\rho \tilde{m} D_\sigma \tilde{m}^\dagger \right) \right\} \right] e^{-\tilde{m}^\dagger \tilde{m}} \end{split}$$

- This result seems very complicated...
- Can we write it more simple way?

Superconnection (3)

Application (5)

 Λ is UV cut-off

comes from

heat kernel

regularization.

3. Superconnection

Introduction (5)

Fujikawa method (4) Superconnection (3)

Application (5)

Superconnection (1)

- We define the superconnections for even and odd dimensions.
- This is made by Quillen, who is a mathematician, in 1985.

Even dimension

• Superconnection

$$\mathcal{A} = \left(\begin{array}{cc} A_R & iT^{\dagger} \\ iT & A_L \end{array}\right)$$

• Field strength

 $\mathcal{F} = d\mathcal{A} + \mathcal{A}^2$

$$\equiv \begin{pmatrix} F^R - T^{\dagger}T & iDT^{\dagger} \\ iDT & F^L - TT^{\dagger} \end{pmatrix}$$

 $\begin{aligned} A_{R} &: U(N_{f})_{R} \text{ gauge field (1-form)} \\ A_{L} &: U(N_{f})_{L} \text{ gauge field (1-form)} \\ T &: U(N_{f})_{L} \times U(N_{f})_{R} \text{ bifundamental scalar field (0-form)} \\ &\bullet \text{ Supertrace} \end{aligned}$

$$\operatorname{Str}\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \operatorname{tr}(a) - \operatorname{tr}(d)$$

Introduction (5)

Fujikawa method (4) Superconnection (1/3)

Application (5)

Superconnection (2)

Odd dimension

Superconnection

$$\mathcal{A} = \left(\begin{array}{cc} A & iT \\ iT & A \end{array}\right)$$

 $A: U(N_f)$ gauge field (1-form) $T: U(N_f)$ adjoint scalar field (0-form)

• Field strength $\mathcal{F} \equiv d\mathcal{A} + \mathcal{A}^2$

$$= \left(\begin{array}{cc} F - T^2 & iDT \\ iDT & F - T^2 \end{array} \right)$$

• Supertrace

Introduction (5)

$$\operatorname{Str}\left(\begin{array}{cc}a&b\\b&a\end{array}\right) = \sqrt{2i}\operatorname{tr}(b)$$

We apply superconnection to write the anomaly.

Application (5)

Rewrite the anomaly

• We can rewrite the $U(1)_V$ anomaly by superconnection.

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi}\right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str}\left[e^{\mathcal{F}}\right] \Big|_{d-\text{form}} \begin{array}{l} \mathcal{F} = d\mathcal{A} + \mathcal{A}^{2} \\ \equiv \left(\begin{array}{c} F^{R} - T^{\dagger}T & iDT^{\dagger} \\ iDT & F^{L} - TT^{\dagger} \end{array}\right) \\ \mathcal{F} \equiv \left(\begin{array}{c} F^{R} - \tilde{m}^{\dagger}\tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^{L} - \tilde{m}\tilde{m}^{\dagger} \end{array}\right) \\ \operatorname{Str}\left(\begin{array}{c} a & b \\ c & d \end{array}\right) = \operatorname{tr}(a) - \operatorname{tr}(d) \end{array}$$

• For odd dimension case, put $A_{\mu} = A_{\mu}^{R} = A_{\mu}^{L}$ and $m = m^{\dagger}$. Then, we get U(1) anomaly.

Superconnection (3/3)

• In odd dimension, the definition of Str is different from even dim case.

$$\operatorname{Str}\left(\begin{array}{cc}a&b\\b&a\end{array}\right) = \sqrt{2i}\operatorname{tr}(b)$$

Introduction (5)

• It is easy to check this for 4dim massless case.

Fujikawa method (4)

4. Application

Introduction (5)

Fujikawa method (4) Sup

Superconnection (3)

Application (5)

How can we apply the anomaly?

Mass means a wall for some cases!

- If a fermion is massive enough, it does not have any propagating mode.
 - If the mass depends on spacetime, fermions are massless in some regions, but they can be massive in the others.
 - That means fermions localize in some areas!
 →We can make fermions localize by the mass!
- We can make some systems to decide mass configurations.
 - Kink, vortex and general codimension case
 - With boundary
- We also discuss about some index theorems.
 - APS index theorem
 - Callias type index theorem

Introduction (5)

Fujikawa method (4) Superc

Superconnection (3)

Application (1/5)

Kink (1)

Mass kink for our set up

- For example, let's consider 5dim case.
- In this set up, "kink" means this mass configuration.

$$m(y) = uy \qquad \qquad y = x^5$$

- This "mass" diverges at $y \to \pm \infty$.
- 5dim fermions with $U(N_f)$ sym, and the mass depends on only y direction.
- The U(1) anomaly is,

$$\log \mathcal{J} = \underbrace{\pm \frac{i}{8\pi^2}}_{\text{Corresponds to the sign of } u.} \int \alpha(x) \text{tr} \left[F \wedge F \right]$$

• Recall 4dim $U(1)_V$ anomaly, Corres

$$\log \mathcal{J} = \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F^R \wedge F^R - F^L \wedge F^L \right]$$

m(y)

ν

(fifth direction)

Conclusion (1)

Introduction (5) Fujikawa method (4) Superconnection (3) Application (2/5)

Kink (2)

Introduction (5)

What is the meaning of the anomaly?

- 4dim Weyl fermions are localizing at y = 0.
 - When u > 0 corresponds to chirality + (righthanded) fermion, and u < 0 corresponds to chirality – (left-handed) fermion.

Domain wall fermion

• This Weyl fermions correspond to domain wall fermions.

Fujikawa method (4)

 But the regularization is different, so that I don't know the correspondence in detail.

Superconnection (3)

Vortex

Next, we check codim-2 case.

- Vortex is 2dim topological object.
- Let us consider 2r + 2 dim.
 - m(z) depends on 2 directions, and it is complex valued "mass".
 - This mass diverges at $|z| \rightarrow \infty$.
- For simplicity, we put $A_L = A_R$ in 2r + 2dim.

• The
$$U(1)_V$$
 anomaly is,

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi}\right)^r \int \alpha(x) \operatorname{Str}\left[\mathrm{e}^F\right]\Big|_{2r-\text{form}}$$

 $m(z) = uz \mathbf{1}_{N \times N}$

 $z = x^{\mu = 2r+1} - ix^{\mu = 2r+2}$

- This is $2r \dim U(1)$ anomaly with $U(N_f)_R$ gauge field.
 - If you want to get chirality (left-handed) result, use $m(\bar{z}) = u\bar{z}$, instead.

General defects

Introduction (5)

We can apply this formula to general codimension cases.

- When we think d dim system with n dim topological defects, we get d n dim U(1) anomalies.
 - If d n is odd, we get nothing because odd dim mass less fermions are anomaly-free.
 - The mass configurations for general codimension is,

$$m(x) = u \sum_{I=1}^{n} \Gamma^{I} x^{I} \qquad \begin{array}{c} \gamma^{I} = \Gamma^{I} & (n = odd) \\ \gamma^{I} = \begin{pmatrix} 0 & \Gamma^{I} \\ \Gamma^{I\dagger} & 0 \end{pmatrix} (n = even) \end{array}$$

- This results correspond to "tachyon condensation" in string theory.
 - We will discuss it in the next section.

Fujikawa method (4) Superconnection (3)

nection (3) Application (5/5)

(1) Conclusion

Conclusion

- We discussed about perturbative anomaly with spacetime dependent mass.
 - $U(N_f)_L \times U(N_f)_R$ chiral symmetry for even dimension
 - $U(N_f)$ flavor symmetry for odd dimension
 - We focused on U(1) anomalies for these systems.
- The anomaly can be written by superconnection.
- There are some applications.
 - Kink, vortex, ...
 - With boundary
 - Index theorem

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi}\right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str} \left[e^{\mathcal{F}}\right] \Big|_{d-\text{form}}$$
$$\mathcal{F} \equiv \left(\begin{array}{c} F^{R} - \tilde{m}^{\dagger} \tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^{L} - \tilde{m} \tilde{m}^{\dagger} \end{array}\right)$$

Introduction (5) Fujikawa method (4) Superconnection (3)

Application (5)

Conclusion