'Anomaly' in current low-energy data

Strings and Fields 2021

August 26, 2021, online talk

Teppei Kitahara Nagoya University

Two types of 'Anomaly' in high-energy physics

1. Quantum anomaly

Measure in the path integral is changed by quantum corrections

Two types of 'Anomaly' in high-energy physics

1. Quantum anomaly

Measure in the path integral is changed by quantum corrections

2. Experimental anomaly (this talk)

Measurement is inconsistent with a theory prediction

Famous experimental anomaly 1

[Nobel Lecture, 2015, Kajita]

- From *slide* of Kajita [Super-Kamiokande collaboration], 1998
- "Atmospheric neutrino anomaly"
- = significant direction-dependence of μ neutrino

Neutrino oscillation and Neutrino mass.

Famous experimental anomaly 2

30

... what?

Famous experimental anomaly 2

- ³⁰ "Discovery of $K_L^0 \to \pi^+ \pi^-$ " immediately leads to "discovery of CP violation"
 - **BUT**, inconsistent with Weinberg-Salam theory

Kobayashi and Maskawa predicted charm, bottom and top quarks in 1973 before their discoveries

Third generation

Thus, 'anomaly' has provided us great breakthroughs!

An interesting side story (source: Prof. Hagiwara)

Even after the exp. paper was published, many theoretical researchers (except for Kobayashi and Maskawa) did not believe the experimental results, but believed CP-conserving theory. (I'm surprised to hear this)

Serious contradiction! Theorists want to investigate new physics, but at the same time want to maintain "SM"

Why does this contradiction happen?

Statistical fluctuation

Let us consider **1,000,000** different experiments

2,700 experiments will provide 3σ deviation

1 experiment will provide 5σ deviation (assuming Gaussian distribution)

How to distinguish 'real anomaly' from 'fake anomaly'?

Would-be better strategy is: 1, cross-checked by the second experiment

2, hidden theoretical correlation between several anomalies

A counter-example!

"750 GeV anomaly" had been observed by two different experiments. But, very unfortunately, both were just fluctuations, and disappeared.

[ATLAS-CONF-2015-081]

[CMS-PAS-EXO-15-004]

muon g-2 anomaly

The experimental ring at Fermilab

Definition: Magnetic Dipole Moment (g-2)

Details definitions

$$\mathcal{L} = -\frac{eQ_{\ell}}{8m_{\ell}}g_{\ell}\bar{\ell}\sigma_{\mu\nu}\ell F^{\mu\nu} =$$

$$\mathcal{L} = -\frac{eQ_{\ell}}{4m_{\ell}}\bar{\ell}\sigma_{\mu\nu}\ell F^{\mu\nu} - \frac{eQ_{\ell}}{4m_{\ell}}a_{\ell}\bar{\ell}\sigma_{\mu\nu}\ell F^{\mu\nu} = -\frac{eQ_{\ell}}{8m_{\ell}}(2+2a_{\ell})\bar{\ell}\sigma_{\mu\nu}\ell F^{\mu\nu}$$

Equation of motion

Dirac equation: $\mathcal{L} = \overline{\ell}(i\not D - m_\ell)\ell$ tree level " $F_1(0)$ " radiative corrections " $F_2(0)$ "

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

magnetic field four-vector:

$$B_{\mu} = -\frac{1}{2m_{\ell}} \epsilon_{\mu\nu\rho\sigma} p_{\ell}^{\nu} F^{\rho\sigma}$$

$$-\frac{eQ_{\ell}}{2m_{\ell}}g_{\ell}\bar{\ell}(S^{\mu}B_{\mu})\ell$$

$$\frac{eQ_{\ell}}{2m_{\ell}}g_{\ell}\vec{S}\cdot\vec{B} = -\vec{\mu}_{\ell}\cdot\vec{B}$$

spin-magnetic interaction

spin operator:

$$S_{\mu} = \frac{1}{2m_{\ell}} \epsilon_{\mu\nu\rho\sigma} p_{\ell}^{\nu} J^{\rho\sigma}$$

$$J^{\rho\sigma} = \frac{i}{4} \left[\gamma^{\mu} \right]$$

spin magnetic moment:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{eQ_{\ell}}{2m_{\ell}} \vec{S}$$

$$g_{\ell} = 2 + 2a_{\ell}$$
$$g_{\ell} = 2 + 2a_{\ell}$$
$$g_{\ell} = \frac{g_{\ell} - 2}{2}$$

Muon g-2

Theory (four g-2 contributions)

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Exp.

BNL '97-'01

FNAL ongoing

J-PARC near future

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

New physics models

https://publicdomainq.net/

Naive NP energy scale

Muon g-2 anomaly implies that NP mass scale is around the electroweak scale.

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{BNL}+\text{FNAL}} - a_{\mu}^{\text{SM}} = (25)$$
$$= \frac{m_{\mu}^2}{16\pi^2} \frac{g_{\text{NP}}^2}{M_{\text{NP}}^2}$$

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

 $(5.1 \pm 5.9) \times 10^{-10} (4.2\sigma)$

 $M_{\rm NP} \sim g_{\rm NP} \times 150 \,{\rm GeV}$

'Anomaly' in current low-energy data **Teppei Kitahara**: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Point: MeV scale NP search is difficult at the LHC because of so much QCD background noise

New physics interpretations

NP type	diagrams	mass range	probe
Supersymmtery	Ĩ, Ĩ, Ŵ. B, Ĥ,	200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$
Leptoquark	LQ ~	1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$
Vector-like lepton	N.8.W ~	100 GeV \sim 1 TeV	$h \to \mu^+ \mu^-$
Scalar extensions	A TA	10~100 GeV (A), 150~300 GeV (H)	$Z \to \tau^+ \tau^-$ $pp \to HA \to 4\tau$
Axion-like particle		40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$
U(1) Lμ-Lτ	z' s	10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K^- \rightarrow \mu^- \bar{\nu} Z'$

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

New physics interpretations

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

mass range	probe	
200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$h \to \mu^+ \mu^-$	
10~100 GeV (A),	$Z \to \tau^+ \tau^-$	
150~300 GeV (H)	$pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K^- \rightarrow \mu^- \bar{\nu} Z'$	

An example: $\mathcal{N} = 1$ Supersymmetric Interpretation

Crucial point: SM possesses one Higgs-doublet, while the minimal SUSY requires two Higgs/Higgsino-٠ doublet. Holomorphy of superpotential and gauge anomaly cancelation

So, the electroweak symmetry breaking must occur by two Higgs vevs

٠

$$\begin{pmatrix} H^+ \\ v + H^0 \end{pmatrix}_{\rm SM}$$

Then, $\tan \beta \equiv v_u / v_d$ is a free parameter, whe

'Anomaly' in current low-energy data **Teppei Kitahara**: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

$$\begin{pmatrix} H_u^+ \\ v_u + H_u^0 \end{pmatrix}, \begin{pmatrix} v_d + H_d^0 \\ H^- \end{pmatrix}_{\text{SUSY}}$$

+ two Higgsino doublets

ere
$$v_{\rm SM} = \sqrt{v_u^2 + v_d^2}$$

"tan β enhancement"

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

$\mathcal{N} = 1$ Supersymmetric Interpretation

- Four types of one-loop diagrams are responsible to explain the anomaly:
 - 1, WHL scenario 2, BLR scenario

These diagrams are proportional to $\tan \beta = 1 \sim 60 \rightarrow$ effectively large $g_{\rm NP} \rightarrow$ TeV scale NP

1, WHL and 2, BLR \rightarrow next slide

3, BHL and 4, BHR are constrained from dark matter direct detection (XENON1T experiment) [Endo, Hamaguchi, Iwamoto, Yanagi 1704.05287; Baum, Carena, Shah, Wagner 2104.03302]

'Anomaly' in current low-energy data **Teppei Kitahara**: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

$\mathcal{N} = 1$ SUSY example [Endo, Hamaguchi, Iwamoto, TK, 2104.03217]

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

New physics interpretations

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

mass range	probe	
200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to (h\widetilde{\chi}_{1}^{0}) \left(W^{\pm}\widetilde{\chi}_{1}^{0} \right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$h \to \mu^+ \mu^-$	
 10~100 GeV (A),	$Z \to \tau^+ \tau^-$	
150~300 GeV (H)	$pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K^- \rightarrow \mu^- \bar{\nu} Z'$	

Novel theoretical finding: Violation of Wilsonian (1/2)

- from "total derivative phenomenon"
- mass spectrum! The reason is that the loop function is "total derivative"

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Arkani-Hamed, Harigaya, 2106.01373]

Using a vector-like lepton model, the authors discover "violation of Wilsonian naturalness" following

Two vector-like leptons are introduced: SU(2)_L doublet L and singlet S (motivation: $h\mu^+\mu^-$ is SM-like)

Dimension-six one-loop contributions are canceled out without symmetry reason, independently of

Novel theoretical finding: Violation of Wilsonian (2/2)

Excluded by LHC search

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Arkani-Hamed, Harigaya, 2106.01373]

$$Z \to \mu^+ \mu^-$$

$$W \to \mu \bar{\nu}$$

 $\tau \to \mu \nu \bar{\nu}$

Excluded by electroweak fit

http://www.wallcoo.net/

What is flavor physics?

Quarks can not become asymptotic field, but must be contained in hadron=meson or baryon **b** ... **B** meson, **c** ... **D** meson, **s** ... **K** meson, or heavy baryons.

'Anomaly' in current low-energy data **Teppei Kitahara**: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

B physics

Main stream of the flavor physics. There are three big experiments for B physics.

 \bullet

٠

LHCK

 $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B}$ $10^{10}B\bar{B}$ per year

 $pp \rightarrow b\bar{b} \rightarrow B\bar{B}$ $10^{12}b\bar{b}$ per year

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

- Rich phenomenology; CKM, FCNC, CP violation, tau lepton, LFU, Hadron spectroscopy, dark sector
 - BaBar experiment @ **SLAC**, physics run was finished at 2008 $e^+e^- \rightarrow \Upsilon \rightarrow B\bar{B}$ 10⁸ $B\bar{B}$ per year
 - Belle and Belle II experiments @ KEK, Belle II started at 2019
 - LHCb experiment @ CERN, Run 1 and 2 were done, Run 3 will start at 2022

CKM matrix

CKM matrix arises the relative misalignment between the Yukawa matrices and gauge interactions:

$$\mathcal{L} \supset -\frac{g}{\sqrt{2}} \bar{u}_L^i \gamma^\mu d_L^i W^+_\mu \stackrel{\text{mass-}}{\longrightarrow}$$

Wolfenstein parametrization

K physics *B* physics

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Parameter A is determined by B physics

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

 $\xrightarrow{s-\text{eigenbasis}} - \frac{g}{\sqrt{2}} \bar{u}_L^i \gamma^\mu (U_u^\dagger U_d)^{ij} d_L^j W_\mu^+$ $= -\frac{g}{\sqrt{2}} \bar{u}_L^i \gamma^\mu V_{\text{CKM}}^{ij} d_L^j W_\mu^+$

Measurements of V_{cb}

For determination of $|V_{cb}|$, one measures branching ratios of B-meson semileptonic decay modes, and compare TH

- Hashimoto, PRL '20]

Many data with different schemes. One can use lattice simulations.

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Semileptonic mode $\ell = e, \mu$ Hadron states X_c (=D^{**}, D^{*}, D, D π , **D**ππ...)

It corresponds to quark level decay rate ($b \rightarrow c \ell \nu$) + α_s , $\Lambda_{\rm OCD}/m_b$ corrections

Last data in 2010 \rightarrow Belle II result coming soon; No lattice \rightarrow the first lattice study [Gambino,

~3σ tension between inclusive vs. exclusive determinations of V_{cb} and Vub

NP interpretation is difficult [Iguro, Watanabe, 2004.10208]

[HFLAV averages 2019, based on CLN]

 $B \to D\ell\nu$

Average of the exclusive determinations

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Lepton flavor universality (LFU)

Gauge symmetry predicts lepton flavor universal phenomena

- \bullet hadronization, which eventually violates the lepton flavor universality
- universality [de Boer, TK, Nisandzic, PRL '18; Isidori, Nabeebaccus, Zwicky, '20]

'Anomaly' in current low-energy data **Teppei Kitahara**: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Charged lepton mass changes kinematics and modifies scalar form factors in the

Long-distance QED correction (beyond PHOTOS) could violate the lepton flavor

LFU observable R(D)

SM

 $\mathcal{B}(B \to D\ell\nu) = 2\%, \ \mathcal{B}(B \to D^*\ell\nu) = 5\%,$

 $\frac{\mathsf{BR}(B \to D^{(*)} \bar{\tau} \nu_{\tau})}{\mathsf{BR}(B \to D^{(*)} \bar{\ell} \nu_{\ell})}$

V_{cb} dependence is dropped

NP, e.g., Leptoquark

[HFLAV averages 2019]

 $3.8 \sigma \rightarrow \rightarrow \rightarrow 3.1 \sigma \rightarrow \rightarrow \rightarrow \sim 4 \sigma$ tension New Belle data '19 New SM '20

Average of the experimental data

Soft-photon QED corrections could change these tensions

It was shown that the QED correction violates LFU at a few % level

[de Boer, TK, Nisandzic, PRL '18]

[Bordone, Jung, van Dyk, '20; Iguro Watanabe, '20]

EFT global fit

Relevant effective Hamiltonian

 $\begin{aligned} \mathcal{H}_{\text{eff}} &= 2\sqrt{2}G_F V_{cb} \left[(1+C_V^L) O_V^L + C_S^R O_S^R \right. \\ &+ C_S^L O_S^L + C_T O_T \right], \\ O_V^L &= \left(\overline{c} \gamma^\mu P_L b \right) \left(\overline{\tau} \gamma_\mu P_L \nu_\tau \right) \end{aligned}$

$$O_{S}^{R} = (\overline{c}P_{R}b)(\overline{\tau}P_{L}\nu_{\tau})$$
$$O_{S}^{L} = (\overline{c}P_{L}b)(\overline{\tau}P_{L}\nu_{\tau})$$
$$O_{T} = (\overline{c}\sigma^{\mu\nu}P_{L}b)(\overline{\tau}\sigma_{\mu\nu}P_{L}\nu_{\tau})$$

Collider bound

Bound from $BR(B_c^+ \rightarrow \tau^+ \nu) < 60\%$

10% bound is too stringent

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic, '19]

Single particle interpretations

One WC scenarios

W′,

 C_V^L $SU(2)_L$ -singlet vector LeptoQuark (LQ), ($C_V^L, C_S^L = -4C_T$) $SU(2)_L$ -singlet scalar LQ (S_1) $SU(2)_{L}$ -triplet and/or -singlet scalar LQ

 $C_{\rm S}^R$

 $C_{\rm S}^L$

- Charged Higgs, $SU(2)_{L}$ -doublet vector LQ (V_{2})
- Charged Higgs with generic flavour structure

- $C_S^L = 4C_T$ scalar SU(2)_L-doublet LQ (R_2) ("4" is modified by RG evolution)
 - There are so many detailed studies for **each** single particle scenarios

There are also "two LQs" scenarios

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Two WCs scenarios

- (C_V^L, C_S^R) SU(2)_L-singlet vector LQ (U_1)
- (C_S^R, C_S^L)
 - Charged Higgs with generic flavour structure
- $(\operatorname{Re}[C_{S}^{L} = 4C_{T}], \\\operatorname{Im}[C_{S}^{L} = 4C_{T}])$ scalar SU(2)_L-doublet LQ (R_{2})

Model-independent prediction: $R(\Lambda_c)$

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

 $\mathcal{R}(\Lambda_c) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_{\ell})} \quad @ LHCb \ [Bernlochner, Liegt, Robinson, Sutcliffe, PRL '18]$

 $SU(2)_L$ -singlet vector LQ (U_1) $SU(2)_L$ -doublet scalar LQ (R_2)

Similar ellipses!

 $R(\Lambda_c) = 0.38 \pm 0.01_{R(D^{(*)})} \pm 0.01_{\rm FF}$

Crosscheck of $R(D^{(*)})$ **anomaly** is possible by $R(\Lambda_c)$

There is no data yet, but soon?

 $R(\Lambda_c)_{\rm SM} = 0.324 \pm 0.004$ [Blanke, Crivellin, TK, Moscati, Nierste, Nisandzic, '19]

39

LQ can be probed by LHC directly and indirectly Vector leptoquark scenario [Cornella et al, 2103.16558]

The direct bound comes from high- p_T tails in mono- τ searches

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

LQ vs LHC

[Greljo, Camalich, Ruiz-Alvarez PRL '19; Marzocca, Min, Son, '20; Iguro, Takeuchi, Watanabe 2011.02486]

Current bounds:

EFT:
$$|C_V^L| < 0.32$$
, $|C_S^{L(R)}| < 0.55$, $|C_T| < 0.17$
2TeV LQ: $|C_V^L| < 0.42$, $|C_S^{L(R)}| < 0.8$, $|C_T| < 0.35$

LFU observable R(K)

SM

 $\mathcal{B}(B \to K\ell^+\ell^-) = \mathcal{O}(10^{-7}), \ \mathcal{B}(B \to K^*\ell^+\ell^-) = \mathcal{O}(10^{-6})$

 $R(K^{(*)}) = \frac{\mathsf{BR}(B \to K^{(*)}\mu^+\mu^-)}{\mathsf{BR}(B \to K^{(*)}e^+e^-)}$

NP, e.g., Z' boson

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[LHCb, 2003.04831]

Angular distribution of $\Lambda_b \to \Lambda \mu^+ \mu^-$ [K₆] is also deviated at 2.6 σ [LHCb, 1808.00264]

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

[LHCb, 2003.04831]

2.5 σ, 2.9 σ

R(K) in Moriond2021

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

Last month, R(K) was confirmed by using full Run 2 data [LHCb Moriond2021, 2103.11769]

[Kriewald, Hat, Orloff, Teixeira, 2104.00015]

Relevant effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i C_i \mathcal{O}_i$$
$$\mathcal{O}_7 = (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}$$
$$\mathcal{O}_9 = (\bar{s}\gamma_\mu P_L b) \left(\bar{\ell}\gamma^\mu \ell\right)$$
$$\mathcal{O}_{10} = (\bar{s}\gamma_\mu P_L b) \left(\bar{\ell}\gamma^\mu \gamma_5 \ell\right)$$

Including the *look-elsewhere effect* and conservative theoretical error from charm loops, the global significance of $b \rightarrow s\ell^+\ell^-$ is 3.9 σ [Lancierini, Isidori, Owen, Serra, 2104.05631]

 $\Lambda_{\rm NP} = \mathcal{O}(10) {\rm TeV}$

All deviations in $b \rightarrow s\mu^+\mu^-$ are the same direction

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

SMEFT global fit

[Geng et al, 2103.12738; Altmannshofer et al, 2103.13370; Cornella et al, 2103.16558; Alguero et al, 2104.08921; Hurth et al, 2104.10058]

[Kriewald, Hat, Orloff, Teixeira, 2104.00015]

muon g-2 anomaly

= ?

(B + muon g-2) anomaly =?

Refs	particles	solve	mass scale
Arcadi et al, 2104.03228	Vector-like fermion + scalars	muon g-2, R(K), DM	$0.1 \sim 1 \text{ TeV VL}$
Nomura, Okada 2104.03248	Scalar LeptoQuark (LQ)	muon g-2, R(K), $m_{ m v}$	\sim 5 TeV LQ
Bhattacharya et al, 2104.03947	ALP	muon g-2, Kπ puzzle	\sim 140 MeV ALP
Marzocca, Trifinopoulos, 2104.05730	Scalar LQ + scalar	muon g-2, R(K), R(D), CAA	\sim 5 TeV LQ
Du et al, 2104.05685; Ban et al, 2104.06656	Vector LQ	muon g-2, R(K), R(D)	\sim 2 TeV LQ
	•		

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

•

Summary of anomalies —fake or real? —

4.2σ?

2.2σ?

~3σ

SUSY? Leptoquark? Axion-like particle? Z'? Vector-like fermion?

'Anomaly' in current low-energy data

Teppei Kitahara: Nagoya University, Strings and Fields 2021, August 26, 2021, online talk

4.2σ?

~4σ

