Higher-form symmetry and eigenstate thermalization hypothesis

Osamu Fukushima

Kyoto University

Aug. 8, 2023 場の理論と弦理論, 基礎物理学研究所

Based on arXiv: 2305.04984 [O.F., Ryusuke Hamazaki]

• Thermalization (Relaxation to thermal equilibrium): Transition from <u>atypical states</u> to <u>typical states</u> $\langle \psi | \mathcal{O} | \psi \rangle \neq \operatorname{tr}(\mathcal{O} \rho_{\operatorname{thermal}}) \quad \langle \psi | \mathcal{O} | \psi \rangle = \operatorname{tr}(\mathcal{O} \rho_{\operatorname{thermal}})$

Universal property in (quantum/classical) many-body systems

However, it is quite nontrivial:

- what kind of systems and which initial states relax to equilibrium,
- what statistical ensembles are realized, if the system thermalizes.

Thermalization process highly depends on datailed data in general.

Motivation in this talk —

Nontrivial thermalization process in quantum field theories

- How does higher-form symmetry affect thermalization? Consequence for real-time evolution
- What kind of observables distinguish nontrivial thermal equilibriums in the presence of non-local conserved quantities(*)?

It is well-known that local conserved quatities leads to nontrivial thermal ensembles.

Thermalization in isloated quantum systems:

Quantum systems without diffusion exhibit unitary time evolutions. \Rightarrow Non-thermal states remain non-thermal after time evolution?

• A way to understand this point: consider expectation values of operators

$$\lim_{t \to \infty} \overline{\langle \psi(t) | \mathcal{O} | \psi(t) \rangle} = \operatorname{tr}(\mathcal{O} \rho_{\text{thermal}})$$

Time average
Time average
at thermal equilibrium

Sufficient condition:

(strong) Eigenstate Thermalization Hypothesis (ETH) [Deutsch, Phys. Rev. A 43(1991); Srednicki, Phys. Rev. E 50(1994)...]

All eigenstates are thermal.

Our work

- If a (d + 1)-dimensional QFT with a p-form symmetry satisfies some reasonable conditions(*), we showed:
 (d-p)-dimensional observable detects the ETH-violation.
 - The system does not necessarily relax to the standard canonical ensemble.
- We numerically demonstrated the argument above in the case of (2+1)-dimensional Z₂ lattice gauge theory

In particular, the resulting thermal equilibrium is described by a Generalized Gibbs ensemble(GGE) taking account of the \mathbb{Z}_2 1-form symmetry.

Note: The (2+1)-dimensional \mathbb{Z}_2 gauge theory enjoys the electric \mathbb{Z}_2 1-form symmetry, and satisfies the conditions(*).

Contents

- Introduction (4)
- Eigenstate thermalization hypothesis (2)
- Higher-form symmetry (2)
- ETH breaking by higher-form symmetry (3)
- ETH breaking in \mathbb{Z}_2 lattice gauge theory (4)
- Generalized Gibbs ensemble for higher-form symmetry (3)
- Summary and outlook (1)

Eigenstate thermalization hypothesis

In general, the followings depend on the detail of the system and initial states: ①Does every initial state relax to some stationary state?

$$\delta \mathcal{O}^2 \coloneqq \overline{\langle \mathcal{O} \rangle^2} - \left(\overline{\langle \mathcal{O} \rangle} \right)^2 \to 0 \ \text{as} \ t \to \infty$$

②If so, is the long-time average described by a thermal ensemble?

$$\overline{\langle \mathcal{O} \rangle} \simeq \langle \mathcal{O} \rangle_{\rm eq}$$

(1) ⇐ non-diagonal ETH
 (2) ⇐ diagonal ETH

* We use the terminology "ETH", referring to diagonal ETH in this talk.

Once you assume the ETH, thermalization occurs regardless of the initial conditions...

Eigenstate thermalization hypothesis

Let $|\psi(0)\rangle = \sum_{\alpha} c_{\alpha} |E_{\alpha}\rangle$ $(H|E_{\alpha}\rangle = E_{\alpha}|E_{\alpha}\rangle$: energy eigenstates), (No degeneracy for the Hamiltonian is assumed.)

$$\overline{\langle \mathcal{O} \rangle} = \sum_{\alpha} |c_{\alpha}|^2 \langle E_{\alpha} | \mathcal{O} | E_{\alpha} \rangle$$

(Diagonal) ETH $\langle E_{\alpha} | \mathcal{O} | E_{\alpha} \rangle (E) \simeq \operatorname{tr}(\mathcal{O} \rho_{\operatorname{micro canonical}}(E))$

e.g.) Hard core boson: blue: integrable \implies ETH \leftthreetimes red: non-integrable \implies ETH \checkmark

Higher-form symmetry

Topological operator

p-form symmetry is characterized by

a codimension-(p + 1) (unitary) symmetry operator.

In (d + 1)-dimensional QFTs,

(*d*

$$\langle U_{\alpha}(C)W(\tilde{C}) \dots \rangle = e^{i\alpha q} \langle W(\tilde{C}) \dots \rangle$$

Symmetry operator: Charged operator:
 $(d-p)$ -dimensional p-dimensional

 $= e^{i\alpha q}$

Correlation functions are invariant under the continuous deformation of C.

Higher-form symmetry has a G group structure (G: abelian group)

$$U_{\alpha}(C)U_{\beta}(C) = U_{\alpha+\beta}(C)$$

Higher-form symmetry

Action on Hilbert space

• We consider actions of $U_{\alpha}(C)$ and $W(\tilde{C})$ on the Hilbert space (space-like symmetry [Goranta-Lam-Seiberg-Shao, 2201.10589]):

Topological nature of $U_{\alpha} \implies [H, U_{\alpha}] = 0$

ETH breaking by higher-form symmetry 10/20

Setup

We consider a (d + 1)-dimensional QFT on a spacetime manifold $\mathcal{M} \times \mathbb{R}$. The Hamiltonian *H* is non-degenerate.

The system exhibits a *p*-form symmetry with the symmetry operator $U_{\alpha}(C)$.

Main claim

The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied.

 $\gamma, \overline{\gamma}: (d - p)$ -d manifold with boundary, s.t. $\gamma \cup \overline{\gamma} = \tilde{C} \subset \mathcal{M}$

The result implies that the operator $U(\gamma)/U(\bar{\gamma})$ may not relax to the standard canonical ensemble.

ETH breaking by higher-form symmetry 11/20

Main claim

The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied. $(\gamma \cup \bar{\gamma} = \tilde{C} \subset \mathcal{M})$

Assumptions:

i) The operator $U_{\alpha}(\tilde{C})$ can be decomposed as $U_{\alpha}(\tilde{C}) = U_{\alpha}(\gamma)U_{\alpha}(\bar{\gamma})$.

ii) There exist energy eigenstates $|E_n\rangle$, $|E_m\rangle$, with E_n , $E_m \in [E, \delta E]$, s.t. $\langle E_n | U_\alpha(\tilde{C}) | E_n \rangle \neq \langle E_m | U_\alpha(\tilde{C}) | E_m \rangle$.

iii) The microcanonical average $\langle U_{\alpha}(\tilde{C}) \rangle_{\rm mc}^{\delta E} \neq 0$.

ETH breaking by higher-form symmetry 12/20

Comments

• The result is especially nontrivial for $p \ge 1$, since the ETH-violation is not due to the smallness of "bath."

• Generalization is possible: $A(g)U_{\alpha}(\gamma)$ or $A(g)^{\dagger}U_{\alpha}(\overline{\gamma})$ violates the ETH.

A(g): operator defined on a region $g(\subset \mathcal{M})$ with $g \cap \overline{\gamma} = \phi$

 \rightarrow Many ETH-violatin operators for a fixed γ .

ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 13/20

Model (2+1)-dimensional \mathbb{Z}_2 lattice gauge theory

With \mathbb{Z}_2 electric 1-form symmetry

The space manifold $\mathcal M$ is 2-torus T^2

Hamiltonian [Fradkin-Susskind, Phys. Rev. D, 17(1978)]

$$H_{\mathbb{Z}_2} = -\sum_{p \in \text{plaquette}} \lambda_p B_p - \sum_{b \in \text{link}} \lambda_b \sigma_b^x$$

Physical Hilbert space

Gauss law constraint:

$$Q_v := \prod_{\substack{b: \text{ spatial link} \ b
i v}} \sigma_b^{\chi} = 1$$

Constraint on physical Hilbert space

Q_v				
		B_p		

ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 14/20

• Wilson line \leftarrow Charged object under the \mathbb{Z}_2 1-form symmetry

$$W(C) \coloneqq \prod_{b \in C} \sigma_b^Z \qquad \Rightarrow W(C)^2 = 1$$

• Symmetry operator ('t Hooft operator)

$$U(C^*) \coloneqq \prod_{b^* \in C^*} \sigma_{b^*}^{\chi} \qquad \Rightarrow U(C^*)^2 = 1$$

ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 15/20

Symmetry operator can have endpoints

$$U(\overline{\gamma_{x}}) \coloneqq \prod_{b^{*} \in \overline{\gamma_{x}}} \sigma_{b^{*}}^{x} \qquad \overline{\gamma_{x}} : \text{ open curve}$$
$$\gamma_{x} \cup \overline{\gamma_{x}} = C_{x} : x \text{-cy}$$

Numrtical calculation for 5×3 lattice

ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 16/20

Other operators

Generalized Gibbs ensemble for higher-form symmetry

• What is Generalized Gibbs ensemble(GGE)? GGE is originally introduced for integrable spin chain. [Pozsgay, 1304.5374; Ilievski et al., 1507.02993;...]

$$\langle \mathcal{O} \rangle_{\text{GGE}} = \text{tr } \mathcal{O} \rho(\beta, \{\lambda_i\})$$

$$\rho(\beta, \{\lambda_i\}) \coloneqq e^{-\beta H - \sum_i \lambda_i Q_i} / Z(\beta, \{\lambda_i\}),$$

$$Z(\beta, \{\lambda_i\}) \coloneqq \text{tr } e^{-\beta H - \sum_i \lambda_i Q_i}$$

 Q_i : (quasi-)local conserved quantity λ_i : "chemical potential"

For integrable systems, GGE is realized as a thermal equilibrium.

Generalized Gibbs ensemble for higher-form symmetry

• GGE for \mathbb{Z}_2 gauge theory

$$\langle \mathcal{O} \rangle_{\text{GGE}} = \text{tr } \mathcal{O} \rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2}$$

$$\rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2} \coloneqq e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}} / Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2},$$

$$Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2} \coloneqq \text{tr } e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}}$$

$$P_x = \frac{1 - U(C_x)}{2}: \text{ projection to the sector } U(C_x) = 1$$

To specify $\langle P_x H_{\mathbb{Z}_2} P_x \rangle$, $\langle (1 - P_x) H_{\mathbb{Z}_2} (1 - P_x) \rangle$, and $\langle P_x \rangle$ for a given state, three chemical potentials are needed.

Generalized Gibbs ensemble for higher-form symmetry

• Numerical analysis of time-evolution

The thermal ensemble for \mathbb{Z}_2 gauge theory is given by GGE.

Initial state: eigenstate of $U(\gamma_x) / U(\overline{\gamma_x}) = 1$, with $E \in [-5.0, -3.0]$.

Summary and outlook

- Higher-form symmetry affects thermalization.
- Systems with a discrete symmetry also relax to the GGE.

In the case of \mathbb{Z}_2 lattice gauge theory

- The ETH for dipole-exciting operator $U(\bar{\gamma})$ is broken.
- Thermal equilibrium is given by the GGE taking account of \mathbb{Z}_2 1-form symmtry rather than the canonical ensemble.

1-dimensional

Outlook

- Effect on entanglement spectrum
- Implication to finite-temperature phase transition
- Demonstration for other QFTs

 \mathbb{Z}_N gauge theory, U(1) gauge theory, SU(N) gauge theory...

superconducter, super fluid...

Etc...