Eclectic Flavor Symmetry in Type IIB String Landscape

Takafumi Kai (Kyushu University)

"場の理論と弦理論 2023", August 4, 2023 (Online)

Based on arXiv:2305.19155

Collaborators: K. Ishiguro (KEK), H. Okada (Kyushu U), H. Otsuka (Kyushu U)

Summary

• Eclectic flavor symmetry

<u>A hybrid picture</u> where the traditional flavor group and the finite modular group combine to a generalized flavor group (and CP)

Nilles, Ramos-Sánchez, Vaundrevange 2001.01736

Top-down model building motivated by string theory

This symmetry potentially incorporates a different flavor structure for quark- and lepton-sector of the Standard Model

Summary

By introducing flavor symmetries, which are $A_4, S_4, ...$ and modular flavor symmetry, into the Standard Model, we can get clues to explain the flavor structure.

The traditional flavor, modular flavor and CP symmetries are uniformly described in the context of eclectic flavor symmetry $(G_{\text{flavor}} \rtimes G_{\text{modular}}) \rtimes G_{\text{CP}}$

A part of eclectic flavor symmetry would control the flavor structure of 4D higher-dimensional operators. (at \mathbb{Z}_3 fixed point)

Introduction

Flavor structure

The quark and lepton mixing matrices have been obtained with good accuracy by various experiments. (CKM, PMNS)

\rightarrow The origin of these structures remains a mystery.

TBM has been proposed as the structure of PMNS, and the structure is obtained from the non-abelian discrete symmetries ($A_4, S_4, ...$).

We can explain flavor structure by introducing flavor symmetries, which are $A_4, S_4, ...$, into the Standard Model.

Introduction

The origin of the discrete symmetry could be the modular symmetry arising from the torus compactification of the extra dimension.

→ Yukawa couplings are known to be described by wave functions in compact spaces.

The complex structure moduli τ that determine the geometry of the torus have $SL(2,\mathbb{Z})$ symmetry.

Yukawa coupling $Y_{ijk}(\tau) =$

wave functions

We discuss the unification of flavor, modular and CP symmetries in Type IIB chiral 4D flux vacua.

 $p,q,s,t,\in\mathbb{Z}, \qquad pt-qs=1$

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$S^{4} = (ST)^{3} = I$$

Modular symmetry

• complex structure moduli: au

 $T: \ \tau \to \tau + 1$

$$T^2$$
 with magnetic fluxes

zero-mode wave functions

$$\psi_{\pm}^{\widetilde{\alpha},|M|}(z+\zeta,\tau) = \left(\frac{|M|}{A^2}\right)^{1/4} e^{i\pi|M|(z+\zeta)\frac{Im(z+\zeta)}{Im\tau}\vartheta} \left[\frac{\widetilde{\alpha}}{M}\right] (|M|(z+\zeta),|M|\tau),$$

$$\begin{array}{ll} \textbf{S transformation} & \textbf{automorphy factor} \\ \psi^{\widetilde{\alpha},|M|}(z+\zeta,\tau) \rightarrow \psi^{\widetilde{\alpha},|M|} \left(-\frac{z+\zeta}{\tau}, -\frac{1}{\tau} \right) = (-\tau)^{1/2} e^{i\pi/4} \sum_{\widetilde{\beta}=0}^{|M|-1} \frac{1}{\sqrt{|M|}} e^{2\pi i \frac{\widetilde{\alpha}\widetilde{\beta}}{|M|}} \psi^{\widetilde{\beta},|M|}(z+\zeta,\tau), \\ \textbf{T transformation} & = \rho(S) \end{array}$$

$$\psi^{\widetilde{\alpha},|M|}(z+\zeta,\tau) \to \psi^{\widetilde{\alpha},|M|}(z+\zeta,\tau+1) = e^{i\pi|M|\frac{Im(z+\zeta)}{2Im\tau}} \sum_{\widetilde{\beta}=0}^{|M|-1} e^{i\pi\frac{\widetilde{\alpha}^2}{|M|}} \delta_{\widetilde{\alpha},\widetilde{\beta}} \psi^{\widetilde{\beta},|M|}(z+\zeta,\tau),$$
$$= \rho(T)$$

Metaplectic modular symmetry

Metaplectic modular group $Mp(2,\mathbb{Z}): \tilde{\Gamma}$

$$Mp(2,\mathbb{Z}) = \left\{ \tilde{\gamma} = \left(\gamma, \varphi(\gamma, \tau) \right) \middle| \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}), \quad \begin{array}{l} \text{automorphy factor} \\ \varphi(\gamma, \tau)^2 = (c\tau + d) \right\} \\ \text{Liu, Yao, Qu, Ding, 2007.13706} \\ Mp(2,\mathbb{Z})/Z_2^{\tilde{R}^2} \cong SL(2,\mathbb{Z}), \quad \tilde{S}^2 = \tilde{R}, \quad Z_2^{\tilde{R}^2} = \{1, \tilde{R}^2\} \end{array} \right\}$$

The principal congruence subgroup

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \middle| a \equiv d \equiv 1, \qquad b \equiv c \equiv 0 \pmod{N} \right\},$$

$$\widetilde{\Gamma}(4N) = \left\{ \tilde{\gamma} = (\gamma, \nu(\gamma)J_{1/2}(\gamma, \tau) \middle| \gamma \in \Gamma(4N) \right\},$$

$$(\nu(\gamma) = \left(\frac{c}{d}\right) : \text{the Kronecker symbol}, \quad \varphi(\gamma, \tau) = \pm J_{1/2}(\gamma, \tau))$$

The finite metaplectic modular groups are given by $\tilde{\Gamma}_{4N} \equiv \tilde{\Gamma}/\tilde{\Gamma}(4N)$.

Metaplectic modular symmetry

The generators of $\tilde{\Gamma}_{4N}$ satisfy the following relations.

$$\tilde{S}^2 = \tilde{R}, \qquad \left(\tilde{S}\tilde{T}\right)^3 = \tilde{R}^4 = \mathbb{I}, \qquad \tilde{T}\tilde{R} = \tilde{R}\tilde{T}, \qquad \tilde{T}^{4N} = \mathbb{I},$$

For N > 1, additional relations are required to ensure the finiteness. $\tilde{S}^5 \tilde{T}^6 \tilde{S} \tilde{T}^4 \tilde{S} \tilde{T}^2 \tilde{S} \tilde{T}^4 = \mathbb{I}, \quad \text{(for } N = 2\text{),}$

 $(\tilde{\Gamma}_8 \text{ is the discrete group of order 768})$

Representation matrix

 $\rho(\tilde{S})_{\tilde{\alpha}\tilde{\beta}} = -\frac{1}{\sqrt{|M|}} e^{i\pi \frac{3|M|+1}{4}} e^{2\pi i \frac{\tilde{\alpha}\tilde{\beta}}{|M|}}, \qquad \rho(\tilde{T})_{\tilde{\alpha}\tilde{\beta}} = e^{i\pi \,\tilde{\alpha} \left(\frac{\tilde{\alpha}}{|M|}+1\right)} \delta_{\tilde{\alpha},\tilde{\beta}}$

(Additional factor $e^{3i\pi |M|/4}$ ($I_{ab} + I_{bc} + I_{ca} = 0$)) Almumin, Chen, Knapp-Pérez, Ramos-Sánchez, Ratz, Shukla 2102.11286

Eclectic Flavor Symmetry

The eclectic flavor group is a nontrivial product of a traditional flavor group, a finite modular group and a CP-like transformation.

Define an operation for a direct product as a set. $(N \times H)$

• direct product
$$(G = N \times H)$$

(n,h)(n',h') = (nn',hh'), for $n,n' \in N,$ $h,h' \in H$

• <u>semi direct product</u> ($G = N \rtimes H$)

 $(n,h)(n',h') = (nhn'h^{-1},hh'), \quad \text{for } n,n' \in N, \quad h,h' \in H$

By checking whether each generator is commutative or not, we can determine what kind of group product it is.

Pati-Salam-like model on $T^6/Z_2 \times Z'_2$

D-brane configuration leading to Pati-Salam-like model.

	N_{lpha}	Gauge group	(n^1_{lpha},m^1_{lpha})	(n_{lpha}^2,m_{lpha}^2)	$(ilde{n}^3_lpha,m^3_lpha)$	
	$N_a = 8$	$U(4)_C$	(0, -1)	(1, 1)	(1/2, 1)	
	$N_b = 4$	$U(2)_L$	(g,1)	(1,0)	(1/2, -1)	
	$N_c = 4$	$U(2)_R$	(g,-1)	(0,1)	(1/2, -1)	
m_a^i : wrapping number on $(T^2)_i$ n_a^i : units of magnetic flux on $(T^2)_i$ $\tilde{n}_{\alpha}^3 = n_{\alpha}^3 + \frac{1}{2}m_{\alpha}^3$						

The magnetic flux g on the first torus determines the generations of quark and lepton chiral multiplets in the visible sector

Pati-Salam-like model on
$$T^6/Z_2 \times Z'_2$$

 $\mathbb{Z}_2 \times \mathbb{Z}'_2$ projection

$$\begin{aligned} \theta \colon \psi(z_1, z_2, z_3) &\to s_1 s_2 \psi(-z_1, -z_2, z_3), \\ \theta \colon \psi(z_1, z_2, z_3) &\to s_2 s_3 \psi(z_1, -z_2, -z_3), \end{aligned} (s_i = \text{sign}(I_{ab}^i)) \end{aligned}$$

The number of \mathbb{Z}_2 -even and -odd zero modes

$$I_{even}^{i} = \frac{1}{2} (I_{ab}^{i} + s_{i}f_{i}), \qquad I_{odd}^{i} = \frac{1}{2} (I_{ab}^{i} - s_{i}f_{i}),$$
$$(f_{i} = 1 \text{ for odd}, f_{i} = 2 \text{ for even})$$
$$I_{ab} = \prod_{i=1}^{3} (I_{even}^{i} + I_{odd}^{i}),$$

Three generations are realized in \mathbb{Z}_2 -even zero mode. ($|I_{ab}| = g = 4$)

Eclectic Flavor Symmetry (models)

• <u>Traditional flavor group</u> $G_{\text{flavor}} \equiv \mathbb{Z}_4 \times \mathbb{Z}_2^P \times \mathbb{Z}_2^C \times \mathbb{Z}_2^Z$

Generators : $\{Z', P, C, Z\}$

Abe, Choi, Kobayashi, Ohki 0904.2631

- <u>Generalized CP group</u> $G_{CP} \equiv \mathbb{Z}_2^{CP}$ The CP transformation $\begin{pmatrix} e_2 \\ e_1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \overline{e_2} \\ \overline{e_1} \end{pmatrix}$.
- Finite metaplectic modular group $G_{\text{modular}} \equiv \tilde{\Gamma}_8$

In order to discuss the action of the full modular group on <u>the half-integral</u> <u>modular forms</u> (such as Yukawa coupling and wavefunction on T^2)

Eclectic Flavor Symmetry

<u>Traditional flavor symmetry</u> $(G_{flavor} \equiv \mathbb{Z}_4 \times \mathbb{Z}_2^P \times \mathbb{Z}_2^C \times \mathbb{Z}_2^Z)$ \mathbb{Z}_2 -even mode

$$\rho(Z'_{\text{even}}) = i\mathbb{I}_3, \qquad \rho(P_{\text{even}}) = \mathbb{I}_3, \qquad \rho(C_{\text{even}}) = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}, \qquad \rho(Z_{\text{even}}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix},$$

 \mathbb{Z}_2 -odd mode

 $\rho(Z'_{odd}) = i, \qquad \rho(P_{odd}) = -1, \qquad \rho(C_{odd}) = -1, \qquad \rho(Z_{odd}) = -1,$

Generalized CP

<u>Generalized CP group</u> ($G_{CP} \equiv \mathbb{Z}_2^{CP}$)

The CP transformation of matter wavefunction on T^2

$$\begin{split} \psi^{\widetilde{\alpha},|M|} &\to \psi^{\widetilde{\alpha},|M|}(z,\tau), \\ \psi^{\widetilde{\alpha},|M|} &\to \varphi(\widetilde{CP},\tau)\rho(\widetilde{CP})_{\widetilde{\alpha}\widetilde{\beta}} \overline{\psi^{\widetilde{\beta},|M|}(z,\tau)}, \end{split}$$

with

$$\varphi(\widetilde{CP},\tau) = i, \qquad \rho(\widetilde{CP})_{\widetilde{\alpha}\widetilde{\beta}} = -i\delta_{\widetilde{\alpha},\widetilde{\beta}}.$$

Eclectic Flavor Symmetry

Finite metaplectic modular group ($G_{\text{modular}} \equiv \tilde{\Gamma}_8$) The explicit forms of the modular transformations on the T^2/\mathbb{Z}_2 orbifold (M = 4)

$$\rho(\tilde{S}_{\text{even}}) = -\frac{1}{2} \begin{pmatrix} (-1)^{1/4} & 1+i & (-1)^{1/4} \\ 1+i & 0 & -1-i \\ (-1)^{1/4} & -1-i & (-1)^{1/4} \end{pmatrix}, \qquad \rho(\tilde{T}_{\text{even}}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -(-1)^{1/4} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\rho(\tilde{S}_{\text{odd}}) = (-1)^{3/4}, \qquad \rho(\tilde{T}_{\text{odd}}) = -(-1)^{1/4},$$

Eclectic Flavor Symmetry (results)

Traditional flavor and Modular flavor

 $\tilde{S}_{\text{even}} C_{\text{even}} \tilde{S}_{\text{even}}^{-1} = Z_{\text{even}}, \qquad \tilde{S}_{\text{even}} Z_{\text{even}} \tilde{S}_{\text{even}}^{-1} = C_{\text{even}},$

 $\tilde{T}_{\text{even}} C_{\text{even}} \tilde{T}_{\text{even}}^{-1} = C_{\text{even}} Z_{\text{even}} (Z'_{\text{even}})^2, \qquad \tilde{T}_{\text{even}} Z_{\text{even}} \tilde{T}_{\text{even}}^{-1} = Z_{\text{even}},$

The modular transformation is regarded as the outer automorphism of the traditional flavor group.

 $\rightarrow G_{\text{flavor}} \rtimes G_{\text{modular}}$ (Semi-direct product)

Eclectic Flavor Symmetry (results)

Traditional flavor, Modular flavor and <u>CP</u> $\widetilde{CP}Z'_{even}\widetilde{CP}^{-1} = (Z'_{even})^{-1}, \qquad \widetilde{CP}Z'_{odd}\widetilde{CP}^{-1} = (Z'_{odd})^{-1},$ $\widetilde{CP}\widetilde{S}_{even}\widetilde{CP}^{-1} = (\widetilde{S}_{even})^{-1}, \qquad \widetilde{CP}\widetilde{T}_{even}\widetilde{CP}^{-1} = \widetilde{T}_{even}^{-1}$ $\widetilde{CP}\widetilde{S}_{odd}\widetilde{CP}^{-1} = (\widetilde{S}_{odd})^{-1}, \qquad \widetilde{CP}\widetilde{T}_{odd}\widetilde{CP}^{-1} = \widetilde{T}_{odd}^{-1}$

We can construct the outer automorphism $u_{CP}: G_{CP} \rightarrow Aut(G_{flavor} \rtimes G_{modular})$

 $\rightarrow (G_{\text{flavor}} \rtimes G_{\text{modular}}) \rtimes G_{\text{CP}} \text{ (Semi-direct product)}$

Eclectic Flavor Symmetry (\mathbb{Z}_3 fixed point)

<u>Type IIB compactifications on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}'_2)$ </u>

Fluxes $\{a^0, a^i, b_i, b_0\}$

 \Rightarrow many VEVs of complex structure (τ)

The distribution of complex structure moduli VEVs clusters at fixed points of $SL(2,\mathbb{Z})$ modular symmetry of torus.

 $(\tau = i, \omega, i\infty \text{ with } \omega = \frac{-1 + \sqrt{3}i}{2}, \mathbb{Z}_3 \text{ fixed point } : \tau = \omega)$

Remarkably, \mathbb{Z}_3 fixed point has the largest part.

Z₃: 40.3%

The numbers of stable flux vacua on the fundamental domain of au Ishiguro, Kobayashi, Otsuka 2011.09154

Eclectic Flavor Symmetry (\mathbb{Z}_3 fixed point)

 \mathbb{Z}_3 modular symmetry generated by $\{1, ST, (ST)^2\}$

$$(\tilde{S}\tilde{T})C_{\text{even}}(\tilde{S}\tilde{T})^{-1} = C_{\text{even}}Z_{\text{even}}(Z'_{\text{even}})^2, \qquad (\tilde{S}\tilde{T})Z_{\text{even}}(\tilde{S}\tilde{T})^{-1} = Z_{\text{even}},$$

The discrete non-abelian symmetry $(G_{\text{flavor}} \rtimes \mathbb{Z}_3) \rtimes G_{\text{CP}}$ remains in the low-energy 4D effective action.

Eclectic Flavor Symmetry (\mathbb{Z}_3 fixed point)

 \mathbb{Z}_3 modular symmetry generated by $\{1, ST, (ST)^2\}$

 $(\tilde{S}\tilde{T})C_{\text{even}}(\tilde{S}\tilde{T})^{-1} = C_{\text{even}}Z_{\text{even}}(Z'_{\text{even}})^2, \qquad (\tilde{S}\tilde{T})Z_{\text{even}}(\tilde{S}\tilde{T})^{-1} = Z_{\text{even}},$

The discrete non-abelian symmetry $(G_{\text{flavor}} \rtimes \mathbb{Z}_3) \rtimes G_{\text{CP}}$ remains in the low-energy 4D effective action.

The coefficient of 4D higher-dimensional operators will be described by the product of modular forms with half-integral modular weights.

→ The eclectic flavor symmetry would control the flavor structure of higher-dimensional operators.

Summary

By introducing flavor symmetries, which are $A_4, S_4, \Delta(54)$ and modular flavor symmetry, into the Standard Model, we can get clues to explain the flavor structure.

The traditional flavor, modular flavor and CP symmetries are uniformly described in the context of eclectic flavor symmetry $(G_{\text{flavor}} \rtimes G_{\text{modular}}) \rtimes G_{\text{CP}}$

A part of eclectic flavor symmetry would control the flavor structure of 4D higher-dimensional operators. (at \mathbb{Z}_3 fixed point)

Back up

Data

$$|V_{\rm CKM}| = egin{pmatrix} 0.97435 \pm 0.00016 & 0.22500 \pm 0.00067 & 0.00369 \pm 0.00011 \ 0.22486 \pm 0.00067 & 0.97349 \pm 0.00016 & 0.04182^{+0.00085}_{-0.00074} \ 0.00857^{+0.00020}_{-0.00018} & 0.04110^{+0.00083}_{-0.00072} & 0.999118^{+0.000031}_{-0.000036} \end{pmatrix},$$

particle data group (2022)

$$|U|_{3\sigma}^{\text{with SK-atm}} = \begin{pmatrix} 0.803 \to 0.845 & 0.514 \to 0.578 & 0.143 \to 0.155 \\ 0.244 \to 0.498 & 0.502 \to 0.693 & 0.632 \to 0.768 \\ 0.272 \to 0.517 & 0.473 \to 0.672 & 0.623 \to 0.761 \end{pmatrix}$$

NuFIT 5.2 (2022)

Tri-Bi-Maximal matrix:
$$U \sim \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Moduli distribution with SM spectra

The background $U(1)_a$ gauge field strength F_a on $(T^2)_i$,

$$\frac{m_a^i}{2\pi} \int_{T_i^2} F_a^i = n_a^i, \qquad \begin{array}{l} m_a^i : \text{wrapping number on } (T^2)_i \\ n_a^i : \text{units of magnetic flux on } (T^2)_i \end{array}$$

The number of chiral zero-modes on T^6

$$I_{ab} = \prod_{i=1}^{3} \left(n_a^i m_b^i - n_b^i m_a^i \right),$$

MSSM

D-brane configurations leading to left-right symmetric Minimal Supersymmetric Standard Model (MSSM).

N_{lpha}	Gauge group	(n^1_lpha,m^1_lpha)	$(n_{\alpha}^2, m_{\alpha}^2)$	(n_{lpha}^3,m_{lpha}^3)
$N_a = 6$	$SU(3)_C$	(1,0)	(g,1)	(g,-1)
$N_b = 2$	$USp(2)_L$	(0,1)	(1, 0)	(0, -1)
$N_c = 2$	$USp(2)_R$	(0,1)	(0, -1)	(1, 0)
$N_d = 2$	$U(1)_d$	$(1,\!0)$	(g,1)	(g,-1)

$$m_a^i$$
: wrapping number
on $(T^2)_i$
 n_a^i : units of magnetic
flux on $(T^2)_i$

Marchesano, Shiu hep-th/0409132

The magnetic flux g determines the generations of quark and lepton chiral multiplets in the visible sector

MSSM

• Tadpole cancellation condition (D3-brane charge)

$$D3: \sum_{a} N_{a} n_{a}^{1} n_{a}^{2} n_{a}^{3} + \frac{1}{2} N_{\text{flux}} = 16,$$

• The existence of magnetized D9-branes in the hidden sector

$$8g^2 = -Q_{D3}^{\rm hid} + 16 - \frac{N_{\rm flux}}{2},$$

 $(Q_{D3}^{hid}$: D3-brane charge induced by the magnetic flux on D9-branes)

We freely change the value of Q_{D3}^{hid} to reveal the mutual relation between the generation number g and the flux quanta N_{flux} .

MSSM (result)

The numbers of flux vacua as a function of the generation number g at $\tau = i$ and $\tau = \omega$ respectively.

We change the maximum value of $Q_{D3}^{\rm hid}$ as $\left|Q_{D3}^{\rm hid}\right| = 400, 1200, 2000$

The small generation number is favored in the string landscape

2023/8/4

MSSM (result)

The numbers of stable flux vacua with g = 3 generation of quarks/leptons on the fundamental domain of τ .

MSSM-like models are still peaked at the \mathbb{Z}_3 fixed point

Similar results are obtained for Pati-Salam-like model

Pati-Salam-like model

• Tadpole cancellation conditions (D3-brane charge)

$$D3: \sum_{a} N_{a} n_{a}^{1} n_{a}^{2} \tilde{n}_{a}^{3} + \frac{1}{2} N_{\text{flux}} = 8,$$

• The existence of magnetized D9-branes in the hidden sector

$$2g = -Q_{D3}^{\rm hid} + 8 - \frac{N_{\rm flux}}{2},$$

From this equation, one can count the number of g generation models.

Pati-Salam-like model

The numbers of models as a function of the generation number g at $\tau = i$ and $\tau = \omega$ respectively.

Pati-Salam-like model

The numbers of stable flux vacua with g = 3generation of quarks/leptons on the fundamental domain of τ .

Metaplectic modular symmetry

Metaplectic group $Mp(2,\mathbb{Z}): \tilde{\Gamma}$

$$Mp(2,\mathbb{Z}) = \left\{ \tilde{\gamma} = \left(\gamma, \varphi(\gamma, \tau) \right) \middle| \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}), \qquad \varphi(\gamma, \tau)^2 = (c\tau + d) \right\}$$

Liu, Yao, Qu, Ding, 2007.13706

The generators of $Mp(2,\mathbb{Z})$

$$\begin{split} \tilde{S} &= (S, -\sqrt{-\tau}) = \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, -\sqrt{-\tau} \right), \qquad \tilde{T} = (T, -1) = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right), \\ \tilde{R} &= \tilde{S}^2 = (S^2, -i) = \left(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, -i \right), \end{split}$$

$$T^2$$
 with magnetic fluxes

S transformation

$$\psi^{\widetilde{\alpha},|M|}(z+\zeta,\tau) \rightarrow \psi^{\widetilde{\alpha},|M|}\left(-\frac{z+\zeta}{\tau},-\frac{1}{\tau}\right) = (-\tau)^{1/2} \sum_{\widetilde{\beta}=0}^{|M|-1} \frac{1}{\sqrt{|M|}} e^{i\pi/4} e^{2\pi i \frac{\widetilde{\alpha}\widetilde{\beta}}{|M|}} \psi^{\widetilde{\beta},|M|}(z+\zeta,\tau),$$

Representation matrix

$$\rho(\tilde{S})_{\tilde{\alpha}\tilde{\beta}} = -\frac{1}{\sqrt{|M|}} e^{i\pi/4} e^{2\pi i \frac{\tilde{\alpha}\tilde{\beta}}{|M|}}, \qquad (\varphi(\gamma,\tau) =$$

 $-\sqrt{-\tau}$)

T^2 with magnetic fluxes

T transformation

$$\begin{split} \psi^{\widetilde{\alpha},|M|}(z+\zeta,\tau) \\ \to \psi^{\widetilde{\alpha},|M|}\left(z+\zeta+\frac{1}{2},\tau+1\right) &= e^{i\pi|M|\frac{Im(z+\zeta)}{2Im\tau}}\sum_{\widetilde{\beta}=0}^{|M|-1} e^{i\pi\,\widetilde{\alpha}\left(\frac{\widetilde{\alpha}}{|M|}+1\right)} \delta_{\widetilde{\alpha},\widetilde{\beta}}\,\psi^{\widetilde{\beta},|M|}(z+\zeta,\tau), \end{split}$$

Representation matrix

$$\rho(\tilde{T})_{\widetilde{\alpha}\widetilde{\beta}} = e^{i\pi \,\widetilde{\alpha} \left(\frac{\widetilde{\alpha}}{|M|}+1\right)} \delta_{\widetilde{\alpha},\widetilde{\beta}}, \qquad (\,\varphi(\gamma,\tau) = 1\,)$$

T^2 with magnetic fluxes

Redefinition of the representation matrix (S transformation)

$$\rho(\tilde{S})_{\tilde{\alpha}\tilde{\beta}} = -\frac{1}{\sqrt{|M|}} e^{i\pi \frac{3|M|+1}{4}} e^{2\pi i \frac{\tilde{\alpha}\tilde{\beta}}{|M|}}$$

(Additional factor $e^{3i\pi |M|/4}$ ($I_{ab} + I_{bc} + I_{ca} = 0$))

The representation matrix $\rho(\tilde{\gamma})$ satisfies following conditions.

$$\rho(\tilde{S})^{2} = \rho(\tilde{R}), \qquad \left(\rho(\tilde{S})\rho(\tilde{T})\right)^{3} = \rho(\tilde{R})^{4} = \mathbb{I},$$
$$\rho(\tilde{T})\rho(\tilde{R}) = \rho(\tilde{R})\rho(\tilde{T}), \qquad \rho(\tilde{T})^{2|M|} = \mathbb{I}$$

$$T^2/\mathbb{Z}_2$$
 with magnetic fluxes

The modular transformations on T^2/\mathbb{Z}_2 orbifold

$$\rho(\tilde{S})_{\tilde{\alpha}\tilde{\beta}} = -\frac{1}{\sqrt{|M|}} e^{i\pi \frac{3|M|+1}{4}} \cos\left(\frac{2\pi\tilde{\alpha}\tilde{\beta}}{|M|}\right), \qquad \rho(\tilde{T})_{\tilde{\alpha}\tilde{\beta}} = e^{i\pi\,\tilde{\alpha}\left(\frac{\tilde{\alpha}}{|M|}+1\right)} \delta_{\tilde{\alpha},\tilde{\beta}}$$

 $(\mathbb{Z}_2$ -even mode with $\tilde{\alpha}, \tilde{\beta} = 0, 1, \dots I_{even})$

$$\rho(\tilde{S})_{\tilde{\alpha}\tilde{\beta}} = -\frac{1}{\sqrt{|M|}} e^{i\pi\frac{3|M|+1}{4}} \sin\left(\frac{2\pi\tilde{\alpha}\tilde{\beta}}{|M|}\right), \qquad \rho(\tilde{T})_{\tilde{\alpha}\tilde{\beta}} = e^{i\pi\tilde{\alpha}\left(\frac{\tilde{\alpha}}{|M|}+1\right)} \delta_{\tilde{\alpha},\tilde{\beta}}$$

 $(\mathbb{Z}_2$ -odd mode with $\tilde{\alpha}, \tilde{\beta} = 0, 1, \dots I_{odd})$

Generalized CP

The CP transformation

$$\begin{pmatrix} e_2 \\ e_1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{e}_2 \\ \bar{e}_1 \end{pmatrix}.$$

The CP transformation enlarges $SL(2,\mathbb{Z})$ modular group to $GL(2,\mathbb{Z}) \simeq SL(2,\mathbb{Z}) \rtimes \mathbb{Z}_2^{CP}$.

Conditions to be satisfied

 $CP^2 = 1,$ $(CP)S(CP)^{-1} = S^{-1},$ (6)

$$(CP)T(CP)^{-1} = T^{-1}$$