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Motivations
We want to know the non-perturbative definition of string theory!

Candidates
! matrix models
! string field theory

etc....

4 / 35



Constructing string field theory

How to construct the string field theory?

To construct consistent theory, we need to introduce the infinite
numbers of interaction terms in the action (except several examples).

Homotopy algebras such as A∞ algebras and L∞ algebras are related
to the Batalin-Vilkovisky formalism, which is one of the method of the
path integral quantization of gauge theories, and have contributed to
the construction of the action of string field theory.

e.g.) hep-th/9206084, B.Zwiebach

Are there other things we can do using homotopy algebras?
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Homotopy algebras and string field theory
There are many things we can do using homotopy algebras!
! relating covariant and light-cone string field theories

[Erler and Matsunaga, arXiv:2012.09521]

! calculating scattering amplitudes
[Kajiura, math/0306332] etc.

! integrating out fields
[Sen, arXiv:1609.00459],
[Erbin, Maccaferri, Schnabl and Vošmera, arXiv:2006.16270],
[Koyama, Okawa and Suzuki, arXiv:2006.16710] etc.

etc....
In particular, homotopy algebras reproduces the ordinary calculations
of Feynman diagrams.

It is difficult to deal with the string field theory, however, descriptions
using homotopy algebras are systematic, so we would use this to
exploit the string field theory.
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Homotopy algebras and quantum field theory

We can also use homotopy algebras to describe the quantum field
theory.

In fact, the descriptions are essentially the same (universal)
in any theory.

Therefore, exploring the descriptions of quantum field theory may
help to understand string field theory!
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A∞ algebras
We consider the vector space H . It is decomposed as

H = . . . ⊕H0 ⊕H1 ⊕H2 ⊕H3 ⊕ . . .
=

⊕
i∈Z

Hi .

The space H is usually the space of (string) fields.
In string field theory, i is the ghost number of string fields.
We denote the degree of Φ by deg (Φ):

deg(Φ) =
{

0 (Φ : degree even ) (mod 2)
1 (Φ : degree odd ) (mod 2) .

We consider an action of the form

S = − 1
2 ω (Φ,QΦ ) −

∞∑
n=0

1
n + 1 ω (Φ ,mn (Φ ⊗ . . . ⊗ Φ ) ) .

The classical action is written in terms of degree-even elements of H1.
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A∞ algebras

S = − 1
2 ω (Φ,QΦ ) −

∞∑
n=0

1
n + 1 ω (Φ ,mn (Φ ⊗ . . . ⊗ Φ ) )

the operator Q : degree-odd map from H to H
the operators mn : degree-odd maps from H ⊗n to H

H ⊗n = H ⊗H ⊗ . . . ⊗H︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
n

for n > 0.
The space H ⊗0 is a one-dimensional vector space equipped with
a single basis vector 1 which is degree even and satisfies

1 ⊗ Φ = Φ , Φ ⊗ 1 = Φ

for any Φ in H , and elements of H ⊗0 are given by multiplying 1 by
complex numbers.
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A∞ algebras
The symplectic form :

ω (Φ1 ,Φ2 ) = − (−1)deg(Φ1) deg(Φ2) ω (Φ2 ,Φ1 ) .

The following A∞ relations:

(Q + m1)(m0(1)) = 0 ,

(Q+m1)((Q+m1)(Φ1)) + m2(m0(1)⊗Φ1) + (−1)deg(Φ1)m2(Φ1 ⊗m0(1)) = 0 ,

· · · ,
The cyclic properties:

ω (Φ1 ,Q (Φ2 ) ) = − (−1)deg(Φ1) ω (Q(Φ1 ) ,Φ2 ) ,

ω (Φ1 ,Mn (Φ2⊗ . . .⊗Φn+1 ) ) = −(−1)deg(Φ1) ω ( Mn(Φ1⊗ . . .⊗Φn ) ,Φn+1 ) ,
Φ1, . . . ,Φn,Φn+1 ∈ H

Then, we call this algebra a cyclic A∞ algebra.
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coalgebra representation
It is convenient to use the coalgebra representation.
In the coalgebra representation, we consider linear operators acting on
TH defined by

TH = H ⊗0 ⊕H ⊕H ⊗2 ⊕H ⊗3 ⊕ . . . .

We introduce the coderivations Q and mn associated with Q and mn,
respectively.

We define m by

m =
∞∑
n=0

mn .

The action is described by the coderivation Q + m, and the gauge
invariance of the action follows from the relation

(Q + m )2 = 0 .

12 / 35



projection operators

When we consider physics in terms of homotopy algebras, we usually
consider degree-even projection operator P from H to its subspace.
! calculating scattering amplitudes

P is defined to be on-shell region.
! integrating out fields

P is defined to be unintegrated region.
e.g.) If we want to calculate effective action for massless sector, we take
P to be massless sector.

P is defined to satisfy the following relations:

P2 = P , P Q = Q P .

In the coalgebra representation, we use the projection operator P acting on
TH .
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contracting homotopy
We also introduce the contracting homotopy h which is a degree-odd map
from H to H and satisfies

Q h + h Q = I − P , h P = 0 , P h = 0 , h2 = 0 .

Roughly, the contracting homotopy h is the propagator.
We then promote h to the linear operator h acting on TH .

The last ingredient to describe the formula for correlation functions is the
operator U. The operator U is normalized by

(ω ⊗ I ) ( I ⊗ U ) = I ,

where U is a map from H ⊗0 to H ⊗2 given by

U = π2 U π0

and ω is a map from H ⊗2 to H ⊗0 with

ω (Φ1 ⊗ Φ2 ) = ω (Φ1 , Φ2 ) 1

for Φ1 and Φ2 in H .
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How to reproduce Feynman diagrams
The A∞ structure of the action is written by

π1 (Q + m) .

When we consider tree-level on-shell amplitudes (effective action), we use
the projection onto on-shell (unintegrated) region.
Then, we can calculate them using

π1 P Q P + π1 P m
1

I + h m
P ,

which preserves the A∞ structure.
When we consider loop-corrections, we use

π1 P Q P + π1 P m
1

I + h m + i! h U P ,

if we ignore the subtlety.
Mathematically, this operation correspond to transfer one A∞ algebra to
another A∞ algebra.
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formula for correlation functions
The A∞ structure of the action is written by

π1 (Q + m) .

where πn is the projection from TH onto H ⊗n.

When we consider effective action, we use the projection onto unintegrated
region. Then, we can calculate them using

π1 P Q P + π1 P m
1

I + h m + i! h U P .

This means we can integrate the region projected by I − P.
If we want to integrate all the region, we need to take P = 0 ??

In that case, the above operator after the homological perturbation becomes
trivial.

Is it meaningless to take P = 0 ?
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formula for correlation functions
Notice that if P = 0,

P = π0 ! 0 .
Then, the below red part is non-zero.

P Q P + P m
1

I + h m + i! h U P .

In fact, the red part contains the information of correlation functions.
[Okawa, arXiv:2203.05366]

Correlation functions are given by

〈Φ⊗n 〉 = πn f 1

with
f =

1
I + h m + i! h U .

Φ⊗n = Φ ⊗ Φ ⊗ . . . ⊗ Φ︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸
n

,

Φ =

∫
ddx ϕ(x) c(x) +

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .
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Does this formula really reproduce the correlation functions in ordinary
quantum field theory?
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the Schwinger-Dyson equations
Does this formula really reproduce the correlation functions in ordinary
quantum field theory?
Correlation functions are solutions of the Schwinger-Dyson equation such as

n−1∑
i=1

δd(xi − xn) 〈 ϕ(x1) . . . ϕ(xi−1) ϕ(xi+1) . . . ϕ(xn−1) 〉

+
i
!
〈 ϕ(x1) . . . ϕ(xn−1)

δS
δϕ(xn)

〉 = 0 .
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the Schwinger-Dyson equations
Does this formula really reproduce the correlation functions in ordinary
quantum field theory?
Correlation functions are solutions of the Schwinger-Dyson equation such as

n−1∑
i=1

δd(xi − xn) 〈 ϕ(x1) . . . ϕ(xi−1) ϕ(xi+1) . . . ϕ(xn−1) 〉

+
i
!
〈 ϕ(x1) . . . ϕ(xn−1)

δS
δϕ(xn)

〉 = 0 .

We do not discuss the detailed proof, but we can directly prove that
correlation functions from our formula satisfy the Schwinger-Dyson
equations using the trivial identity:

( I + h m + i ! h U ) 1
I + h m + i! h U 1 = 1 ,

where
f =

1
I + h m + i! h U .
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Problems to deal with fermions
In the usual framework, we consider the real scalar field ϕ(x) and take

Φ = ϕ(x) .

With the appropriate definition, we can calculate the correlation functions as
follows: [Okawa, arXiv:2203.05366]

〈 ϕ(x1) ϕ(x2) . . . ϕ(xn) 〉
= ωn ( πn f 1 , δd(x − x1) ⊗ δd(x − x2) ⊗ . . . ⊗ δd(x − xn) ) ,

where
f =

1
I + h m + i! h U .

To extend this description, we naively take

Φ ∼ Ψ(x) ,

but this description is the same as that of scalar field theory, and we cannnot
describe the antisymmetry of the Dirac fields under the exchange of fermions.
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Problems to deal with fermions

To resolve this problem, there are two approaches.
! super A∞ algebras

In addition to the grading from A∞ algebras, we introduce the Z2
grading from the super vector space to distinguish bosons and fermions.

! introducing string-field-theory-like field
In open superstring field theory, string field Φ is described by
degree-even string fields in H1, but Φ is schematically expanded as

Φ =
∑
i

∫
d10k ϕi(k) | i ; k 〉

︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
degree even× degree even

+
∑
α

∫
d10k ψα(k) | α ; k 〉 ,

︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸
degree odd× degree odd

where ϕi(k) are bosonic fields and ψα(k) are fermionic fields with i and
α collectively labeling various fields.

We use the latter approach and introduce string-field-theory-like field
to describe Dirac fields.

22 / 35



Dirac field theory

Let us describe Dirac fields using A∞ algebras.
We consider theories without gauge symmetries so the vector space H is
given by

H = H1 ⊕H2 .

We define the degree-odd basis vector of H1 by θα(x).
We also use the Dirac adjoint θα(x) of θα(x).

The element Φ of H1 can be expanded in this basis as

Φ =

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) ,

where Ψα(x) is the Dirac field we define Ψα(x) to be degree odd. In this
expansion, Ψα(x) has to be the Dirac adjoint of Ψα(x).
Note that Φ is degree even.

For the vector space H2, we define the degree-even basis vector by λα(x).
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Dirac field theory
We then define the following operators:

Q θα(x) = ( − i ∂/+m )αβ λβ(x) , Q λα(x) = 0 ,

Q θα(x) = − λβ(x) ( i
←−
∂/ + m )βα , Q λα(x) = 0 ,

ω ( θα1 (x1) ,λα2 (x2) ) = δα1α2 δ
d(x1 − x2) ,

ω ( θα1 (x1) ,λα2 (x2) ) = δα1α2 δ
d(x1 − x2) ,

ω ( λα1 (x1) , θα2 (x2) ) = − δα1α2 δ
d(x1 − x2) ,

ω ( λα1 (x1) , θα2 (x2) ) = − δα1α2 δ
d(x1 − x2) ,

and the symplectic form vanishes for all other cases.
Then, we obtain

S =
∫

ddx
[
iΨ(x) ∂/Ψ(x) − mΨ(x)Ψ(x)

]

= − 1
2 ω (Φ , QΦ ) .

When we calculate correlation functions, we consider the projection with
P = 0 .
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Dirac field theory
Then, the contracting homotopy is constructed as follows:

h θα(x) = 0 , h λα(x) =
∫

ddy S(x − y)αβ θβ(y) ,

h θα(x) = 0 , h λα(x) = −
∫

ddy θβ(y) S(y − x)βα ,

where S(x − y)αβ is the Dirac propagator.
The operator U is defined by

U = −
∫

ddx ( θα(x)λα(x) + θα(x)λα(x) ) ,

where θα(x), θα(x)λα(x) and λα(x) are coderivations with

π1 θα(x) 1 = θα(x) , π1 θα(x) πn = 0 , π1 θα(x) 1 = θα(x) , π1 θα(x) πn = 0

π1 λα(x) 1 = λα(x) , π1 λα(x) πn = 0 , π1 λα(x) 1 = λα(x) , π1 λα(x) πn = 0

for n > 0 .
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Dirac field theory

We claim that the formula for correlation functions takes the same form as in
the scalar field theory when it is expressed in terms of Φ:

〈Φ⊗n 〉 = πn f 1 ,

where
f =

1
I + h m + i! h U ,

Φ =

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .

〈Φ ⊗ Φ 〉 =
∫

ddx1 ddx2
[
− 〈Ψα1 (x1)Ψα2 (x2) 〉 θα1 (x1) ⊗ θα2 (x2)

+ 〈Ψα1 (x1)Ψα2 (x2) 〉 θα1 (x1) ⊗ θα2 (x2)
+ 〈Ψα1 (x1)Ψα2 (x2) 〉 θα1 (x1) ⊗ θα2 (x2)

− 〈Ψα1 (x1)Ψα2 (x2) 〉 θα1 (x1) ⊗ θα2 (x2)
]
.
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Dirac field theory

Then, we can extract the correlation functions, for example,

〈Ψα1 (x1)Ψα2 (x2) 〉 = ω2 ( π2 f 1 ,λα1 (x1) ⊗ λα2 (x2) ) ,
〈Ψα1 (x1)Ψα2 (x2) 〉 = ω2 ( π2 f 1 ,λα1 (x1) ⊗ λα2 (x2) ) ,

where

ωn (Φ1 ⊗ Φ2 ⊗ . . . ⊗ Φn , Φ̃1 ⊗ Φ̃2 ⊗ . . . ⊗ Φ̃n ) =
n∏
i=1

ω (Φi , Φ̃i ) .

The correlation function for example, can be extracted as

〈Ψα1 (x1) . . .Ψαn (xn)Ψβ1 (y1) . . .Ψβn (yn) 〉
= ω2n ( π2n f 1 ,λα1 (x1) ⊗ . . . ⊗ λαn (xn) ⊗ λβ1 (y1) ⊗ . . . ⊗ λβn (yn) ) .
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Dirac field theory
Let us calculate two-point functions.
The two-point functions can be calculated from π2 f 1 .
For the free theory, it is given by

π2 f 1 = − i! π2 h U 1 .

The operator U acting on 1 generates the element of H ⊗H :

U 1 = −
∫

ddx ( θα(x)⊗λα(x)+λα(x)⊗θα(x)+θα(x)⊗λα(x)+λα(x)⊗θα(x) ) .

The action of h on H ⊗H is given by

h π2 = ( I ⊗ h ) π2 .

Since h annihilates θα(x) and θα(x), two terms survive:

h U 1 =
∫

ddx ( θα(x) ⊗ h λα(x) + θα(x) ⊗ h λα(x) ) .
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Dirac field theory
We thus find

π2 f 1 = − i! π2 h U 1

= − i!
∫

ddx
∫

ddy [ θα(x) ⊗ S(x − y)αβ θβ(y)

− θα(x) ⊗ θβ(y) S(y − x)βα ] ,
and we obtain

ω2 ( π2 f 1 ,λα(x) ⊗ λβ(y) ) = − i! S(x − y)αβ .

This correctly reproduces the two-point function 〈Ψα(x)Ψβ(y) 〉:

〈Ψα(x)Ψβ(y) 〉 =
!

i
S(x − y)αβ .

We can also calculate

ω2 ( π2 f 1 ,λβ(y) ⊗ λα(x) ) = i! S(x − y)αβ = 〈Ψβ(y)Ψα(x) 〉 .

Note that the antisymmetry under the exchange of fermions is realized:

〈Ψβ(y)Ψα(x) 〉 = − 〈Ψα(x)Ψβ(y) 〉 .
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Dirac field theory
We can also reproduce four-point functions.

π4 f 1 = − !2 π4 h Uh U 1

We split U into two parts.
U = V + V ,

where
V = −

∫
dd x θα(x) λα(x) , V = −

∫
dd x θα(x) λα(x) ,

For example, we consider hVhV 1. Since

h π4 = ( I ⊗ I ⊗ I ⊗ h ) π4 ,

and h annihilates θα(x) and h λα(x) so that the following three terms survive:

h Vh V 1 =
∫

dd x

∫
dd x′ ( θα′ (x′) ⊗ θα(x) ⊗ h λα(x) ⊗ h λα′ (x′)

− θα(x) ⊗ θα′ (x′) ⊗ h λα(x) ⊗ h λα′ (x′)
+ θα(x) ⊗ h λα(x) ⊗ θα′ (x′) ⊗ h λα′ (x′) ) .

This should be contrasted with h Uh U 1 for the scalar field. This reflects the degree of fermions
and this minus sign is necessary for the antisymmetry of fermions in correlation functions.
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Dirac field theory
Similarly, we can calculate h V h V 1, h V h V 1, and h V h V 1.
Then, we obtain

π4 f 1 = −!2 π4 h U h U 1 = −!2
∫

ddx
∫

ddx ′
∫

ddy

∫
ddy′ F (x, y, x ′, y′) ,

where
F (x, y, x′, y′) = θα′ (x′) ⊗ θα (x) ⊗ S(x − y)αβ θβ (y) ⊗ S(x′ − y′)α′β′ θβ′ (y′)

− θα (x) ⊗ θα′ (x′) ⊗ S(x − y)αβ θβ (y) ⊗ S(x′ − y′)α′β′ θβ′ (y′)

+ θα (x) ⊗ S(x − y)αβ θβ (y) ⊗ θα′ (x′) ⊗ S(x′ − y′)α′β′ θβ′ (y′)

− θα′ (x′) ⊗ θα (x) ⊗ θβ (y) S(y − x)βα ⊗ S(x′ − y′)α′β′ θβ′ (y′)

+ θα (x) ⊗ θα′ (x′) ⊗ θβ (y) S(y − x)βα ⊗ S(x′ − y′)α′β′ θβ′ (y′)

− θα (x) ⊗ θβ (y) S(y − x)βα ⊗ θα′ (x′) ⊗ S(x′ − y′)α′β′ θβ′ (y′)

− θα′ (x′) ⊗ θα (x) ⊗ S(x − y)αβ θβ (y) ⊗ θβ′ (y′) S(y′ − x′)β′α′

+ θα (x) ⊗ θα′ (x′) ⊗ S(x − y)αβ θβ (y) ⊗ θβ′ (y′) S(y′ − x′)β′α′

− θα (x) ⊗ S(x − y)αβ θβ (y) ⊗ θα′ (x′) ⊗ θβ′ (y′) S(y′ − x′)β′α′

+ θα′ (x′) ⊗ θα (x) ⊗ θβ (y) S(y − x)βα ⊗ θβ′ (y′) S(y′ − x′)β′α′

− θα (x) ⊗ θα′ (x′) ⊗ θβ (y) S(y − x)βα ⊗ θβ′ (y′) S(y′ − x′)β′α′

+ θα (x) ⊗ θβ (y) S(y − x)βα ⊗ θα′ (x′) ⊗ θβ′ (y′) S(y′ − x′)β′α′ .
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Dirac field theory
Then, we obtain

ω4 ( π4 f 1 , λα1 (x1) ⊗ λα2 (x2) ⊗ λβ1 (y1) ⊗ λβ2 (y2))
= − !2 [Sα1β2 (x1 − y2 ) Sα2β1 (x2 − y1 ) − Sα1β1 (x1 − y1 ) Sα2β2 (x2 − y2 ) ]
= 〈Ψα1 (x1)Ψβ2 (y2) 〉 〈Ψα2 (x2)Ψβ1 (y1) 〉 − 〈Ψα1 (x1)Ψβ1 (y1) 〉 〈Ψα2 (x2)Ψβ2 (y2) 〉
= 〈Ψα1 (x1)Ψα2 (x2)Ψβ1 (y1)Ψβ2 (y2) 〉

ω4 ( π4 f 1 , λα2 (x2) ⊗ λα1 (x1) ⊗ λβ1 (y1) ⊗ λβ2 (y2))
= − !2 [Sα2β2 (x2 − y2 ) Sα1β1 (x1 − y1 ) − Sα2β1 (x2 − y1 ) Sα1β2 (x1 − y2 ) ]
= 〈Ψα2 (x2)Ψβ2 (y2) 〉 〈Ψα1 (x1)Ψβ1 (y1) 〉 − 〈Ψα2 (x2)Ψβ1 (y1) 〉 〈Ψα1 (x1)Ψβ2 (y2) 〉
= 〈Ψα2 (x2)Ψα1 (x1)Ψβ1 (y1)Ψβ2 (y2) 〉
= −〈Ψα1 (x1)Ψα2 (x2)Ψβ1 (y1)Ψβ2 (y2) 〉

Note that the antisymmetry under the exchange of fermions is realized.

We can reproduce higher-point functions.
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the Schwinger-Dyson equations
In general, we claim

〈Φ⊗n 〉 = πn f 1 ,
where

f =
1

I + h m + i! h U ,

Φ =

∫
ddx ϕ(x) c(x) +

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .

〈Ψα1 (y1) . . .Ψαm (ym)Ψβ1 (z1) . . .Ψβm (zm) ϕ(x1) . . . ϕ(xn) 〉
= ω2m+n ( π2m+n f 1 ,
λα1 (y1) ⊗ . . . ⊗ λαm (ym) ⊗ λβ1 (z1) ⊗ . . . ⊗ λβl (zm) ⊗ d(x1) ⊗ . . . ⊗ d(xn) ) .

We can directly prove that correlation functions from our formula satisfy the
Schwinger-Dyson equations using the trivial identity as in the scalar field
theory:

( I + h m + i ! h U ) 1
I + h m + i! h U 1 = 1 ,

where
f =

1
I + h m + i! h U .

33 / 35



Contents

Introduction

A∞ algebras

Correlation functions

Dirac field theory

Summary

34 / 35



Summary
We extend the Okawa’s result to general scalar-Dirac systems.
The formula is given by

〈Φ⊗n 〉 = πn f 1 ,

where

Φ =

∫
ddx ϕ(x) c(x) +

∫
ddx ( θα(x)Ψα(x) + Ψα(x) θα(x) ) .

The future work is as follows:
! application to string field theory
! non-perturbative effect

etc....
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