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Introduction

1 Memo, To do and Still Consideration Ideas

• Although we consider two-dimensional codes subspaces in SYK, can we generalize it to

higher-dimensional code subspace cases? Also, if so, can we analytically evaluate the

matrix elements?

• Direct Evaluation of the KL condition in SYK?

• Other Spin system case?

• 2-dim CFT case?

• There is a discussions on the Petz map
Vardhan:2021mdy
[? ] itself. ( Also, it is related to

Kudler-Flam:2022jwd
[1]. ) However,

the main motivation is di↵erent from our paper’ one, Petz lite.

2 Introduction

3 memo for slides

S(⇢R) = MinExt
I


A(@I)

4GN

+ Sbulk(R [ I)

�
(3.1)

4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

1We follow the notation of Yoshida Kitaev
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Page time
t

ブラックホールの情報喪失問題→量⼦重⼒理論における難問
ホーキングの計算では情報は喪失する
Island公式によると、Page time以降にIsland領域が出現し、情報は回復する

[Penington 1905.08255, Almheiri-Engelhardt-Marolf-Maxfield 1905.08762 ]

motivation:
ホーキング放射から具体的にどのようにして情報が取り出されるか、知りたい



Introduction

Page曲線はHolographicな計算をしないでも求めることができる
→ Gravitational Path IntegralとReplica wormholeの計算

West Coast Paper → [Penigton-Shenker-Stanford-Yang 1911.11977]
[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini 1911.12333]

ブラックホールの微視的状態のrandomnessの平均を取ると、
Page timeを境に、時空の分かれたHawking saddleから、
時空がwormholeで繋がるReplica wormhole saddleに相転移し、
Page曲線を再現する

Island公式は本質的にrandomnessの計算であることがわかる

Hawking saddle Replica wormhole
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⼀⽅、ブラックホールの情報喪失問題を量⼦情報理論的に取り扱う
研究がHaydenとPreskillによりなされていた
Hayden-Preskill docoding protocolという

[Hayden-Preskill 0708.4025]

我々の研究：Hayden-Preskill decoding protocol において情報を取り出せる条件と、
情報を取り出す⽅法を、West Coast Paper like にGravitationalな計算で求めた

Tに⼊れた情報をD,Bから取り出すのに、どれくらいのDの⼤きさが必要か？
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

1We follow the notation of Yoshida Kitaev
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1 Memo, To do and Still Consideration Ideas

• Although we consider two-dimensional codes subspaces in SYK, can we generalize it to

higher-dimensional code subspace cases? Also, if so, can we analytically evaluate the

matrix elements?

• Direct Evaluation of the KL condition in SYK?

• Other Spin system case?

• 2-dim CFT case?

• There is a discussions on the Petz map
Vardhan:2021mdy
[? ] itself. ( Also, it is related to

Kudler-Flam:2022jwd
[1]. ) However,

the main motivation is di↵erent from our paper’ one, Petz lite.

2 Introduction

3 memo for slides
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I
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+ Sbulk(R [ I)
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.
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Hayden-Preskillのdecoupling condition

1 Memo, To do and Still Consideration Ideas

• Although we consider two-dimensional codes subspaces in SYK, can we generalize it to

higher-dimensional code subspace cases? Also, if so, can we analytically evaluate the

matrix elements?

• Direct Evaluation of the KL condition in SYK?

• Other Spin system case?

• 2-dim CFT case?

• There is a discussions on the Petz map
Vardhan:2021mdy
[? ] itself. ( Also, it is related to

Kudler-Flam:2022jwd
[1]. ) However,

the main motivation is di↵erent from our paper’ one, Petz lite.
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decoupling condition

となればただちに から を復元できる
すなわち、
なる recovery map                が存在する
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

1We follow the notation of Yoshida Kitaev

– 3 –
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• There is a discussions on the Petz map
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

| HP i = (IR ⌦ UT,A!C,D ⌦ IB) |EPRiR,T
⌦ |EPRi

A,B
, (4.1) eq:totaState

where UT,A!C,D is a random unitary matrix from R, T to C,D, which models the chaotic

dynamics of the black hole.By finding the Hilbert space with which R is mostly entangled,

one can find where is information of the original diary in the final time slice. TU: Need a

figure here

The surprising results of HP is summarized into the following inequality.

1We follow the notation of Yoshida Kitaev
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

| HP i = (IR ⌦ UT,A!C,D ⌦ IB) |EPRiR,T
⌦ |EPRi

A,B
, (4.1) eq:totaState

where UT,A!C,D is a random unitary matrix from R, T to C,D, which models the chaotic

dynamics of the black hole.By finding the Hilbert space with which R is mostly entangled,

one can find where is information of the original diary in the final time slice. TU: Need a

figure here

The surprising results of HP is summarized into the following inequality.

1We follow the notation of Yoshida Kitaev
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Quantum Error Correctionとの関係

Hayden-Preskill
noise channel

recovery mapencode

Hayden-Preskill noise channel

recovery mapが存在する条件はQuantum Error Correction(QEC) condition
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

1We follow the notation of Yoshida Kitaev
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hole has emitted more than half of its original entropy 1, and they approximately form a

1We follow the notation of Yoshida Kitaev
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D̃Ã,D̃0Ã0UCD̃0,T̃ 0Ã0
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

1We follow the notation of Yoshida Kitaev
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Quantum Error Correctionとの関係

QEC conditionを満たす時、recovery mapとして、Petz recovery mapを構成できる

Hayden-Preskillのようなchaoticな理論ではscramblingにより、 はflat spectrum
次のようなPetz liteの形まで単純化できる(          とできる)

ここで は のadjoint channel (                                                                 )

This again implies the information of the diary is recoverable from Hawking radiation

DE. Moreover, the concrete expression of the recovery map is known, is called the Petz

recovery map
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2 ]�

1
2 . (4.5) eq:petzMap

where � is arbitrary density matrix on the code subspace Hcode. N�1/2 factor of the Petz

recovery map is di�cult to compute in general. One way for doing this is, as in XXX

first making the replacement N�1/2 ! N n, where n is a positive integer, computing it

for all n, then taking analytic continuation. Also N�1/2 part is preventing us from having

an operational meaning of the map. However, in systems exhibiting quantum chaos, we

expect that the recovery map gets simplified, because N [�] has a flat spectrum, therefore the

approximation R ⇠ N † appears to be possible. If this is the case, since ⇢ ⇠ N †N [⇢]) for

arbitrary density matrix ⇢ in the code subspace, therefore the relative entropy between them

S(⇢||N †N [⇢]) vanishes.

For the HP channel N † is given by
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TU: Write the overlap in terms of U.

For later convenience, we introduce a correctly normalized recovery map

RLite

D,B!T [ODB] :=
1

N
· dBdD

dT
N †

D,B!T
[ODB] , (4.7) eq:petzLite

and define it as the Petz lite. Here N is the normalization constant
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✓
dD

dT

◆
2

+ 1, (4.8)

determined by the condition trT
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RLite
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[NT!D,B[�T ] ]

i
= tr [�T ] = 1, where �T is some

reference state in T . In the Haar random case, the choice of the reference state �T is not

important as long as it is normalized.
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and ignore the di↵erence between Haar random unitary and Gaussian random coe�cients5.

This implies the Haar random average can be identified with “gravitational path integral”,

so we will use the Haar random average and “gravitational path integral” interchangeably

under the assumption.

AM: I might add comments on di↵erences between the West coast model and our West-

coast notation method. Here we list up some of the di↵erence we need to note

• the dimension of the Hawking radiation k is bounded below by dB = dA, which is the

dimension of the initial black hole, or equivalently, the dimension of the early radiation.

• Our “gravitational saddle including the EOW brane and code excitations” must be

consistent with the Wick contractions induced from the Haar random average. In

the West coast model, code excitation’s trajectory and EOW brane’s trajectory are

independent. However, in our West-coast notation method, their trajectories can not

be independent since their trajectories are directly related to Wick contractions induced

from the Haar random average.

Related to the above comment, in our West-coast notation method, there are more

complicated geometries such as non-planar geometries, but they must be consistent

with Wick contractions or original Haar random average.

• In the West coast model, Euclidean quantum gravity is assumed. However, our setting

or the Hayden-Preskill setting, Euclidean time (evolution) is not used. See
Akers:2022qdl,Blommaert:2023vbz
[4? ] for

related (but di↵erent) discussions.

AM: Writing

In the above discussion, we gave the West-coast notation for the HP channel, but we can

similarly consider the West-coast notation for the adjoint channel (4.6),

N †
D,B!T

[ODB] =
1

kdC

dTX

T,T 0=1

��T 0↵hT | ·
kX

i,j=1

D
 
T

0
j

��� T

i

E
hj| ODB |ii . (4.21) eq:hpAdjChannel

Gra

AM: We need to mention the assumption dT ⌧ k, dC here. This ensure that the variance

becomes su�ciently small. Or to ensure the normalization of the Petz lite is valid, we would

need to require the condition dT ⌧ k, dC . It might be better to move this mention to the

Petz lite section. I moved this statement to a later section.

AM: If needed, I might add example of this evaluations.

Below, using this graphical expression, we evaluate several relative entropies to check the

validity of the approximation R ⇠ N †.

5See e.g.,
Kudler-Flam:2021alo
[? ] for the related discussion.
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

1We follow the notation of Yoshida Kitaev
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and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).

Thus we have shown the statement that, when the condition dT /dD ⌧ 1 holds, the

following relation holds,

S(RLite[N [⇢]] ||RLite[N [�]]) ⇡ S (⇢||�) . (4.59)

As we explained before, this relation gives an evidence that the Petz lite works as the recovery

map for the channel N .

4.1.2 Relative entropy and Petz-lite: Data-processing inequality

In the previous subsection, we have evaluated the two relative entropies and obtained the

result

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]).

As we discussed in the previous subsection, this relation is not su�cient for ensuring that

RLite indeed works as a recovery map, that is, RLite[N [⇢]] = ⇢ and RLite[N [�]] = �. To

ensure that, we can study the relative entropy between ⇢ and RLite[N [⇢]] and check that

when k � dCdT , the Haar averaged relative entropy vanishes AM: Another possibility: We

evaluate � logF (⇢, ⌘) ⇡ 0.

S (⇢||RLite[N [⇢]]) = S
�
⇢||⇢0

T

�
⇡ 0, (4.60)

where we recall that ⇢0
T
is defined by (4.42).

We evaluate the averaged relative entropy by using the replica trick
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(4.61)

where in the final line, we again used the fact that, at large Hilbert dimension limit, taking

the Haar average almost commutes with the logarithm as previous computations.

To proceed the computation, let us evaluate the second term by using the West-coast

notation again. This evaluation is almost the same as those of tr
⇥�
⇢
0
T

�
n
⇤
, and we can evaluate

it by just replacing one of the density matrices ⇢0
T
with the original one ⇢ in the computation

of tr
⇥�
⇢
0
T

�
n
⇤
. Thus, we can use the previous result AM: add link with some modification,

and the resulting expression is given by AM: Add explanation whether we can use the

approximation ⇢
0
T
.
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evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

1We follow the notation of Yoshida Kitaev
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Hayden-Preskill noise channelに対するadjoint channelは

Hayden-Preskill set upでPetz liteを構成し、実際にrecovery mapになっていること
すなわち が成り⽴つことをGravitationalな計算で⽰した
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West Coast Paperとの関係

where in the second line, we used the relation dBdT = dCdD due to the unitarity of the Haar

random unitary. For the parameter region dT /dD ⌧ 1, the normalization is just given by

dC , which coincides with the quantum information theoretic argument. AM: Add Link to

appendix

4.1 West-coast-model-like picture and replica-wormhole-like objects

In the following, we are interested in the typical properties of the recovery channel for the

HP channel. To investigate these properties, we will consider replicated quantities, such as

tr(N [⇢T ])n involving a bunch of Haar random unitaries. Since such averaging involves Wick

type contractions between various pairs of Harr random unitary matrices in the quantity of

the interest, it is convenient to introduce a graphical notation that manifests which pair of

unitaries are contracted. Hence here we introduce a notation similar to the one employed in
Penington:2019kki
[2] for modeling the black hole microstates and their statistical properties.

To begin with, let us define the following black hole microstate on C, involving a Harr

random unitary

�� T

i

↵
C
:=

p
dCdD

dCX

C=1

|CiUC,T ;i . (4.10)

Here {|Ci} is the set of basis states on the Hilbert space HC and the index i collec-

tively denote the indices for both late radiation D and early radiation E, i : (D,E) or more
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noise channelとそのadjointを以下のようにWest Coast Paper likeな
Gravitational Path Integralの形に書き直すことができる
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and ignore the di↵erence between Haar random unitary and Gaussian random coe�cients5.

This implies the Haar random average can be identified with “gravitational path integral”,

so we will use the Haar random average and “gravitational path integral” interchangeably

under the assumption.

AM: I might add comments on di↵erences between the West coast model and our West-

coast notation method. Here we list up some of the di↵erence we need to note

• the dimension of the Hawking radiation k is bounded below by dB = dA, which is the

dimension of the initial black hole, or equivalently, the dimension of the early radiation.

• Our “gravitational saddle including the EOW brane and code excitations” must be

consistent with the Wick contractions induced from the Haar random average. In

the West coast model, code excitation’s trajectory and EOW brane’s trajectory are

independent. However, in our West-coast notation method, their trajectories can not

be independent since their trajectories are directly related to Wick contractions induced

from the Haar random average.

Related to the above comment, in our West-coast notation method, there are more

complicated geometries such as non-planar geometries, but they must be consistent

with Wick contractions or original Haar random average.

• In the West coast model, Euclidean quantum gravity is assumed. However, our setting

or the Hayden-Preskill setting, Euclidean time (evolution) is not used. See
Akers:2022qdl,Blommaert:2023vbz
[4? ] for

related (but di↵erent) discussions.

AM: Writing

In the above discussion, we gave the West-coast notation for the HP channel, but we can

similarly consider the West-coast notation for the adjoint channel (4.6),

N †
D,B!T

[ODB] =
1

kdC

dTX

T,T 0=1

��T 0↵hT | ·
kX

i,j=1

D
 
T

0
j

��� T

i

E
hj| ODB |ii . (4.21) eq:hpAdjChannel

Gra

AM: We need to mention the assumption dT ⌧ k, dC here. This ensure that the variance

becomes su�ciently small. Or to ensure the normalization of the Petz lite is valid, we would

need to require the condition dT ⌧ k, dC . It might be better to move this mention to the

Petz lite section. I moved this statement to a later section.

AM: If needed, I might add example of this evaluations.

Below, using this graphical expression, we evaluate several relative entropies to check the

validity of the approximation R ⇠ N †.

5See e.g.,
Kudler-Flam:2021alo
[? ] for the related discussion.
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重⼒の微視的状態を と定義し、

とすれば上記の式が得られる (     はcode subspaceの⾜)

k = dDdB

i

j

T

T
0

4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

| HP i = (IR ⌦ UT,A!C,D ⌦ IB) |EPRiR,T
⌦ |EPRi

A,B
, (4.1) eq:totaState

where UT,A!C,D is a random unitary matrix from R, T to C,D, which models the chaotic

dynamics of the black hole.By finding the Hilbert space with which R is mostly entangled,

one can find where is information of the original diary in the final time slice. TU: Need a

figure here

The surprising results of HP is summarized into the following inequality.

1We follow the notation of Yoshida Kitaev
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This is the HP channel in the West-coast notation. In this notation, we call the subscript

index i Hawking radiation index, and the superscript T code index.

TU: Perhaps it is better to place below to Appendix

West coast model treats each of these microstate | ii by a single-sided AdS black hole

with insertion of “end of the world brane (or EoW brane in short) labeled by the index i behind

the horizon. This state has a Hartle Hawking type preparation, in terms of a Euclidean path
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4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

| HP i = (IR ⌦ UT,A!C,D ⌦ IB) |EPRiR,T
⌦ |EPRi

A,B
, (4.1) eq:totaState

where UT,A!C,D is a random unitary matrix from R, T to C,D, which models the chaotic

dynamics of the black hole.By finding the Hilbert space with which R is mostly entangled,

1We follow the notation of Yoshida Kitaev
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randomnessの平均の計算をdiagrammaticに⾏う規則が得られた

Weingarten calculus

WCP like diagrammatic calculation



⽬次

3. Hayden-PreskillのRecovery mapについて(本論)

① Hayden-PreskillでRecovery mapが存在する条件

② Petz LiteがHayden-PreskillのRecovery mapになっていること

③ Yoshida-KitaevのdecoderがPetz Liteとみなせること



得られた結果

• recovery mapが存在する必要⼗分条件は
が (sufficiency)を満たすことである

Hayden-Preskill set upでGravitationalにsufficiencyを計算して
late timeでsufficiencyを満たす(recovery mapが存在する)ことを⽰した

• decoupling conditionが成り⽴つ時、Petz liteはHayden-Preskillのrecovery map

として機能すること、すなわち以下が成り⽴つことを⽰した
•

•

• Hayden-Preskillのdecoderとして知られているYoshida-Kitaev decoderは
Petz liteとみなせることを⽰した
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evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

1We follow the notation of Yoshida Kitaev
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appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after
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S(⇢||�) � S(N [⇢]||N [�]) ⇡ 0, that is, there is no recovery map. However, even in the situation

dT � dC , there is a recovery map as long as k � dCdT . However, I do not know the Petz

lite is valid even for that case.

The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.39)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.40)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick
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where we defined ⇢0
T
and �0

T
by

⇢
0
T
:= RLite[N [⇢]], (4.42) eq:defofRhoT

�
0
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:= RLite[N [�]]. (4.43)

From the definition of the Petz lite (4.7) and the West-coast notations (4.12),(4.21), the
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(4.44)

6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).

Thus we have shown the statement that, when the condition dT /dD ⌧ 1 holds, the

following relation holds,

S(RLite[N [⇢]] ||RLite[N [�]]) ⇡ S (⇢||�) . (4.59)

As we explained before, this relation gives an evidence that the Petz lite works as the recovery

map for the channel N .

4.1.2 Relative entropy and Petz-lite: Data-processing inequality

In the previous subsection, we have evaluated the two relative entropies and obtained the

result

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]).

As we discussed in the previous subsection, this relation is not su�cient for ensuring that

RLite indeed works as a recovery map, that is, RLite[N [⇢]] = ⇢ and RLite[N [�]] = �. To

ensure that, we can study the relative entropy between ⇢ and RLite[N [⇢]] and check that

when k � dCdT , the Haar averaged relative entropy vanishes AM: Another possibility: We

evaluate � logF (⇢, ⌘) ⇡ 0.

S (⇢||RLite[N [⇢]]) = S
�
⇢||⇢0

T

�
⇡ 0, (4.60)

where we recall that ⇢0
T
is defined by (4.42).

We evaluate the averaged relative entropy by using the replica trick
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where in the final line, we again used the fact that, at large Hilbert dimension limit, taking

the Haar average almost commutes with the logarithm as previous computations.

To proceed the computation, let us evaluate the second term by using the West-coast

notation again. This evaluation is almost the same as those of tr
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⇢
0
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, and we can evaluate

it by just replacing one of the density matrices ⇢0
T
with the original one ⇢ in the computation
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0
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⇤
. Thus, we can use the previous result AM: add link with some modification,

and the resulting expression is given by AM: Add explanation whether we can use the
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Hayden-PreskillでRecovery mapが存在する条件

In the above discussion, we gave the West-coast notation for the HP channel, but we can

similarly consider the West-coast notation for the adjoint channel (4.6),

N †
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1

kdC
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AM: We need to mention the assumption dT ⌧ k, dC here. This ensure that the variance

becomes su�ciently small. Or to ensure the normalization of the Petz lite is valid, we would

need to require the condition dT ⌧ k, dC . It might be better to move this mention to the

Petz lite section. I moved this statement to a later section.

AM: If needed, I might add example of this evaluations.

Below, using this graphical expression, we evaluate several relative entropies to check the

validity of the approximation R ⇠ N †.

4.1.1 Relative entropy: Su�ciency

Another characterization of the existence of the recovery map R for given N is the notion

of su�ciency. To state this, let us first recall the fact that relative entropy satisfies the

monotonicity property

S(⇢||�) � S(N [⇢]||N [�]) (4.22)

for any CTPT map N . By repeating this we have

S(⇢||�) � S(N [⇢]||N [�]) � S(RN [⇢]||RN [�]), (4.23)

therefore if the recovery map exists RN = 1, then S(⇢||�) = S(N [⇢]||N [�]), for any density

matices on the code subspace. This condition is known as su�ciency, and it was shown that

if N satisfies this condition, the recovery map is given by (4.5). We will review the argument

that this condition is equivalent to the Knill La✏ame condition, and the decoupling condition

(4.2). Here we check the HP channel (4.3) does satisfy su�ciency, by directory computing

the relative entropy S(N [⇢]||N [�])

Since our interest is a typical result under the Haar random average, we consider the

Haar averaged relative entropy, S(N [⇢]||N [�]). To evaluate the relative entropy, we use the

replica trick

S(N [⇢]||N [�]) = lim
n!1

1

n� 1

⇣
log tr [N [⇢]n]� log tr [N [⇢]N [�]n�1]

⌘
. (4.24)

Generally, since it is di�cult to evaluate the Haar average of logarithmic functional, instead

of the expression, we consider

S(N [⇢]||N [�]) ⇡ lim
n!1

1

n� 1

⇣
log tr [N [⇢]n]� log tr [N [⇢]N [�]n�1]

⌘
. (4.25)
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となる条件を求めよう

を計算すれば良いIt is known that in the large Hilbert dimension limit, this quantity is almost equal to the

original one.

First we focus on tr [N [⇢]n]. Using the the West-coast notation (4.12), the trace tr [N [⇢]n]

can be written in terms of overlaps,
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YN: Maybe the other terms need similar change.

where the bold fonts i,T in the summation symbol means the collective notations;
P

k

i=1
=

P
k

i1=1
· · ·

P
k

in=1
. This equation can be also expressed graphically as in figure AM:

Add figure. Once we have the graphical expression, which specifies “the boundary condition

of the gravitational path integral”, we can evaluate the “gravitational path integral”, which

corresponds to the Haar average.

After the “gravitational path integral”, there are many saddles AM: Add figures obeying

the boundary condition, but candidate dominant saddles for early times (dD ⌧ dT ) and late

times (dD � dT ) are given by fully-disconnected (Hawking) saddles AM: Add figure and

fully-connected (replica wormhole) saddle AM: Add figure respectively. For simplicity, we

focus on the two saddles below.AM: I might add discussion on (partially connected) saddles.

In the fully disconnected saddle, we can read o↵ the resulting expression from figure AM:

figure or evaluate the original expression with the normalization (4.13)
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YN: We need similar changes with the above equation. How about combining ⇢s here?
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YN: We need similar changes with the above equation. How about combining ⇢s here?
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Combining these two results, tr [N [⇢]n] is given by
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where · · · means contributions coming from partially connected saddles.
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Thus, when the necessary condition for the decoupling condition, dT /dD ⌧ 1, holds, the

dominant contribution is given by the the fully connected saddle.

AM: I might add discussion on the Page curve like structure. Generally, for a specific

input density matrix ⇢, the dominance changing scale, which is analogous to the Page time,

depends on the input density matrix. More qualitatively, the scale is determined the condition

(k/dC)n�1 = (tr[⇢])n/ tr[⇢n].
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YN: We need similar changes with the above equation.

We can evaluate the “gravitational path integral” of this quantity as in AM: add figure.

For simplicity, we again focus only on the fully disconnected and fully connected saddles.
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where · · · again means contributions coming from partially connected saddles, and also, in

the second approximate equality we assumed that 1/dT  tr
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⇤
 1 AM: I will modify

this condition in order to obtain the conditions.

Now that we have evaluated the two terms appeared in the relative entropy, we can obtain

the resulting relative entropy
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(4.37) eq:relativeNrho

NsigmaThus we can conclude that, when the condition dT /dD ⌧ 1 is satisfied, the relative entropies

obeys the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�). (4.38)

AM: It might be better to add comments that the combination of dC dT can be under-

stood as the e↵ective dimension of the black hole after an very complicated diary, which is

described by the maximally mixed state, is thrown into the black hole. Thus, after the “Page

time”, which is given by k = dC dT , we can see “the black hole interior” including the diary.

The “Page time” means that the more larger the dictionary is, the more Hawking radiation

we need to see “the black hole interior” or recovery the diary. We can understand this story

in another way by introducing a reference system R purifying the mixed state. Here, to purify

the mixed state, the dimension of the reference system must be dT = dR. In this situation,

after the scrambling, we have four systems R,C,D and B. As usual discussion of the Hayden-

Preskill protocol, recovering the diary is equivalent to seeing the reference system R through

the entanglement between R,C and D,B.

AM: It might be better to add comment on the opposite limit. For example, in the

limit we have the thermalized density matrices, so we can no longer distinguish two density

matrices.

AM: I will add a comment that how partially connected saddles modify the above rela-

tion.

AM: I will also add comments on the situation dT � dC . Note that we can not assume

the other condition dT � k since in the case, the data processing inequality is not saturated,
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Since there are upper and lower bounds on tr [⇢n], that is, 1/(dT )n�1  tr [⇢n]  1, we

can see that
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YN: Maybe the other terms need similar change.

where the bold fonts i,T in the summation symbol means the collective notations;
P

k

i=1
=

P
k

i1=1
· · ·

P
k

in=1
. This equation can be also expressed graphically as in figure AM:

Add figure. Once we have the graphical expression, which specifies “the boundary condition

of the gravitational path integral”, we can evaluate the “gravitational path integral”, which

corresponds to the Haar average.

After the “gravitational path integral”, there are many saddles AM: Add figures obeying

the boundary condition, but candidate dominant saddles for early times (dD ⌧ dT ) and late

times (dD � dT ) are given by fully-disconnected (Hawking) saddles AM: Add figure and

fully-connected (replica wormhole) saddle AM: Add figure respectively. For simplicity, we

focus on the two saddles below.AM: I might add discussion on (partially connected) saddles.

In the fully disconnected saddle, we can read o↵ the resulting expression from figure AM:

figure or evaluate the original expression with the normalization (4.13)
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YN: We need similar changes with the above equation. How about combining ⇢s here?

The result given by

tr [N [⇢]n]
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(4.28)

tr [N [⇢]n]
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(4.29)
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Similarly, in the fully connected saddle AM: figure, the trace can be written as
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Combining these two results, tr [N [⇢]n] is given by

tr [N [⇢]n] =
1

(k)n�1
(tr [⇢])n +

1

(dC)
n�1

tr [⇢n] + · · · , (4.33)

where · · · means contributions coming from partially connected saddles.

Since there are upper and lower bounds on tr [⇢n], that is, 1/(dT )n�1  tr [⇢n]  1, we

can see that

tr [N [⇢]n] =
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Similarly, in the fully connected saddle AM: figure, the trace can be written as
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Combining these two results, tr [N [⇢]n] is given by

tr [N [⇢]n] =
1

(k)n�1
(tr [⇢])n +

1

(dC)
n�1

tr [⇢n] + · · · , (4.33)

where · · · means contributions coming from partially connected saddles.

Since there are upper and lower bounds on tr [⇢n], that is, 1/(dT )n�1  tr [⇢n]  1, we

can see that
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(4.34)

– 18 –

late timeでSufficiency条件を満たす
ことがわかる

WCP likeな計算では、各時点で
どのsaddleがdominantかの詳細が
明確である



Petz LiteがHayden-PreskillのRecovery mapになっていること

S(⇢||�) � S(N [⇢]||N [�]) ⇡ 0, that is, there is no recovery map. However, even in the situation

dT � dC , there is a recovery map as long as k � dCdT . However, I do not know the Petz

lite is valid even for that case.

The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.39)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.40)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick

S(⇢0
T
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T
) = lim

n!1
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i◆ (4.41)

where we defined ⇢0
T
and �0

T
by

⇢
0
T
:= RLite[N [⇢]], (4.42) eq:defofRhoT

�
0
T
:= RLite[N [�]]. (4.43)

From the definition of the Petz lite (4.7) and the West-coast notations (4.12),(4.21), the

density matrix ⇢0
T
can be expressed as

⇢
0
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N
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(4.44)

6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.41)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.42)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick
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where we defined ⇢0
T
and �0

T
by

⇢
0
T
:= RLite[N [⇢]], (4.44) eq:defofRhoT

�
0
T
:= RLite[N [�]]. (4.45)

From the definition of the Petz lite (4.7) and the West-coast notations (4.12),(4.21), the

density matrix ⇢0
T
can be expressed as
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(4.46)

6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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computations. So, below we assume the condition dT ⌧ k dC . AM: We might not need to

add the condition dT ⌧ k dC if we are interested in only late times dT dC ⌧ k, which ensures

the decoupling condition, or equivalently, the su�ciency. On the other hand, if we focus on

early times dT dC � k, we need some condition to obtain analytic results unless we add all

possible contributions. In particular, if we impose the condition dT ⌧ k dC , we can simplify

graphical calculations as discussed above.

After the “gravitational path integral” under the condition dT ⌧ k dC , we can see that

possible dominant planar contributions come from saddle in the below formAM: Add figure.
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(4.51)

Indeed, saddles being in the above form include those of fully disconnected and fully connected

saddles with respect to the code indices T , which give dominant contributions for early times

(k ⌧ dC) and late times (dC dT ⌧ k) respectively. Here, the fully disconnected saddle with

respect to the code indices T is induced by the contractions AM: Add figure
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(a = 1, · · · , n), (4.52)

and the fully connected saddle is induced by the remaining contraction AM: Add figure
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Thus, we have
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(4.54)

where, in the first line, · · · means sub-leading contributions coming from partially connected

saddle, which are suppressed by inverse powers of k dC but enhanced by powers of dT like the

n = 2 example, (4.50). So, as long as k dC � dT , the above approximation is valid.

the additional code index T . If the additional contributions from the code indices overcome the suppression by

the total Hilbert space dimension, we can no longer ignore contributions connecting di↵erent purities. However,

if we assume the condition dT ⌧ dC , k, such a situation does not happen. AM: If needed, I will add further

comments on the index structure which give larger contributions.
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The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.41)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.42)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick
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where we defined ⇢0
T
and �0

T
by

⇢
0
T
:= RLite[N [⇢]], (4.44) eq:defofRhoT
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0
T
:= RLite[N [�]]. (4.45)

From the definition of the Petz lite (4.7) and the West-coast notations (4.12),(4.21), the

density matrix ⇢0
T
can be expressed as
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(4.46)

6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.41)
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N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and
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6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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where · · · are again sub-leading contributions. AM: I need to recheck this statement. Again,

as long as k dC � dT , the above approximation is valid.
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Petz LiteがHayden-PreskillのRecovery mapになっていること

and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).

Thus we have shown the statement that, when the condition dT /dD ⌧ 1 holds, the

following relation holds,

S(RLite[N [⇢]] ||RLite[N [�]]) ⇡ S (⇢||�) . (4.59)

As we explained before, this relation gives an evidence that the Petz lite works as the recovery

map for the channel N .

4.1.2 Relative entropy and Petz-lite: Data-processing inequality

In the previous subsection, we have evaluated the two relative entropies and obtained the

result

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]).

As we discussed in the previous subsection, this relation is not su�cient for ensuring that

RLite indeed works as a recovery map, that is, RLite[N [⇢]] = ⇢ and RLite[N [�]] = �. To

ensure that, we can study the relative entropy between ⇢ and RLite[N [⇢]] and check that

when k � dCdT , the Haar averaged relative entropy vanishes AM: Another possibility: We

evaluate � logF (⇢, ⌘) ⇡ 0.
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where in the final line, we again used the fact that, at large Hilbert dimension limit, taking

the Haar average almost commutes with the logarithm as previous computations.

To proceed the computation, let us evaluate the second term by using the West-coast

notation again. This evaluation is almost the same as those of tr
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it by just replacing one of the density matrices ⇢0
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approximation ⇢
0
T
.

tr
h
⇢
�
⇢
0
T

�
n�1

i
= tr


⇢

⇣
⇢
0
T

⌘
n�1

�
+ · · ·

⇡ tr


⇢

⇣
⇢
0
T

⌘
n�1

�
,

(4.62)

– 23 –

を⽰す

and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).

Thus we have shown the statement that, when the condition dT /dD ⌧ 1 holds, the

following relation holds,

S(RLite[N [⇢]] ||RLite[N [�]]) ⇡ S (⇢||�) . (4.59)

As we explained before, this relation gives an evidence that the Petz lite works as the recovery

map for the channel N .

4.1.2 Relative entropy and Petz-lite: Data-processing inequality

In the previous subsection, we have evaluated the two relative entropies and obtained the

result

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]).

As we discussed in the previous subsection, this relation is not su�cient for ensuring that

RLite indeed works as a recovery map, that is, RLite[N [⇢]] = ⇢ and RLite[N [�]] = �. To

ensure that, we can study the relative entropy between ⇢ and RLite[N [⇢]] and check that

when k � dCdT , the Haar averaged relative entropy vanishes AM: Another possibility: We

evaluate � logF (⇢, ⌘) ⇡ 0.

S (⇢||RLite[N [⇢]]) = S
�
⇢||⇢0

T

�
⇡ 0, (4.60)

where we recall that ⇢0
T
is defined by (4.42).

We evaluate the averaged relative entropy by using the replica trick

S(⇢||⇢0
T
) = tr

⇥
⇢
�
log ⇢� log ⇢0

T

�⇤

= S(⇢)� lim
n!1

1

n� 1
log tr

h
⇢
�
⇢
0
T

�
n�1

i

⇡ S(⇢)� lim
n!1

1

n� 1
log tr

h
⇢
�
⇢
0
T

�
n�1

i
,

(4.61)

where in the final line, we again used the fact that, at large Hilbert dimension limit, taking

the Haar average almost commutes with the logarithm as previous computations.

To proceed the computation, let us evaluate the second term by using the West-coast

notation again. This evaluation is almost the same as those of tr
⇥�
⇢
0
T

�
n
⇤
, and we can evaluate

it by just replacing one of the density matrices ⇢0
T
with the original one ⇢ in the computation

of tr
⇥�
⇢
0
T

�
n
⇤
. Thus, we can use the previous result AM: add link with some modification,

and the resulting expression is given by AM: Add explanation whether we can use the

approximation ⇢
0
T
.

tr
h
⇢
�
⇢
0
T

�
n�1

i
= tr


⇢

⇣
⇢
0
T

⌘
n�1

�
+ · · ·

⇡ tr


⇢

⇣
⇢
0
T

⌘
n�1

�
,

(4.62)

– 23 –

where · · · means sub-leading contributions coming from partially connected saddle as in the

previous subsection. The sub-leading contributions are suppressed by inverse powers of k dC

but enhanced by powers of dT . AM: Also, I need to recheck this statement. So, as long as

we consider the parameter region k dC � dT , we can use the above approximation.

Then, from this result, we obtain the relative entropy,
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where ⇢
0
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is again given by (4.57). We can see this relative entropy has the following asymp-

totic form
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Thus, for early times k ⌧ dC , the relative entropy is non-vanishing unless ⇢ = IT /dT , but

for late times dC dT ⌧ k, the relative entropy is vanishing. This result implies that when

k � dCdT , RLite indeed works as a recovery map. AM: i might add comments on sub-leading

contributions when dT is large.

We give few comments on this result and its derivation. First, since the above compu-

tation of the relative entropy does not depend on ⇢, we can also extend the computation

to other density matrices in system T . Second, we must note that, to obtain the vanishing

relative entropy, we need to consider the dominant saddle point approximation for k � dCdT .

This fact is directly related to the su�ciency discussion of the previous subsection AM: Add

link, in particular the evaluation of the relative entropy S(RLite[N [⇢]] ||RLite[N [�]]). This

relation have some analogy with the known quantum information theoretic relations AM: I

will add the inequality by Wilde; 1505.04661 Recoverability in quantum information theory

AM: Also we note that this dominant saddle point approximation is related to our

flat-spectrum argument. I will add explanation or remove this discussion.
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and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).
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result
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where in the final line, we again used the fact that, at large Hilbert dimension limit, taking

the Haar average almost commutes with the logarithm as previous computations.
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and this is consistent with the behavior of the previous relative entropy S(N [⇢]||N [�]), (4.37).
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where · · · means sub-leading contributions coming from partially connected saddle as in the

previous subsection. The sub-leading contributions are suppressed by inverse powers of k dC

but enhanced by powers of dT . AM: Also, I need to recheck this statement. So, as long as

we consider the parameter region k dC � dT , we can use the above approximation.
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Thus, for early times k ⌧ dC , the relative entropy is non-vanishing unless ⇢ = IT /dT , but

for late times dC dT ⌧ k, the relative entropy is vanishing. This result implies that when

k � dCdT , RLite indeed works as a recovery map. AM: i might add comments on sub-leading

contributions when dT is large.

We give few comments on this result and its derivation. First, since the above compu-

tation of the relative entropy does not depend on ⇢, we can also extend the computation

to other density matrices in system T . Second, we must note that, to obtain the vanishing

relative entropy, we need to consider the dominant saddle point approximation for k � dCdT .

This fact is directly related to the su�ciency discussion of the previous subsection AM: Add

link, in particular the evaluation of the relative entropy S(RLite[N [⇢]] ||RLite[N [�]]). This

relation have some analogy with the known quantum information theoretic relations AM: I

will add the inequality by Wilde; 1505.04661 Recoverability in quantum information theory

AM: Also we note that this dominant saddle point approximation is related to our

flat-spectrum argument. I will add explanation or remove this discussion.
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These contributions are corrections to the leading planar contributions.
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Petz LiteがHayden-PreskillのRecovery mapになっていること

S(⇢||�) � S(N [⇢]||N [�]) ⇡ 0, that is, there is no recovery map. However, even in the situation

dT � dC , there is a recovery map as long as k � dCdT . However, I do not know the Petz

lite is valid even for that case.

The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.39)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.40)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick
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by
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�
0
T
:= RLite[N [�]]. (4.43)
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6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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も確かめよう
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where · · · are again sub-leading contributions. AM: I need to recheck this statement. Again,

as long as k dC � dT , the above approximation is valid.
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where · · · are again sub-leading contributions. AM: I need to recheck this statement. Again,

as long as k dC � dT , the above approximation is valid.
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S(⇢||�) � S(N [⇢]||N [�]) ⇡ 0, that is, there is no recovery map. However, even in the situation

dT � dC , there is a recovery map as long as k � dCdT . However, I do not know the Petz

lite is valid even for that case.

The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.39)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.40)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
�
⇢||RLite[N [⇢]]

�
we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick
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where we defined ⇢0
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and �0
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by
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From the definition of the Petz lite (4.7) and the West-coast notations (4.12),(4.21), the
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6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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late timeでは、 が成り⽴つ
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rimeIn this result, the first line contributions came from the “gravitational saddles” arising from,
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7We can also consider other non-planar (crossing) contributions, and they are given by
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These contributions are corrections to the leading planar contributions.

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

⇢
0
T

NT!DB

RLite

DB!T

By computing this quantity in the planar (or non-crossing) limit, we have7

tr
h�
⇢
0
T

�
2
i����

Planar.

=
1

N2
· (k dC)4

(k(dC)2dT )
2

( 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!

+
1

k dC

"
1

k2

�
2 + dT tr

⇥
⇢
2
⇤
+ (dT )

2
�

+
1

k dC

�
(dT )

2 tr
⇥
⇢
2
⇤
+ 2dT + 2 tr

⇥
⇢
2
⇤�

+
1

(dC)2
dT tr

⇥
⇢
2
⇤
#)

.

(4.50) eq:PurityOfrhoP

rimeIn this result, the first line contributions came from the “gravitational saddles” arising from,

tr

⇣
⇢
0
T

⌘
2
�
=

1

N2
· (k dC)4

(k(dC)2dT )
2

 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!
, (4.51)

7We can also consider other non-planar (crossing) contributions, and they are given by

tr
⇥
(⇢0

T
)2
⇤���

Non-Planar.

=
1
N2

· (k dC)
4

(k(dC)2dT )
2

(
1

k dC

"
1

k dC

�
2dT + tr

⇥
⇢2
⇤�

+
1

(dC)2
�
2 + dT tr

⇥
⇢2
⇤�

#

+
1

(k dC)3
�
2dT tr

⇥
⇢2
⇤�

)
.

(4.49)

These contributions are corrections to the leading planar contributions.

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

⇢
0
T

NT!DB

RLite

DB!T

By computing this quantity in the planar (or non-crossing) limit, we have7

tr
h�
⇢
0
T

�
2
i����

Planar.

=
1

N2
· (k dC)4

(k(dC)2dT )
2

( 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!

+
1

k dC

"
1

k2

�
2 + dT tr

⇥
⇢
2
⇤
+ (dT )

2
�

+
1

k dC

�
(dT )

2 tr
⇥
⇢
2
⇤
+ 2dT + 2 tr

⇥
⇢
2
⇤�

+
1

(dC)2
dT tr

⇥
⇢
2
⇤
#)

.

(4.50) eq:PurityOfrhoP

rimeIn this result, the first line contributions came from the “gravitational saddles” arising from,

tr

⇣
⇢
0
T

⌘
2
�
=

1

N2
· (k dC)4

(k(dC)2dT )
2

 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!
, (4.51)

7We can also consider other non-planar (crossing) contributions, and they are given by

tr
⇥
(⇢0

T
)2
⇤���

Non-Planar.

=
1
N2

· (k dC)
4

(k(dC)2dT )
2

(
1

k dC

"
1

k dC

�
2dT + tr

⇥
⇢2
⇤�

+
1

(dC)2
�
2 + dT tr

⇥
⇢2
⇤�

#

+
1

(k dC)3
�
2dT tr

⇥
⇢2
⇤�

)
.

(4.49)

These contributions are corrections to the leading planar contributions.

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

⇢
0
T

NT!DB

RLite

DB!T

By computing this quantity in the planar (or non-crossing) limit, we have7

tr
h�
⇢
0
T

�
2
i����

Planar.

=
1

N2
· (k dC)4

(k(dC)2dT )
2

( 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!

+
1

k dC

"
1

k2

�
2 + dT tr

⇥
⇢
2
⇤
+ (dT )

2
�

+
1

k dC

�
(dT )

2 tr
⇥
⇢
2
⇤
+ 2dT + 2 tr

⇥
⇢
2
⇤�

+
1

(dC)2
dT tr

⇥
⇢
2
⇤
#)

.

(4.50) eq:PurityOfrhoP

rimeIn this result, the first line contributions came from the “gravitational saddles” arising from,

tr

⇣
⇢
0
T

⌘
2
�
=

1

N2
· (k dC)4

(k(dC)2dT )
2

 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!
, (4.51)

7We can also consider other non-planar (crossing) contributions, and they are given by

tr
⇥
(⇢0

T
)2
⇤���

Non-Planar.

=
1
N2

· (k dC)
4

(k(dC)2dT )
2

(
1

k dC

"
1

k dC

�
2dT + tr

⇥
⇢2
⇤�

+
1

(dC)2
�
2 + dT tr

⇥
⇢2
⇤�

#

+
1

(k dC)3
�
2dT tr

⇥
⇢2
⇤�

)
.

(4.49)

These contributions are corrections to the leading planar contributions.

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

�T

RLite [N [⇢T ]]

RLite [N [�T ]]

⇢
0
T

NT!DB

RLite

DB!T

N [⇢T ]

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

�T

RLite [N [⇢T ]]

RLite [N [�T ]]

⇢
0
T

NT!DB

RLite

DB!T

N [⇢T ]

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

�T

RLite [N [⇢T ]]

RLite [N [�T ]]

⇢
0
T

NT!DB

RLite

DB!T

N [⇢T ]

– 24 –

n = 2

RKY

DB!R̄

=

⇢T

�T

RLite [N [⇢T ]]

RLite [N [�T ]]

⇢
0
T

NT!DB

RLite

DB!T

N [⇢T ]

– 24 –

⼀般にはCPTP mapで距離は単調減少
(Uhlmann`s monotonicity theorem)
Cが⼗分⼩さければ距離を保つ(sufficient algebra)



Petz LiteがHayden-PreskillのRecovery mapになっていること
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and the other terms, which are suppressed by k dC , came from “gravitational saddles” con-

necting two di↵erent ⇢0
T
. Thus, if we can ignore their “gravitational saddles” connecting two

di↵erent ⇢0
T
, our computations are significantly simplified. Let us consider such a simplified

case. To validate the simplification, we need to impose some condition. We can find the

condition easily by considering large dT � 1 limit in (4.48)8,
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rimeEnhanceThus, if the condition dT ⌧ k dC is satisfied, we can use the simplification9. Here, we

only have considered the n = 2 example, but we can use the same logic to simplify our

7We can also consider other non-planar (crossing) contributions, and they are given by
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These contributions are corrections to the leading planar contributions.
8We note that k, dC are also large.
9This simplification is analogous to the discussion of the variance of the purity in random pure states or the

West coast model. Generally, contributions connecting di↵erent purities are suppressed by the total Hilbert

space dimension. Our current situation is similar to the above situation, but little bit di↵erent since we have
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leading term

computations. So, below we assume the condition dT ⌧ k dC . AM: We might not need to

add the condition dT ⌧ k dC if we are interested in only late times dT dC ⌧ k, which ensures

the decoupling condition, or equivalently, the su�ciency. On the other hand, if we focus on

early times dT dC � k, we need some condition to obtain analytic results unless we add all

possible contributions. In particular, if we impose the condition dT ⌧ k dC , we can simplify

graphical calculations as discussed above.

After the “gravitational path integral” under the condition dT ⌧ k dC , we can see that

possible dominant planar contributions come from saddle in the below formAM: Add figure.
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Indeed, saddles being in the above form include those of fully disconnected and fully connected

saddles with respect to the code indices T , which give dominant contributions for early times
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where, in the first line, · · · means sub-leading contributions coming from partially connected

saddle, which are suppressed by inverse powers of k dC but enhanced by powers of dT like the

n = 2 example, (4.50). So, as long as k dC � dT , the above approximation is valid.

the additional code index T . If the additional contributions from the code indices overcome the suppression by

the total Hilbert space dimension, we can no longer ignore contributions connecting di↵erent purities. However,

if we assume the condition dT ⌧ dC , k, such a situation does not happen. AM: If needed, I will add further

comments on the index structure which give larger contributions.
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and graphically it is given by AM: add figure. We also have the similar expression for �0
T
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and by AM: Add figure graphically. This quantity is di↵erent from previous computa-

tions, so we need to be careful about the the structure of the quantity.

To see the structure of the above quantity, let us focus on the n = 2 case,
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YN: We need similar changes with the above equation and also change of the overline.
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and graphically it is given by AM: add figure. We also have the similar expression for �0
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YN: We need similar changes with the above equation and also change of the overline.
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YN: We need similar changes with the above equation and also change of the overline.
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(補⾜)

casen = 2

By computing this quantity in the planar (or non-crossing) limit, we have7
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rimeIn this result, the first line contributions came from the “gravitational saddles” arising from,

tr

⇣
⇢
0
T

⌘
2
�
=

1

N2
· (k dC)4

(k(dC)2dT )
2

 
dT

k2
+

2

k dC
+

tr
⇥
⇢
2
⇤

(dC)
2

!
, (4.51)

and the other terms, which are suppressed by k dC , came from “gravitational saddles” con-

necting two di↵erent ⇢0
T
. Thus, if we can ignore their “gravitational saddles” connecting two

di↵erent ⇢0
T
, our computations are significantly simplified. Let us consider such a simplified

case. To validate the simplification, we need to impose some condition. We can find the

condition easily by considering large dT � 1 limit in (4.50)8,
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These contributions are corrections to the leading planar contributions.
8We note that k, dC are also large.

– 24 –

について
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The above relation implies the existence of a recovery map. In general, we can choose the

Petz map as the recovery map, but as discussed in AM: Add link, we can use the simplified

Petz map, that is, the Petz lite, as the recovery map. To check that this simplification works

correctly, we can consider the relative entropy

S(RLite[N [⇢]] ||RLite[N [�]]). (4.41)

If this relative entropy reduces to S(⇢||�) when the condition dT /dD ⌧ 1 holds, we can

conclude the relation

S(N [⇢]||N [�]) ⇡ S(⇢||�) ⇡ S(RLite[N [⇢]] ||RLite[N [�]]). (4.42)

This relation gives an evidence that the Petz lite works as the recovery map for the channel

N . However, the above relation have not still implies the relations RLite[N [⇢]] = ⇢ and

RLite[N [�]] = �
6. To show the relations RLite[N [⇢]] = ⇢ and RLite[N [�]] = �, we need to

additionally consider another relative entropy S
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we will compute later.

To evaluate S(RLite[N [⇢]] ||RLite[N [�]]), we again use the replica trick

S(⇢0
T
||�0

T
) = lim

n!1

1

n� 1

✓
log tr

⇥�
⇢
0
T

�
n
⇤
� log tr

h
⇢
0
T

�
�
0
T

�
n�1

i◆

⇡ lim
n!1

1

n� 1

✓
log tr

⇥�
⇢
0
T

�
n
⇤
� log tr

h
⇢
0
T

�
�
0
T

�
n�1

i◆ (4.43)
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6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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density matrix ⇢0
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(4.46)

6For Petz maps (or equivalently the generalized conditional expectations), there are inequalities that the

saturation of the monotonicity of the relative entropy implies RPetz
N [N [⇢]] = ⇢ AM: Add reference. However,

for the Petz lite, we do not know such a general inequality. We need to consider the relation in detail. AM: I

will modify this statement.
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最後にYoshida-Kitaev decoderがPetz liteとみなせることを⽰す

4.2 Relation to the Yoshida-Kitaev protocol

So far we have shown that when k � dCdT , the Petz lite RLite ⇠ N † indeed works as a

recovery map. However, we have not discussed the physical interpretation of the Petz lite.

So, in this subsection, we explain the interpretation by showing the equivalence between

the Petz lite and the well-known Yoshida-Kitaev (YK) protocol. The relation between the

Yoshida-Kitaev protocol and the Petz map has been AM: (implicitly?) suggested by Yoshida

AM: Add reference . We give a brief review of the Yoshida-Kitaev protocol in appendix D.

Before showing the equivalence, we note that the recovery map RKY

D,B!R
induced by the

YK protocol, which we call the Yoshida-Kitaev (YK) recovery map,

RKY

D,B!R
[ODB] =

1

�
tr

C

h
D,D

hEPR|U⇤
B,T!C,D

⇣
ODB ⌦ |EPRi

T ,R
hEPR|

⌘
U

T

B,T!C,D
|EPRi

D,D

i
.

(4.65) eq:kyRecovery

In appendix D, we give the derivation of the recovery map.

For the above YK recovery map, we show the equivalence between the YK recovery map

RKY

D,B!R
and the Petz lite (4.7), RLite

D,B!T
up to the isomorphism V

T!R
between systems T

and R,

RKY

D,B!R
[ODB] = V

T!R
RLite

D,B!T [ODB] V
†
T!R

, (4.66) eq:kyPetzRelati

on

where V
T!R

is explicitly given by

V
T!R

:= dT T,T
hEPR|EPRi

T ,R
=

dTX

T̃=1

���T̃
E

RT

D
T̃

��� . (4.67) eq:isomorphism

Let us start the proof AM: I will also add the circuit diagrammatic derivation or just

the diagrammatic relation between the Petz lite and the KY recovery channel.. We start with

the YK recovery map (4.65). First, we rewrite the trace of subsystem C in the YK recovery

map as

tr
C
[O] = dC C,C

hEPR| (IC ⌦O) |EPRi
C,C

, (4.68) eq:traceToEPR

and introduce two EPR states |EPRi
D,D

and |EPRi
C,C

.

Next, by using (4.68) and the relation (see appendix E for the derivation)

U
T

C,D!B,T
|EPRi

C,C
⌦ |EPRi

D,D
= UA,T!C,D |EPRi

A,B
⌦ |EPRi

T,T
, (4.69) eq:opetransEPR
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the KY recovery map (4.66) can be rewritten as
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dC
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hEPR|
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[OD,B] V
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(4.70)

where, in the final line, we used the definition of the isomorphism (4.67) and the adjoint HP

channel (4.6). Additionally, the above overall constant dC

(dT )2 �
coincides with that of the Petz

lite (4.9), since
dC

(dT )2�
=

dC

1 +

✓
dT

dD

◆
2
, (4.71)

where we used the definition of �, (D.1). Therefore the above expression implies the desired

relation (4.66).

AM: Add comments on the consequence of the equivalence.

5 Recovery map for the Hayden-Preskill channel in SYK

AM: In this subsection, we consider the HP protocol for SYK. We first introduce the quantum

channel and its Kraus operators in SYK. Next, we will review that Chandrasekaran-Levine’s

discussion implies quantum error correcting conditions. After that, we will give the Petz lite

for this quantum channel, and explain how we can evaluate the Petz lite.

In the previous subsection, we gave the evidence that the Petz lite works as a recovery

map, under the Haar random unitary, which is a toy model of a chaotic dynamics. In this

section, we also give the non-trivial evidence under a situation for a more realistic but tractable

model of a chaotic dynamics; the SYK model. In this extension, thermal e↵ects come in the

previous discussion, and they lead to non-trivial scrambling time.

To extend the previous section results to the SYK model, we first introduce an SYK

analogue of the HP protocol and the HP channel, which we call the SYK HP channel. After

that, we explain how the Petz lite works as the recovery map for the SYK HP channel, and

in particular we show that the Petz lite recovery mechanism is closely related to an OTOC

correlator.
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これはPetz liteの規格化定数に⼀致する
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operator transpose
(cf. Reeh-Schlieder)

Yoshida-Kitaev decoderを
Hayden-PreskillにおけるPetz liteと同⼀視できた
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Hayden-Preskill set upのSYKによる研究

Hayden-Preskill set upではdynamicsをrandomなunitary gateとしていた

より物理として意味のある議論がしたい(場の理論で研究したい)

• dynamicsをSYK modelのHamiltonianとし、投げ込む情報をMajorana fermionとする
• old BHとearly radiationをEPR pair(⾼温極限)からTFD stateにする

In this section, we use the convention

{ i, j} = 2�i,j , (5.1)

for notational simplicity.

AM: I might add the brief review of the SYK model.

5.1 Hayden-Preskill protocol and the channel in SYK

We need to introduce the HP protocol in the SYK model. One of such a setup is introduced

in
Chandrasekaran:2022qmq,Chandrasekaran:2021tkb
[5, 6], and we use the setup in this paper. Firstly, we give the brief review of the SYK HP

protocol.

AM: Add brief review of
Chandrasekaran:2022qmq
[5].

Following
Chandrasekaran:2022qmq
[5], we consider two SYK models, say left SYK system L and right one R, and

the left system L is divided into two parts, L = L̃[K. These subsystems are directly related

to those of the original HP protocol; L, L̃, K and R in the SYK HP protocol correspond to

T [A = C [D , C, D and B respectively in original HP protocol.

AM: Add more explanations Next, we explain how we consider the code subspace in

the SYK HP protocol. The code subspace of
Chandrasekaran:2022qmq
[5] is two dimensional and spanned by the

ground state |TFDi
L,R

and its excited state  i,L(0) |TFDi
L,R

. Here we assume that the SYK

Majorana fermion  i,L(0) at t = 0 lives a subsystem L̃, i 2 L̃. More qualitatively, we can cor-

respond two dimensional code states |T i (T = 0, 1) to the states |TFDi
L,R

,  i,L(0) |TFDi
L,R

by considering the embedding map, AM: I might add the infinitesimal Euclidean time evo-

lution to introduce the cuto↵.

(VT,L!L ⌦ IR)
⇣
|T i

T
⌦ |TFDi

L,R

⌘
:=

8
<

:
|TFDi

L,R
for T = 0

 i,L(0) |TFDi
L,R

for T = 1.
(5.2) eq:embeddingV

AM: Add more explanations In the original HP protocol, we considered the Haar random

unitary as the unitary time evolution of the black hole. In the SYK HP protocol, the unitary

time evolution is just given by the unitary time evolution in the left system L,

UL(t) = exp (�itHL) , (5.3)

where HL is the SYK Hamiltonian of the left SYK system.

AM: Add more explanations

Combining the above discussions, we can give the total state in the SYK HP protocol as

follows

| SYK HPi = (IRef ⌦ UL(t)⌦ IR) (IRef ⌦ VT,L!L ⌦ IR)
⇣
|EPRi

Ref,T
⌦ |TFDi

L,R

⌘
, (5.4) eq:totaStateSYK
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fermionの埋め込み

Hayden-PreskillをSYKで考えると

L̃

Ref

4 Recovery map for the Hayden-Preskill channel

AM: In this section, we will review the Hayden-Preskill protocol and check the decoupling

condition.

The Hayden Preskill setup is a tractable toy model for studying information flow in

evaporating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 1, and they approximately form a

maximally entangled state |EPRiAB. Suppose Alice throws a quantum state ⇢T (often called

diary) into this old black hole. Then as the black hole further evaporates A ! C + D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here we denoted by C the remaining black hole after

emitting the late radiation D. The analysis of Hayden and Preskill showed the diary appears

in Hawking radiation almost immediately, namely after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form a

maximally entangled state |EPRiRT with the diary T , and the initial condition of the process

is |EPRiRT ⌦ |EPRiAB.

Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled, and spread over the entire degrees of freedom. The resulting state is given by

| HP i = (IR ⌦ UT,A!C,D ⌦ IB) |EPRiR,T
⌦ |EPRi

A,B
, (4.1) eq:totaState

where UT,A!C,D is a random unitary matrix from R, T to C,D, which models the chaotic

dynamics of the black hole.By finding the Hilbert space with which R is mostly entangled,

one can find where is information of the original diary in the final time slice. TU: Need a

figure here

The surprising results of HP is summarized into the following inequality.

k⇢R,C � ⇢R ⌦ ⇢Ck21 
✓
dT

dD

◆
2

, (4.2) eq:decopHP

where ⇢RC , ⇢R, ⇢C are the reduced density matrices of (4.1) on the indicated subsystems.

This inequality (4.2)implies when if one collect su�cient number of late Hawking quanta so

1We follow the notation of Yoshida Kitaev
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In this section, we use the convention

{ i, j} = 2�i,j , (5.1)

for notational simplicity.

AM: I might add the brief review of the SYK model.

5.1 Hayden-Preskill protocol and the channel in SYK

We need to introduce the HP protocol in the SYK model. One of such a setup is introduced

in
Chandrasekaran:2022qmq,Chandrasekaran:2021tkb
[5, 6], and we use the setup in this paper. Firstly, we give the brief review of the SYK HP

protocol.

AM: Add brief review of
Chandrasekaran:2022qmq
[5].

Following
Chandrasekaran:2022qmq
[5], we consider two SYK models, say left SYK system L and right one R, and

the left system L is divided into two parts, L = L̃[K. These subsystems are directly related

to those of the original HP protocol; L, L̃, K and R in the SYK HP protocol correspond to

T [A = C [D , C, D and B respectively in original HP protocol.

AM: Add more explanations Next, we explain how we consider the code subspace in

the SYK HP protocol. The code subspace of
Chandrasekaran:2022qmq
[5] is two dimensional and spanned by the

ground state |TFDi
L,R

and its excited state  i,L(0) |TFDi
L,R

. Here we assume that the SYK

Majorana fermion  i,L(0) at t = 0 lives a subsystem L̃, i 2 L̃. More qualitatively, we can cor-

respond two dimensional code states |T i (T = 0, 1) to the states |TFDi
L,R

,  i,L(0) |TFDi
L,R

by considering the embedding map, AM: I might add the infinitesimal Euclidean time evo-

lution to introduce the cuto↵.

(VT,L!L ⌦ IR)
⇣
|T i

T
⌦ |TFDi

L,R

⌘
:=

8
<

:
|TFDi

L,R
for T = 0

 i,L(0) |TFDi
L,R

for T = 1.
(5.2) eq:embeddingV

AM: Add more explanations In the original HP protocol, we considered the Haar random

unitary as the unitary time evolution of the black hole. In the SYK HP protocol, the unitary

time evolution is just given by the unitary time evolution in the left system L,

UL(t) = exp (�itHL) , (5.3)

where HL is the SYK Hamiltonian of the left SYK system.

AM: Add more explanations

Combining the above discussions, we can give the total state in the SYK HP protocol as

follows

| SYK HPi = (IRef ⌦ UL(t)⌦ IR) (IRef ⌦ VT,L!L ⌦ IR)
⇣
|EPRi

Ref,T
⌦ |TFDi

L,R

⌘
, (5.4) eq:totaStateSYK

– 22 –

trace out



Hayden-Preskill set upのSYKによる研究

• SYK modelでHayden-Preskill noise channelとPetz liteを構成した

• stateにnoise channelをかけたあとPetz liteをかけてrecover

できるか、すなわち

を計算するとmodular flowed correlatorで表されることがわかった

• modular flowed correlatorを計算することにより、

挿⼊したstateをrecoverするのにscrambling timeの2倍の時間

かかることがわかった。noise channelとrecovery mapに

それぞれscrambling timeだけかかっていると解釈できる

やったこと

would-be better choice is �T = |0i
T
h0| since the embedding (5.2) maps this state into just

the thermo-field double state. For this choice, the normalization factor NSYK is given by

NSYK ⇡ trT
h
N SYK†

K,R!T

⇥
N SYK

T!K,R[ |0iT h0|]
⇤i

= trK,R

⇥
N SYK

T!K,R[ |0iT h0|] ]N
SYK

T!K,R[IT ]
⇤

= trK,R

⇥
N SYK

T!K,R[ |0iT h0|] ]N
SYK

T!K,R[ |0iT h0|]
⇤
+ trK,R

⇥
N SYK

T!K,R[ |0iT h0|] ]N
SYK

T!K,R[ |1iT h1|]
⇤
.

(5.10)

Here, the density matrices N SYK

T!K,R
[ |T i

T
hT |] ] (T = 0, 1) are given by

N SYK

T!K,R[ |0iT h0|] ] = tr
L̃

h
UL |TFDi

L,R
hTFD|U †

L

i
, (5.11)

N SYK

T!K,R[ |1iT h1|] ] = tr
L̃

h
UL i,L(0) |TFDi

L,R
hTFD| †

i,L
(0)U †

L

i
. (5.12)

AM: I might add the discussion on the comparison between the above normalization factor

and the factor appearing in (3.9).

Using this normalization constant, let us study how the Petz lite acts on the HP channel,

RLite,SYK

K,R!T

⇥
N SYK

T!K,R[⇢T ]
⇤
=

1

NSYK

N SYK†
K,R!T

⇥
N SYK

T!K,R[⇢T ]
⇤
. (5.13) eq:recoveryOfNo

iseSYK

For convenience, we focus on matrix elements of the above quantity

⌦
T
��RLite,SYK

K,R!T

⇥
N SYK

T!K,R[⇢T ]
⇤��T 0↵ =

1

NSYK

⌦
T
��N SYK†

K,R!T

⇥
N SYK

T!K,R[⇢T ]
⇤��T 0↵

, (5.14)

and this right hand side can be also written as

1

NSYK

⌦
T
��N SYK†

K,R!T

⇥
N SYK

T!K,R[⇢T ]
⇤��T 0↵ =

1

NSYK

trK,R

⇥
N SYK

T!K,R

⇥ ��T 0↵
T
hT |

⇤
N SYK

T!K,R[⇢T ]
⇤
.

(5.15)

We note that studying the matrix elements for a general input density matrix ⇢T is equivalent

to studying the below quantity

⌦
T
��RLite,SYK

K,R!T

h
N SYK

T!K,R

h ���T̃ 0
E

T

D
T̃

���
ii��T 0↵

=
1

NSYK

trK,R

h
N SYK

T!K,R

⇥ ��T 0↵
T
hT |

⇤
N SYK

T!K,R

h ���T̃ 0
E

T

D
T̃

���
i i

.

(5.16) eq:geneMatElemS

YK

AM: The interchange T
0 $ T̃

0, T $ T̃ gives the almost same result up to overall signs due

to the fermion anti-commuting property. For later analysis, this general form is convenient

to evaluate. So, below we consider this quantity.

Generally, for the above quantity (5.16), there are 16 matrix elements with respect to code

space labels T, T
0
, T̃ , T̃

0, but half of them are trivially vanishing due to the fermion parity,

 i $ � i. More precisely, matrix elements, including an odd number of SYK Majorana

fermions, vanish. Thus, it is su�ce to study the remaining matrix elements.
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結論

• Hayden-Preskill noise channelとそのadjoint channelを構成し、
West Coast Paper likeなGravitational Path Integralの計算に帰着させた

• SufficiencyをWCP likeに計算し、decoupling conditionを満たすlate timeでは

recovery mapが存在することを⽰した

• そのrecovery mapとしてPetz liteが使えることを⽰した

• Yoshida-Kitaev decoderがPetz liteとみなせることを⽰した

• Hayden-Preskill set upをSYK modelで記述し、recoverabilityの計算をすることで

挿⼊したstateをrecoverするのにscrambling timeの2倍かかることを⽰した


