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Krylov complexity is a measure 
of operator growth.

Lanczos algorithm can determine Krylov basis      
Lanczos coefficients     , and wave functions        .  bn 'n(t)

Lanczos algorithm is a mathematical method 
for Krylov basis     for       .O(t)

Krylov complexity KO(t) :=
X

n

n|'n(t)|2

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

O(t) =
X

n=0

in'n(t)On

On

On
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Universal operator growth hypothesis 
Lanczos coefficient    of non-integrable systems  
in the thermodynamic limit grows linearly.

nat large
[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]
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FIG. 2. Lanczos coe�cients in a variety of models demon-
strating common asymptotic behaviors. “Ising” is H =P

i XiXi+1 + Zi with O =
P

j eiqj Zj (q = 1/128 here
and below) and has bn ⇠ O(1). “X in XX” is H =P

i XiXi+1 + YiYi+1 with O =
P

j Xj , which is a string
rather than a bilinear in the Majorana fermion representa-
tion, so this is e↵ectively an interacting integrable model that
has bn ⇠ p

n. XXX is H =
P

i XiXi+1 + YiYi+1 + ZiZi+1

with O =
P

j eiqj (XjYj+1 � YjXj+1) that appears to obey

bn ⇠ p
n. Finally, SYK is (18) where q = 4 and J = 1 and

O =
p

2�1 with bn ⇠ n. The Lanczos coe�cients have been
rescaled vertically for display purposes. Numerical details are
given in Appendices B and C.

Refs [32] (see also [33–35], and Appendix F for a self-
contained proof) is that, given an r-local lattice Hamil-
tonian H =

P
i hi in any dimension,

�(!)  Ce�|!|,  =
1

2eGr||hi|| (14)

for some C > 0 and a known O(1) geometrical factor
Gr. We may conclude �  1 in (13), so the Lanczos
coe�cients grow at most linearly.

When linear growth of the bn’s is achieved, the growth
rate ↵ is quantitatively related to the exponential decay
rate in the spectral function. In fact, Appendix A shows
the following asymptotics are equivalent (see Fig. 3):

bn = ↵ n + O(1) , (15a)

�(!) = e�

|!|
!0

+o(!), !0 =
2

⇡
↵, (15b)

We stress that this is a purely mathematical equiva-
lence, which holds independently of physical considera-
tions such as the dimension, the temperature, or even
if the system is quantum or classical. However, this
equivalence has a key physical consequence: it implies
that ↵ is observable in linear response measurements. In
fact, high-frequency power spectra for quantum spin sys-
tems can be measured with nuclear magnetic resonance,
and exponential decays were reported for CaF2 [24–26].
This experimental technique therefore provides a practi-
cal way of measuring ↵. On a theoretical note, the spec-
tral function also appears in the o↵-diagonal Eigenstate

!

�(!)

e�

⇡|!|
2↵

i⇡
2↵

� i⇡
2↵

C(t) analytic

t 2 C

FIG. 3. Illustration of the spectral function and the analytical
structure of C(t), t 2 C. When the Lanczos coe�cients have
linear growth rate ↵, �(!) has exponential tails ⇠ e�|!|/!0

with !0 = 2↵/⇡; C(t) is analytical in a strip of half-width
1/!0 and the singularities closest to the origin are at t =
±i/!0. See Appendix A 2 for further discussion.

Thermalization Hypothesis, which is therefore related to
our hypothesis.

Additionally, comparing (14) and (15) shows that ↵ 
⇡/2, so the growth rate is limited by the local band-
width of the model and the geometry:

↵  ⇡eGr||hi|| , (16)

c.f. (14). This inequality is the consequence of the natu-
ral energy scale for the Lanczos coe�cients being set by
the local bandwidth. However, we shall see that ↵ itself
is not merely the bandwidth, but contains a great deal
of physical information about the system.

We find it useful to dispel a possible misconception re-
lated to the high-frequency tail of the spectral function
�(!). On dimensional grounds it is tempting — though
ultimately erroneous — to interpret (15) as a statement
about the short-time behavior of C(t). To see why this is
wrong, notice that the short-time behavior is captured by
the first moment alone, as C(t) = 1�µ2 t2/2+O(t4). The
high-frequency information instead governs the asymp-
totics of moments µ2n as n ! 1 (which involve increas-
ingly large operators) and the analytical structure of C(t)
on the imaginary-t axis, as shown in Fig. 3. In partic-
ular, the exponential decay rate sets the location of the
closest pole to the origin on the imaginary axis. The high-
frequency information also does not control the large time
limit t ! +1; we will come back to this point in Sec-
tion VII B below. In brief, the hypothesis governs large
! behavior of �(!) and, correspondingly, the behavior of
C(t) on the imaginary axis. Explicitly, a growth rate of

bn ⇠ ↵n+ �

bn

|O�1) := 0, |O0) := |O), L|On) =an|On) + bn|On�1) + bn+1|On+1)

• If Hilbert space is infinite, 
       can increase forever.bn

• If Hilbert space is finite, 
      should decrease to zero.bn

[R. Watanabe’s talk]
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Generalized chaos bound

bn ⇠ ↵n+ �Smooth linear behavior                  implies 
the exponential growth behavior KO(t) ⇠ e2↵t = e�Kt

An exact example
C(t) =

1

(cosh(↵t))⌘
, bn = ↵

p
n(n� 1 + ⌘), KO(t) = ⌘ sinh2(↵t)

�L  �K = 2↵

(T = 1)

[D. E. Parker, X. Cao, A. Avdoshkin, 
 T. Scaffidi, E. Altman, 2018]

proved
�L  �K  2⇡T

conjecture (finite T )

[J.L.F. Barbon, E. Rabinovici, R. Shir, R. Sinha, 2019]

[A. Avdoshkin, A. Dymarsky, 2019],  
[Y. Gu, A. Kitaev, P. Zhang, 2021]

bounds�K �L
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My motivation

• Understand how much difference of Krylov complexity 
in lattice and continuum theories

• Compute Krylov complexity of familiar and simple  
   theories in QFT’s textbooks

• Understand the meaning of CFT results  
   in                                            [A. Dymarsky, M. Smolkin, 2021]
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我々がやったこと
• 自由massive scalar場の理論のLanczos係数と 
　Krylov complexityを調べた

• Mass gap とUV cutoff 
　の効果を調べた

�3 �4• 4d    と4d    理論のLanczos係数 
　を摂動的に調べた
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Figure 5: Comparison of Lanczos coefficients bn in d = 5 for a massive scalar field
m� � 1 for finite UV cutoff (circles) and infinite UV cutoff (squares). Here we set
⇤ = 80, m = 20 and � = 1.

• The saturation value of the Lanczos coefficients is given by bsat

± =

⇤±m
2

, where
bsat

+

corresponds to odd n and bsat

� for even n. In the massless case, both families
saturate to the same value bsat

= ⇤/2.

• The value of n at which the Lanczos coefficients saturate, n
sat

, scales linearly
with ⇤, but it also depends on m in a subleading way. In particular, n

sat

decreases as m is taken closer to ⇤. At the same time, n
sat

⇠ O(1) for m ⇠ ⇤ .

An explanation of why the Lanczos coefficients saturate can be obtained by
analyzing the power spectrum. With the UV cutoff ⇤, the power spectrum fW

(!)

(3.36) is non-zero only if ⇤ � |!| � m. The saturation of bn for fW
(!) with such

bounded support can be explained by an exact example in [75]. Suppose that bn
for odd n has constant value bn = b

odd

and that bn for even n has constant value
bn = b

even

. Assuming b
odd

� b
even

> 0, the closed form of fW
(!) is given by [75]

fW
(!) =

1

b2
even

q
2(b2

odd

+ b2
even

)� !2 � (b2
odd

� b2
even

)

2/!2⇥

⇥⇥(b
odd

+ b
even

� |!|, |!|� (b
odd

� b
even

)) ,
(3.39)

which implies a relation between the saturation of bn and the bounded support of
fW

(!).
Another explanation of this phenomenon can be obtained from the perspective

of Dyck paths14. First, suppose that all bn have the same value bn = bsat. By using
a formula for µ

2n in terms of Dyck paths (see Eq. (A7) of [16]), we obtain

µ
2n =(bsat

)

2nCn , (3.40)
µ
2n+2

µ
2n

=(bsat

)

2

Cn+1

Cn

, (3.41)

14A similar analysis was done in [20], but here we also derive the coefficient 1/2 of bsat = ⇤/2
and the saturation value with the staggering.
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Figure 3: Krylov complexity of free scalar theories with � = 1. The vertical axis is
in a logarithmic scale. Linear growth in the log plot implies an exponential growth
of the Krylov complexity.

• For non-zero �m, the slope of KO(t) in the range 1.5  ⇡t/�  2.0, which we
will denote by ˜�K , seems to be different from 2⇡/� 13. This may be attributed
to the fact that bn cannot be regarded as a sufficiently smooth function of n due
to the large staggering from non-zero �m (see Eq. (3.23)). We note that our
numerical results for non-zero �m do not prove that the exponential growth
rate at t ! 1 is not 2⇡/�. There remains a possibility that �K , which is
determined at t ! 1, is 2⇡/�.

In Figure 4, we plot the mass-dependence of ˜�K with respect to m� for � = 1. To
determine ˜�K , we do a linear fitting in the range 1.5  ⇡t/�  2.0. Figure 4 shows
that ˜�K with non-zero �m differs from 2⇡/� and decreases as m� increases, which is
consistent with the conjectured bound �K  2⇡/�. Note that the slope with �m = 0

is larger than 2⇡/� because the linear fitting is done in a finite t region. In fact,
the slope of Log[KO(t)] with KO(t) = (d � 2) sinh

2

(⇡t/�) is given by 2⇡
�
coth(⇡t/�)

13Here we use �̃K to refer to the slope obtained for the finite range in t, in order to distinguish
it from the asymptotic slope �K defined at t ! 1.

– 23 –
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2. Lanczos coefficients and Krylov complexity  
    in scalar QFTs
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Expansion of      and inner product O(t)

O(t) = eiHtOe�iHt =
X

n=0

(it)n

n!
LnO LO := [H,O]

We want to construct an orthonormal basis for           
choosing an inner product. 

{LnO}

Choices of inner products

(A|B) := Tr[A†B]/Tr[1] Infinte temperature

Standard inner product

Wightman inner product

(A|B)S� :=
1

2Z
Tr[e��H(A†B +BA†)]

(A|B)W� :=
1

Z
Tr[e��H/2A†e��H/2B]
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Lanczos algorithm
Algorithm to construct a basis 

for tridiagonalization of a Hermitian matrix   

(Om|L|On) =

0

BBBBB@

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

...
. . .

1

CCCCCA

an, bn : Lanczos coefficients

|O�1) := 0, |O0) := |O), L|On) =an|On) + bn|On�1) + bn+1|On+1)

Krylov subspace
Span{LnO}
Krylov basis

|On)

for a Hermitian operator    .an = 0 O
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Lanczos coefficients can be 
determined from a 2pt function.  

C(t) := (O|O(�t)) =
X

n=0

Mn
(�it)n

n!

Mn :=
1

(�i)n
dnC(t)

dtn

���
t=0

= (O0|Ln|O0)

M1 = (O0|L|O0) =a0,

M2 = (O0|L2|O0) =a20 + b21,

M3 = (O0|L3|O0) =a30 + 2a0b
2
1 + a1b

2
1 ,

M4 = (O0|L4|O0) =(a0 + a1)
2b21 + (a20 + b21)

2 + b21b
2
2.

Moments

2pt function

Moments determine Lanczos coefficients.
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Time evolution of 'n(t)

|O(t)) =
X

n=0

in'n(t)|On), 'n(t) := i�n(On|O(t))

'�1(t) := 0,'0(t) = C(�t),
d'n(t)

dt
= ian'n(t) + bn'n�1(t)� bn+1'n+1(t)

|O�1) := 0, |O0) := |O), L|On) =an|On) + bn|On�1) + bn+1|On+1)

From       , we can determine  
and solve          recursively.

C(t) an, bn

'n(t)

Then, we can compute                                . KO(t) :=
X

n

n|'n(t)|2
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How to compute    and bn KO(t) :=
X

n

n|'n(t)|2

2pt function

Wightman power 
 spectrum

Moments

C(t) = h�(t� i�/2,0)�(0,0)i�

fW (!) :=

Z
dt C(t)ei!t

=
1

sinh[�!/2]

Z
dd�1k

(2⇡)d�1
⇢(!,k)

M2n :=
1

(�i)2n
d2nC(t)

dt2n

���
t=0

=
1

2⇡

Z 1

�1
d! !2nfW (!)

From a given spectral function          , 
    we can compute  

⇢(!,k)

C(t),M2n, bn,KO(t)



14

of free massive scalar theory bn

Mass     causes the difference between       and       .m b
odd

beven
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�bn

n
d = 5,� = 1,m = 20

bn ⇠⇡

�
n+ �

odd

(odd n)

bn ⇠⇡

�
n+ �

even

(even n)

�
odd

� �
even

⇠ m

is not smooth with respect to    due to mass.bn n
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of free massive scalar theory KO(t)
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Figure 3: Krylov complexity of free scalar theories with � = 1. The vertical axis is
in a logarithmic scale. Linear growth in the log plot implies an exponential growth
of the Krylov complexity.

• For non-zero �m, the slope of KO(t) in the range 1.5  ⇡t/�  2.0, which we
will denote by ˜�K , seems to be different from 2⇡/� 13. This may be attributed
to the fact that bn cannot be regarded as a sufficiently smooth function of n due
to the large staggering from non-zero �m (see Eq. (3.23)). We note that our
numerical results for non-zero �m do not prove that the exponential growth
rate at t ! 1 is not 2⇡/�. There remains a possibility that �K , which is
determined at t ! 1, is 2⇡/�.

In Figure 4, we plot the mass-dependence of ˜�K with respect to m� for � = 1. To
determine ˜�K , we do a linear fitting in the range 1.5  ⇡t/�  2.0. Figure 4 shows
that ˜�K with non-zero �m differs from 2⇡/� and decreases as m� increases, which is
consistent with the conjectured bound �K  2⇡/�. Note that the slope with �m = 0

is larger than 2⇡/� because the linear fitting is done in a finite t region. In fact,
the slope of Log[KO(t)] with KO(t) = (d � 2) sinh

2

(⇡t/�) is given by 2⇡
�
coth(⇡t/�)

13Here we use �̃K to refer to the slope obtained for the finite range in t, in order to distinguish
it from the asymptotic slope �K defined at t ! 1.
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Figure 4: Mass-dependence of ˜�K for � = 1. The linear fitting to determine ˜�K is
done in the range 1.5  ⇡t/�  2.0. We also plot the fitting curves of ˜�(d)

K (3.29).

which yields 2⇡/� in the limit t ! 1 but which is larger than 2⇡/� when t is finite
and positive.

A numerical fit of slope of Log[KO(t)] ⇡ ˜�K t as a function of the mass m for
� = 1, as displayed in Figure 4, is given by

�˜�(d)
K = k(d)

1

+

k(d)
2

k(d)
3

+ �m
+

k(d)
4⇣

k(d)
3

+ �m
⌘
2

, (3.29)

where {k(d)
i } are dimensionless constants that depend on d. The specific values of

{k(d)
i } for Figure 4 are given by

k(5)

1

= 3.36, k(5)

2

= 0.0000110, k(5)

3

= 8.85, k(5)

4

= 27.9, (3.30)

k(7)

1

= 3.26, k(7)

2

= �268, k(7)

3

= 9.36, k(7)

4

= 58.0, (3.31)

k(9)

1

= 3.16, k(9)

2

= �607, k(9)

3

= 18.5, k(9)

4

= 93.0. (3.32)

Suppose that the large n behavior of the Lanczos coefficients is given by Eq. (3.24).
As discussed in the paragraph below (3.23), the staggering of the Lanczos coefficients
is proportional to the mass

�bn := |bodd

n � beven

n | ⌘ |�
odd

� �
even

| / m , (3.33)

where we used the fact that |↵
odd

� ↵
even

| ⇡ |↵ � ↵| = 0. Thus, we can write the
slope of Log[KO(t)] as

�˜�(d)
K = �(↵

odd

+ ↵
even

) + k(d)
2

 
1

k(d)
3

+ �|�
odd

� �
even

|
� 1

k(d)
3

!
+

+ k(d)
4

0

B@
1

⇣
k(d)
3

+ �|�
odd

� �
even

|
⌘
2

� 1

(k(d)
3

)

2

1

CA ,

(3.34)

– 24 –

⇡t
�

1 +KO(t)

(a) d = 5

⇡t
�

1 +KO(t)

(b) d = 7

⇡t
�

1 +KO(t)

(c) d = 9

������� ��������

0.0 0.5 1.0 1.5 2.0
1

5

10

50

100

KO(t)=(d-2)sinh2 (πt/β)
KO(t) for βm=0
KO(t) for βm=10
KO(t) for βm=50
KO(t) for βm=100

Figure 3: Krylov complexity of free scalar theories with � = 1. The vertical axis is
in a logarithmic scale. Linear growth in the log plot implies an exponential growth
of the Krylov complexity.

• For non-zero �m, the slope of KO(t) in the range 1.5  ⇡t/�  2.0, which we
will denote by ˜�K , seems to be different from 2⇡/� 13. This may be attributed
to the fact that bn cannot be regarded as a sufficiently smooth function of n due
to the large staggering from non-zero �m (see Eq. (3.23)). We note that our
numerical results for non-zero �m do not prove that the exponential growth
rate at t ! 1 is not 2⇡/�. There remains a possibility that �K , which is
determined at t ! 1, is 2⇡/�.

In Figure 4, we plot the mass-dependence of ˜�K with respect to m� for � = 1. To
determine ˜�K , we do a linear fitting in the range 1.5  ⇡t/�  2.0. Figure 4 shows
that ˜�K with non-zero �m differs from 2⇡/� and decreases as m� increases, which is
consistent with the conjectured bound �K  2⇡/�. Note that the slope with �m = 0

is larger than 2⇡/� because the linear fitting is done in a finite t region. In fact,
the slope of Log[KO(t)] with KO(t) = (d � 2) sinh

2

(⇡t/�) is given by 2⇡
�
coth(⇡t/�)

13Here we use �̃K to refer to the slope obtained for the finite range in t, in order to distinguish
it from the asymptotic slope �K defined at t ! 1.
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KO(t) ⇠ e�̃Kt (1.5  ⇡t

�
 2.0)

• For           ,                            . �m = 0 KO(t) ⇠ e
2⇡
� t

[A. Dymarsky, M. Smolkin, 2021]

• For            ,     decreases        
   due to mass.

�m 6= 0 �̃K

• Mass violates  
   the smoothness of 
   for 
   from  

KO(t) ⇠ e2↵t

bn ⇠ ↵n+ �

bn
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With finite UV cutoff bn ⇤

fW (!) ⇠ N(m,�,⇤) (!2 �m2) e�
�|!|

2 ⇥ (|!|�m, ⇤� |!|)

(d = 5)

UV cutoff     causes the saturation of      .⇤ bn
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Figure 5: Comparison of Lanczos coefficients bn in d = 5 for a massive scalar field
m� � 1 for finite UV cutoff (circles) and infinite UV cutoff (squares). Here we set
⇤ = 80, m = 20 and � = 1.

• The saturation value of the Lanczos coefficients is given by bsat

± =

⇤±m
2

, where
bsat

+

corresponds to odd n and bsat

� for even n. In the massless case, both families
saturate to the same value bsat

= ⇤/2.

• The value of n at which the Lanczos coefficients saturate, n
sat

, scales linearly
with ⇤, but it also depends on m in a subleading way. In particular, n

sat

decreases as m is taken closer to ⇤. At the same time, n
sat

⇠ O(1) for m ⇠ ⇤ .

An explanation of why the Lanczos coefficients saturate can be obtained by
analyzing the power spectrum. With the UV cutoff ⇤, the power spectrum fW

(!)

(3.36) is non-zero only if ⇤ � |!| � m. The saturation of bn for fW
(!) with such

bounded support can be explained by an exact example in [75]. Suppose that bn
for odd n has constant value bn = b

odd

and that bn for even n has constant value
bn = b

even

. Assuming b
odd

� b
even

> 0, the closed form of fW
(!) is given by [75]

fW
(!) =

1

b2
even

q
2(b2

odd

+ b2
even

)� !2 � (b2
odd

� b2
even

)

2/!2⇥

⇥⇥(b
odd

+ b
even

� |!|, |!|� (b
odd

� b
even

)) ,
(3.39)

which implies a relation between the saturation of bn and the bounded support of
fW

(!).
Another explanation of this phenomenon can be obtained from the perspective

of Dyck paths14. First, suppose that all bn have the same value bn = bsat. By using
a formula for µ

2n in terms of Dyck paths (see Eq. (A7) of [16]), we obtain

µ
2n =(bsat

)

2nCn , (3.40)
µ
2n+2

µ
2n

=(bsat

)

2

Cn+1

Cn

, (3.41)

14A similar analysis was done in [20], but here we also derive the coefficient 1/2 of bsat = ⇤/2
and the saturation value with the staggering.
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With finite UV cutoff ⇤KO(t)
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Figure 7: Linear growth of KO(t) (� = 1) with d = 5, �m = 10, �⇤ = 15.
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Figure 8: Growth behaviors of Krylov complexity KO(t) (� = 1, d = 5, �m = 20)

with different UV cutoff ⇤.

3 sinh

2

(⇡t/�), we can see the liner growth of KO(t) with finite �⇤. We plot KO(t)
(� = 1, d = 5, �m = 20) for different values of UV cutoff ⇤ in Figure 8. At early
times, each plot is identical since bn at small n is the same as seen in Figure 6. At
late times, growth behaviors of KO(t) with finite ⇤ are different from exponential
growth for infinite ⇤ due to the saturation of bn.

We can also calculate the Krylov entropy (3.35) for 'd=5

n . When bn saturates,
the expected behavior of SK(t) is logarithmic growth [20]. Figure 9 shows the time
evolution of SK(t) (� = 1) with d = 5, �m = 10 and �⇤ = 15. In this figure, the
Krylov entropy with finite �⇤ seems to grow logarithmically with oscillations due to
non-zero �m.

It is interesting to compare the behavior of the Lanczos coefficients (Fig. 6) and
the Krylov complexity (Fig. 7) with the situation in free and chaotic quantum many-
body systems with a finite number of degrees of freedom S. In [16, 20, 23, 34] it was
shown that in fast-scrambling systems with finite S, the K-complexity KO grows
exponentially until the scrambling time ts ⇠ log(S), at which point KO reaches
a value of order O(S). It then switches to a linear growth until a time of order
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Linear plot

• Early-time exponential growth, 
    independent of ⇤
• Late-time linear growth 
   due to saturation of bn

• Saturation of      and 
   late-time linear growth of  
   are consistent with free lattice. 

bn

KO(t)

[A. Avdoshkin, A. Dymarsky, M. Smolkin, 2022]



in 4d        theory bn g�3/3!

One-loop self energy ⇧E =

4.2 Relevant deformation (` = 3)

In this case, the Euclidean one-loop self-energy can be computed by considering the
diagram shown in Fig. 13, which gives

⇧E(p0,p) =
g2T

2

X

q0

Z
d3

q

(2⇡)3
1

q2
0

+ q

2

+m2

1

(p
0

+ q
0

)

2

+ (p+ q)

2

+m2

, (4.7)

where here once again the Matsubara frequencies q
0

= 2⇡T n are summed over all
integers n.

Figure 13: Diagram relevant to the computation of the one-loop self-energy ⇧E in
the theory with cubic interactions.

For simplicity, let us consider the m = 0 case. Following [95], we start by writing
the propagators appearing in (4.7) in configuration space

Z
d3

q

(2⇡)3
eiq·r

�q2
0

+ q

2

=

e�|p0|r

4⇡r
, (4.8)

where r = |r|. We then rewrite (4.7) as follows

⇧E(p0,p) =
g2T

2

X

q0

Z
d3

r

eip·r

r2
e�|p0|re�|p0+q0|r . (4.9)

Performing the sum in q
0

, we find

⇧E(p0,p) =
g2T

2(4⇡)2

Z
d3

r

eip·r

r2
e�|p0|r

✓
coth(2⇡T r) +

|p
0

|
2⇡T

◆
. (4.10)

The zero-temperature vacuum contribution

⇧

(0)

E =

g2

2(4⇡)2

Z
d3

r

eip·r

r2
e�|p0|r

✓
1

2⇡r
+

|p
0

|
2⇡

◆
, (4.11)

diverges, but it can be regularized with a mass counter-term. After regularization,
one obtains ⇧

(0)

= 0. The finite-temperature contribution reads

⇧

(T )

E (p
0

,p) = ⇧E � ⇧

(0)

E =

g2T

2(4⇡)2

Z
d3

r

eip·r

r2
e�|p0|r

✓
coth(2⇡T r)� 1

2⇡Tr

◆
,

=

g2T

16⇡

Z 1

0

dr r2
Z ⇡

0

d✓ sin ✓
ei|p|r cos ✓

r2
e�|p0|r

✓
coth(2⇡T r)� 1

2⇡Tr

◆
,

=

g2T

8⇡

Z 1

0

dr
sin(|p|r)
|p|r e�|p0|r

✓
coth(2⇡T r)� 1

2⇡Tr

◆
. (4.12)
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Figure 14: (a) Lanczos coefficients computed from the one-loop corrected spectral
power. (b) Staggering, measure as �bn = bn(g)� bn(0), as a function of n for several
values of the coupling constant g. In both panels, we set � = 1 and ⇤ = 200.

The above expression can be evaluated numerically once one specifies (p
0

,p). The
corresponding Lorentzian correlators can be computed by analytic continuation.

The first quantum correction to the spectral function is given by [96]

⇢
1

(!,p) =
sgn(!) Im⇧

(T )

(!,p)

(�!2

+ p

2

+ Re⇧(T )

(!,p))2 + (Im⇧

(T )

(!,p))2
. (4.13)

where ⇧

(T )

(!,p) = ⇧

(T )

E (p
0

! �i!,p).
The one-loop corrected spectral power is then computed as

fW
(!) =

N(�, g)

sinh[�!/2]

✓
⌦

2

16⇡2

! +

Z
d3

k

(2⇡)3
⇢
1

(!,k)

◆
, (4.14)

where the first term in the parentheses represents the free theory contribution while
the second term represents the one-loop correction, which depends on g2.

From (4.14) we numerically compute the Lanczos coefficients bn for several values
of the coupling constant g. The results are shown in Fig. 14 (a). Since our calculation
is perturbative in g, the curves of bn as a function of n are not very different from the
one we obtain for the free theory in d = 4. But the effects of the interactions can be
seen in the curves of bn(g)� bn(0) as a function of n, which shows a staggering effect
that decreases as n increases. See Fig. 14 (b). A staggering effect that decreases
as n increases is known to be associated with systems in which the power spectrum
has bounded support and no mass gap [75]. Considering a free massless field with
d 6= 4, we checked that this feature is present even when we remove the condition
of bounded support - i.e. when we take !F to infinity. This feature is also shown in
Fig. 3 of [41].

To understand how the interactions affect the slope of the curves of bn as a
function of n, we fit a line of the form bn = ↵(g)n + �(g) to the data, separating
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Figure 14: (a) Lanczos coefficients computed from the one-loop corrected spectral
power. (b) Staggering, measure as �bn = bn(g)� bn(0), as a function of n for several
values of the coupling constant g. In both panels, we set � = 1 and ⇤ = 200.
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where the first term in the parentheses represents the free theory contribution while
the second term represents the one-loop correction, which depends on g2.

From (4.14) we numerically compute the Lanczos coefficients bn for several values
of the coupling constant g. The results are shown in Fig. 14 (a). Since our calculation
is perturbative in g, the curves of bn as a function of n are not very different from the
one we obtain for the free theory in d = 4. But the effects of the interactions can be
seen in the curves of bn(g)� bn(0) as a function of n, which shows a staggering effect
that decreases as n increases. See Fig. 14 (b). A staggering effect that decreases
as n increases is known to be associated with systems in which the power spectrum
has bounded support and no mass gap [75]. Considering a free massless field with
d 6= 4, we checked that this feature is present even when we remove the condition
of bounded support - i.e. when we take !F to infinity. This feature is also shown in
Fig. 3 of [41].

To understand how the interactions affect the slope of the curves of bn as a
function of n, we fit a line of the form bn = ↵(g)n + �(g) to the data, separating
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Figure 15: Log-plot of the normalized slope ↵(g)/↵(0) as a function of the squared
coupling g2 for Lanczos coefficients bn with odd and even values of n.

odd and even Lanczos coefficients18. Fig. 15 shows the slope ↵(g) for odd and even
Lanczos coefficients as a function of g2. Note that the slope of the odd coefficients
increases under the presence of interactions, while the slope of the even coefficients
decreases.

5 Discussion and Conclusions

In this paper, we discussed the behavior of the Lanczos coefficients bn and the Krylov
complexity KO(t) for free and interacting scalar QFTs at finite temperature for sev-
eral spacetime dimensions. For free scalar QFTs, we studied the effects of introduc-
ing IR and UV cutoffs in the power spectrum induced by a mass term in the La-
grangian (3.1) and a cutoff ⇤ in the momentum integral of the power spectrum (3.37).
The bare mass m causes a staggering of the Lanczos coefficients bn, separating them
into two smooth families, one for odd n and one for even n. This effect is seen for
all values of n and was confirmed by an analytic approximation for �m � 1 (see
Eq. (3.23)) and by numerical computations of bn (see Fig. 1). The staggering due
to the non-zero mass exists even when n is large and thus the late-time behavior
of Krylov complexity might be affected by the staggering effect. After studying the
behavior of the Lanczos coefficients in several models (cf. App. D), we observe
that staggering is absent if the following two conditions are satisfied: (I) the power
spectrum is finite and positive at ! = 0, i.e., 0 < fW

(0) < 1; and (II) the deriva-
tive of the power spectrum fW

(!) is a continuous function of ! for �⇤ < ! < ⇤,
where ⇤ is a UV cutoff. In terms of the auto-correlation C(t), the first condition
implies that the integral fW (0) =

R
C(t)dt is finite and positive, which means that

the auto-correlation is positive most of the time. It is not clear to us what the second
18We separate the data {n, bn} into two sets, {n

odd

, bn
odd

} and {n
even

, bn
even

}, and fit a line to
each one.
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bn(g) ⇠ ↵(g)n
causes the difference  
between       and       . 

But, the difference is small 
because of the perturbation.

g�3/3!

b
odd

beven

(m = 0,� = 1,⇤ = 200)
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まとめ
• Lanczos係数　とKrylov complexity         は 
   量子多体系のoperator growthの指標 

• 場の理論のMass gap とUV cutoffが　　       に影響

• 自由 massive scalar場の理論のLanczos係数と 
　Krylov complexityを調べた

bn KO(t)

bn KO(t)

�3 �4• 4d    と4d    理論のLanczos係数を摂動的に調べた 
　ただし、摂動なので効果はすごく小さい
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展望

�L  �K  2⇡

�

• Mass gapがある場合の　 の計算および　　との比較　　　　�L �K

• 他の理論での解析

matrix theory, TTbar deformed QFT�4

• Krylov complexity in AdS/CFT


