Krylov complexity of free and interacting scalar QFTs with bounded power spectrum

Mitsuhiro Nishida

(Pohang University of Science and Technology)

[arXiv:2212.14702]

with Hugo A. Camargo, Viktor Jahnke, Keun-Young Kim

Krylov complexity is a measure of operator growth.

Krylov complexity
$$K_{\mathcal{O}}(t) := \sum_{n} n |\varphi_n(t)|^2$$

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

Lanczos algorithm is a mathematical method for Krylov basis \mathcal{O}_n for $\mathcal{O}(t)$.

$$\mathcal{O}(t) = \sum_{n=0} i^n \varphi_n(t) \mathcal{O}_n$$

Lanczos algorithm can determine Krylov basis \mathcal{O}_n Lanczos coefficients b_n , and wave functions $\varphi_n(t)$.

Universal operator growth hypothesis

Lanczos coefficient b_n of non-integrable systems in the thermodynamic limit grows linearly.

 $b_n \sim \alpha n + \gamma$ at large n

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

$$|\mathcal{O}_{-1}| := 0, \ |\mathcal{O}_{0}| := |\mathcal{O}|, \ \mathcal{L}|\mathcal{O}_{n}| = a_{n}|\mathcal{O}_{n}| + b_{n}|\mathcal{O}_{n-1}| + b_{n+1}|\mathcal{O}_{n+1}|$$

If Hilbert space is infinite, b_n can increase forever.
If Hilbert space is finite, b_n should decrease to zero.

λ_K bounds λ_L

Smooth linear behavior $b_n \sim \alpha n + \gamma$ implies the exponential growth behavior $K_{\mathcal{O}}(t) \sim e^{2\alpha t} = e^{\lambda_K t}$ [J.L.F. Barbon, E. Rabinovici, R. Shir, R. Sinha, 2019]

An exact example

$$C(t) = \frac{1}{(\cosh(\alpha t))^{\eta}}, \quad b_n = \alpha \sqrt{n(n-1+\eta)}, \quad K_{\mathcal{O}}(t) = \eta \sinh^2(\alpha t)$$

Generalized chaos bound

 $\lambda_L \leq \lambda_K = 2\alpha \qquad \qquad \lambda_L \leq \lambda_K \leq 2\pi T$ proved $(T = \infty)$ conjecture (finite T)

[D. E. Parker, X. Cao, A. Avdoshkin, [A. Avdoshkin, A. Dymarsky, 2019],
 T. Scaffidi, E. Altman, 2018] [Y. Gu, A. Kitaev, P. Zhang, 2021]

My motivation

 Understand the meaning of CFT results in [A. Dymarsky, M. Smolkin, 2021]

 Understand how much difference of Krylov complexity in lattice and continuum theories

 Compute Krylov complexity of familiar and simple theories in QFT's textbooks

我々がやったこと

自由massive scalar場の理論のLanczos係数と Krylov complexityを調べた

Mass gap とUV cutoff の効果を調べた

•

・ $4d\phi^3 \diamond 4d\phi^4$ 理論のLanczos係数 を摂動的に調べた

Outline

1. Moment method

2. Lanczos coefficients and Krylov complexity in scalar QFTs

3. Summary

Expansion of
$$\mathcal{O}(t)$$
 and inner product
 $\mathcal{O}(t) = e^{iHt}\mathcal{O}e^{-iHt} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!}\mathcal{L}^n\mathcal{O} \qquad \mathcal{L}\mathcal{O} := [H, \mathcal{O}]$

We want to construct an orthonormal basis for $\{\mathcal{L}^n \mathcal{O}\}$ choosing an inner product.

Choices of inner products

 $(A|B) := \operatorname{Tr}[A^{\dagger}B]/\operatorname{Tr}[1]$ Infinite temperature

 $(A|B)_{\beta}^{S} := \frac{1}{2Z} \operatorname{Tr}[e^{-\beta H} (A^{\dagger}B + BA^{\dagger})] \quad \text{Standard inner product}$

 $(A|B)^W_\beta := \frac{1}{Z} \operatorname{Tr}[e^{-\beta H/2} A^{\dagger} e^{-\beta H/2} B] \qquad \text{Wightman inner product}$

Lanczos algorithm

Algorithm to construct a basis for tridiagonalization of a Hermitian matrix

$$|\mathcal{O}_{-1}| := 0, \ |\mathcal{O}_{0}| := |\mathcal{O}|, \ \mathcal{L}|\mathcal{O}_{n}| = a_{n}|\mathcal{O}_{n}| + b_{n}|\mathcal{O}_{n-1}| + b_{n+1}|\mathcal{O}_{n+1}|$$

Krylov subspace
Span{ $\mathcal{L}^n \mathcal{O}$ } $(\mathcal{O}_m |\mathcal{L}| \mathcal{O}_n) = \begin{pmatrix} a_0 & b_1 & 0 & 0 & \cdots \\ b_1 & a_1 & b_2 & 0 & \cdots \\ 0 & b_2 & a_2 & b_3 & \cdots \\ 0 & 0 & b_3 & a_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$ \mathcal{O}_n

 a_n, b_n : Lanczos coefficients

 $a_n = 0$ for a Hermitian operator \mathcal{O} .

Lanczos coefficients can be determined from a 2pt function.

2pt function $C(t) := (\mathcal{O}|\mathcal{O}(-t)) = \sum_{n=0} M_n \frac{(-it)^n}{n!}$

Moments $M_n := \frac{1}{(-i)^n} \frac{d^n C(t)}{dt^n}\Big|_{t=0} = (\mathcal{O}_0 |\mathcal{L}^n| \mathcal{O}_0)$

Moments determine Lanczos coefficients.

$$M_{1} = (\mathcal{O}_{0}|\mathcal{L}|\mathcal{O}_{0}) = a_{0},$$

$$M_{2} = (\mathcal{O}_{0}|\mathcal{L}^{2}|\mathcal{O}_{0}) = a_{0}^{2} + b_{1}^{2},$$

$$M_{3} = (\mathcal{O}_{0}|\mathcal{L}^{3}|\mathcal{O}_{0}) = a_{0}^{3} + 2a_{0}b_{1}^{2} + a_{1}b_{1}^{2},$$

$$M_{4} = (\mathcal{O}_{0}|\mathcal{L}^{4}|\mathcal{O}_{0}) = (a_{0} + a_{1})^{2}b_{1}^{2} + (a_{0}^{2} + b_{1}^{2})^{2} + b_{1}^{2}b_{2}^{2}.$$

Time evolution of $\varphi_n(t)$

$$|\mathcal{O}(t)) = \sum_{n=0} i^n \varphi_n(t) |\mathcal{O}_n\rangle, \quad \varphi_n(t) := i^{-n} (\mathcal{O}_n | \mathcal{O}(t))$$

 $|\mathcal{O}_{-1}\rangle := 0, \ |\mathcal{O}_{0}\rangle := |\mathcal{O}\rangle, \ \mathcal{L}|\mathcal{O}_{n}\rangle = a_{n}|\mathcal{O}_{n}\rangle + b_{n}|\mathcal{O}_{n-1}\rangle + b_{n+1}|\mathcal{O}_{n+1}\rangle$

$$\varphi_{-1}(t) := 0, \varphi_0(t) = C(-t), \frac{d\varphi_n(t)}{dt} = ia_n\varphi_n(t) + b_n\varphi_{n-1}(t) - b_{n+1}\varphi_{n+1}(t)$$

From C(t), we can determine a_n, b_n and solve $\varphi_n(t)$ recursively.

Then, we can compute $K_{\mathcal{O}}(t) := \sum n |\varphi_n(t)|^2$.

11

Outline

1. Moment method

2. Lanczos coefficients and Krylov complexity in scalar QFTs

3. Summary

How to compute b_n and $K_{\mathcal{O}}(t) := \sum n |\varphi_n(t)|^2$ n2pt function $C(t) = \langle \phi(t - i\beta/2, \mathbf{0})\phi(0, \mathbf{0}) \rangle_{\beta}$ $f^{W}(\omega) := \int \mathrm{d}t \, C(t) e^{i\omega t}$ Wightman power $=\frac{1}{\sinh[\beta\omega/2]}\int\frac{\mathrm{d}^{\alpha-1}\mathbf{k}}{(2\pi)^{d-1}}\rho(\omega,\mathbf{k})$ spectrum $M_{2n} := \frac{1}{(-i)^{2n}} \frac{d^{2n} C(t)}{dt^{2n}} \Big|_{t=0}$ Moments $= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \omega^{2n} f^W(\omega)$ From a given spectral function $\rho(\omega, \mathbf{k})$,

we can compute $C(t), M_{2n}, b_n, K_{\mathcal{O}}(t)$

Mass m causes the difference between $b_{
m odd}$ and $b_{
m even}$.

 b_n is not smooth with respect to n due to mass.

$K_{\mathcal{O}}(t)$ of free massive scalar theory

 b_n With finite UV cutoff Λ (d = 5) $f^W(\omega) \sim N(m, \beta, \Lambda) (\omega^2 - m^2) e^{-\frac{\beta|\omega|}{2}} \Theta(|\omega| - m, \Lambda - |\omega|)$

UV cutoff Λ causes the saturation of b_n .

$K_{\mathcal{O}}(t)$ With finite UV cutoff Λ

Early-time exponential growth, independent of Λ

Late-time linear growth due to saturation of b_n

Saturation of b_n and late-time linear growth of $K_{\mathcal{O}}(t)$ are consistent with free lattice. [A. Avdoshkin, A. Dymarsky, M. Smolkin, 2022] / β

 b_n in 4d $g\phi^3/3!$ theory $(m = 0, \beta = 1, \Lambda = 200)$

まとめ

- ・Lanczos係数 b_n とKrylov complexity $K_O(t)$ は 量子多体系のoperator growthの指標
- 自由 massive scalar場の理論のLanczos係数と
 Krylov complexityを調べた
- ・場の理論のMass gap とUV cutoffが $b_n K_{\mathcal{O}}(t)$ に影響
- ・4d ϕ^3 と4d ϕ^4 理論のLanczos係数を摂動的に調べたただし、摂動なので効果はすごく小さい

展望

・Mass gapがある場合の λ_L の計算および λ_K との比較

 $\lambda_L \le \lambda_K \le \frac{2\pi}{\beta}$

- ・他の理論での解析
 - ϕ^4 matrix theory, TTbar deformed QFT

Krylov complexity in AdS/CFT