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Overview

Message: axion electrodynamics has non-invertible 1-form global symmetry

0%

® We find non-invertible 1-form global symmetry by EOM of photon.
® We discuss current algebra of non-invertible global symmetries

from the viewpoint of an effect in axion electrodynamics
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Global symmetries

Conventional definition of symmetry

Symmetry = invariance of action
Slg - @] = S[®]

under change of variables ® — ®' = g - ® with a group g € G,

Importance of symmetries
® Prediction of new particles using representation
® Constraints on interactions

® Nambu-Goldstone theorem

Symmetry generators are topological
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Symmetry generators are topological

® Continuous symmetries: 0,j* =0 = U = exp (iafd3a:j0) is topological

. Jawa;
rdv, V4
f§° 4 Sé (al % -

~| = -

+

L

L

® Discrete (internal) symmetries: %—l{ x [U,H] =0, gg x [U,P]=0

= U is topological

[ Generalized global symmetry ]

Symmetry = existence of topological object
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Generalized global symmetries (1/2) (csioto, kspustin, seberg, witett ‘14

[ Higher p-form symmetry ]

Existence of (D — p — 1)-dim. topological object acting on p-dim. object

D: spacetime dim.

Example: 1-form symmetry in Maxwell theory
® Electric flux [ E - dS is topological due to Gauss law
® Charged object = source of elec. flux: Wilson loop (1d) [detail

Dim. of symmetry generators can be lower than 3d (in (3 + 1)q)
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Generalized global symmetries (2/2) [Gaiotto, Kapustin, Seiberg, Willett '14]

[ Non-invertible symmetry [e.g., Bhardwaj & Tachikawa '17]

Existence of topological object that is not associated with group

® Existence of topological object do not require invertibility

® Cf. Ordinary symmetries are invertible U—1U = UU 1 = 1.

Example: Sum of phase factors can be non-invertible

1

® cosine cosa = 3 (e'* + e7"¥): non-invertible (except for o

Cosa

x =
s @

cf. phase factor €?? is invertible e~ % ¢*?

=1

0, )

cog (A«(!)‘Na:ot—p)
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Developments of generalized global symmetries

1. Characterization of previously known phases by global symmetries

[Gaiotto, Kapustin, Seiberg, Willett '14]

® Confined phase of SU(N) Yang-Mills theory = unbroken phase of global 1-form
symmetry
® Topologically ordered phase = broken phase of global 1-form symmetry

2. New phases by global symmetries

® Spontaneous CP symmetry breaking phase of SU(N) Yang-Mills theory at 6 = 7

[Gaiotto, Kapustin, Komargodski, Seiberg '17]
3. New understanding of anomalies

® Chiral anomaly — non-invertible symmetry [Choi, Lam, Shao, '22; Cérdova & Ohmori, '22]

[ Recent theme of generalized global symmetries (personal view) ]

How universal are generalized global symmetries?

This talk: existence of non-invertible higher-form symmetry in axion electrodynamics
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Non-invertible 0-form symmetry in axion electrodynamics
review based on Choi, Lam, Shao '22; Cérdova & Ohmori 22

Message: Non-invertible symmetries exist in a realistic model.



Axion electrodynamics: axion ¢ + photon a, + topological coupling

[Wilczek '87]
Q
1 1 M
HOE -B = 3973 P o oo & - “q:\
Ay

1. Simple and ubiquitous

Features

¢ = QCD axion, inflaton, dark matter, 79 meson, quasi particle in topological

matter,...
2. Topological coupling determined by chiral anomaly

3. Existence of extended objects, e.g., axionic domain walls, magnetic flux,...

Q¢ B

Topological coupling — peculiar effects for extended objects
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SIkIVIe effect [Sikivie '84]

® [ntersection of domain wall and magnetic flux — induced charge

° GausslawV-E:M%Vgﬁ-B

Generalized global symmetries behind physics of extended objects?

7/21



Action

[ Massless axion + photon + topological coupling

S:—/d“x ﬁla O + = ful? +
2 K ge2H

3972 ¢€Mupaf,uufpa>

® Axion: 27 periodic pseudo scalar ¢ + 2w ~ ¢
(axion as Nambu-Goldstone boson of U(1) symmetry)
27 periodicity = gauge symmetry (redundancy)
® Photon a,: U(1) gauge field, Dirac quantization condition

[ fuvdSH = [¢ B-dS € 2nZ

Non-invertible symmetries can be found by EOM of axion and photon
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EOM of axion = U(1) shift symmetry of axion...? (1/2)

If photon is absent, we have ordinary U(1) symmetry

® EOM as cons. law: v29,(0#¢) =0 — j#* = v?0H¢ is conserved.

® Unitary operator U? = exp (ia [}, v’ 8" ¢ dV},)

u®
+

L>

'S
® (1) phase rotation U%e?®(U?)T = ei@ei®

If the axion-photon coupling éfl“,f“” is present, ...
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EOM of axion = U(1) shift symmetry of axion...? (2/2)

ut
cen O
.L )
L
U
Conservation law is deformed
® EOM: 9, (v?0H¢ — S%a,,f“”) =0, cons.current: j* = v2OH¢p — Sﬁauﬁ“’

® However, unitary operator

[2e’ = i 250,
exp / (lyfl“/dvu xe o Jy, v2or ¢ dVy,
871'2 Vv

is only gauge invariant if ¢! = 1 (Dirac quantization condition) [deti]
® No conventional global symmetry: e!® — e!®ei® = ¢i®
Just a consequence of chiral anomaly

Shift symmetry with a rational number, e.g., a = 2?7' (pez)

is still valid at the expense of unitarity!
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Modification using U(1) Chern-Simons theory (ch Lam, shao, 22; cordova & Ohmor, 22]

exp (ﬁ IS qual,f‘“’) has a gauge invariant expression!

e/

[ Modification

exp (%/ dVMayf‘“’) —>/Dcuexp (L/ dVH(—pch“”—&-%yf“”))
™ Jv dm Jy

Essentially %oﬂ — —py? + 22y
® ¢, auxiliary U(1) gauge field, field strength d,,, = 9,c, — dvcy,
Dirac quant. cond. [ dS*"d,, € 27Z
® Consistent with Dirac quantization condition: p € Z in numerator
® Original one: naive expression after eliminating c,, by its EOM pd,.., = f,..
with trivial Dirac quant. cond. fs FuprdS*” =0 (mod p)

® Sum (path integral) of phase factors: unitarity is lost

We can construct symmetry generator by this modification.
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Non-invertible 0-form symmetry (cuoi, Lam, shao, "22: Cérdova & Ohmori, 22]

( Symmetry generator

D®

_ /DCM exp (_ﬁ /v dVH(pch‘“' _ 2Cu‘}t~‘uy)) X(%_x‘ Jy dVote

™
P

® Symmetry generator is gauge invariant

® Topological: EOM of axion

. 27
b+ =Tt

® O-form symmetry: acting on 0-dim. axion operator !¢ — ¢

¢ =
e

® Non-invertible (sum of phase factors)

How about EOM of photon?
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Non-invertible 1-form symmetry in axion electrodynamics

RY [2212.05001] (see also Choi, Lam, Shao [2212.04499])

Message: Non-invertible higher-form symmetry exists

in a realistic model.



EOM of photon = conservation of electric flux = symmetry? (1/2)

If the axion is absent, ...
® EOM as cons. law: 8#(%_4””) =0, jH= %._,f““ is conserved
® Unitary operator U® = exp (iﬁ Js %ﬁLVdS””)
Is furdS* = [ E - dS (Gauss law) or [ B -drdt (Ampere law)
it sltee of S

J-'B‘olﬂ‘ott

® (1) 1-form symmetry: phase rotation on Wilson loop

If the axion-photon coupling (,bfw,ff“’ is present, ...
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EOM of photon = conservation of electric flux = symmetry? (2/2)

Conservation law is deformed.

® EOM: 8#( s Y — ﬁdjfn‘”) =0, cons.current j*¥ = '%,f““ — ﬁ(ﬁf““

® However, unitary operator

B[ W\ o i fs L Fuvdsh
Ug—exp(4 5 /SQ,fMVdS“ ) e 'S e2
is only invariant under ¢ — ¢ + 27 if P =1
&= &t2n
(] — ®
-\\—? BdY l‘(ﬁ""‘
U@ U@ x @ 2% 2 Uge

® No symmetry?

What we find: symmetry with a rational number, e.g., 8 = (q €7)

is still valid at the expense of unitarity!
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Modification using topological field theory (cuoi, Lam, shao, 22: R 221

P (ﬁ Is ¢fuud5'“”) has a gauge invariant expression!

Modification

i
R Vdsl“’
P (27rq /s ¢Ju )

i
— /'Dx'DuM exp (—% /S dS*Y (gxwur — xfuv — qﬁwlw))

. J

Essentially %wy — —qab+ ax + by
® Introducing auxiliary fields

® : 27 periodic scalar
® wu,: U(1) gauge field, field strength w,, = O u, — Oy uy,
Dirac quant. cond. [g w,, dS"” € 277

® 27 periodicity is preserved.
® Original one: naive expression with trivial Dirac quant. cond.

® Sum (path integral) of phase factors: unitarity is lost
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Non-invertible 1-form symmetry (cho tam, shao, "22: r 22]

[ Symmetry generator ]

a

Dg_ on = /'DxDu exp <2L/ dS*Y (—gxwuw + X fur + qﬁwm,)) B Js fds
= 7 Js

® Symmetry generator is gauge invariant
® Topological: EOM of photon

® 1-form symmetry: phase rotation on Wilson loop

® Non-invertible (sum of phase factors)

16/21



Summary of non-invertible symmetries in axion electrodynamics

¢ a
Do(=$ =
@ =
Dy 2

There are two non-invertible symmetries in axion electrodynamics

® EOM of axion — non-invertible 0-form symmetry

® EOM of photon — non-invertible 1-form symmetry
Question: How about current algebra for these symmetries?

® Ordinary symmetries: current algebra = group theory

® Non-invertible symmetries: current algebra = ?? (category theory?)

Let us discuss current algebra from Sikivie effect.



Current algebra of non-invertible symmetries from Sikivie effect



SIkIVIe effect [Sikivie '84]

O¢

Induced charge on intersection of axionic domain wall & B
® Modification of Gauss law V - E = ﬁva - B

Current algebra from Sikivie effect?

Non-inv. 0- & 1-form symmetry generators = axionic domain wall & magnetic flux
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Non-inv. O-form symmetry generator Dz,% = axionic domain wall

1

/
/

)

xR

-l

Rough explanation
® (2 + 1)-dim. object

® Generating shift of axion by 27”
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Non-inv. 1-form symmetry generator Dgzg,r = static magnetic flux tube
q

bl
B== .
q A ~
egoro(x ax
> =t
Dp-z=x

q

® (14 1)-dim. object

® Generating Aharonov-Bohm phase of Wilson loop by 27”

Expectation: intersection of Dﬁ & Dg gives Sikivie effect
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SIkIVIe effect by Dg & Dg» [Choi, Lam, Shao, '22; RY '22]

e ?—; Yardal”

Q.
\Dho
Dz

Japdat

_t
® Wilson loop er4 with fractional charge p—lq is induced

® Detail

® |ntersection — shift transf. ¢ — ¢ + 27" of axion-photon coupling in Dg:

i I
D§ — ePa Je apds D
® Fractional charge coincides with Gauss law M%Vq‘) -B = ﬁ

Fractional charge can be captured by another 1-form sym. generator.
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Intersection of D, 5 D = fractional phase rotation gy 22

Dﬁ. =
t=9
L
® AT
o
’D(i:% 1‘\ ’D;?=T_£[\
'Dé;zn i D:{"‘
asF T

Rough derivation

® Detection of electric flux from fractional charge by Dg,
Mixed 't Hooft anomaly? [cf. Kaidi Nardoni, Zafrir, Zheng, '23]

® Symmetry generators Dg & Dg become source of Dg

27

— conservation of Dg is violated by symmetry generators: (DgDﬁD”,) o erad’
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Summary: axion electrodynamics has non-invertible 1-form symmetry

D“,Qg’
% D (\?‘—w—, D
= e
'D;;z_g l\ . l\
g . 3B=fi—“ 4
D«tg Dng

® Non-invertible 1-form symmetry is associated with EOM of photon

® Gauge invariant symmetry generator is constructed by path integral of phase

factors
® Current algebra of symmetry generators are derived from the viewpoint of Sikivie

effect
Future work
® Mathematical structure of current algebra?

® New examples of non-invertible symmetries?



Dirac quantization (1/2)

Electric & and magnetic charges should be quantized in U(1) gauge theories

1. Quantization of electric charge

E,: Qe S(;a,»d?‘"“
©

® Periodicity of U(1) — gauge parameter can have a winding number § 8, Adz" = 27

(Insertion of Dirac string)

Wilson loop should be invariant under gauge transf. with a winding number a,, — a,, + 0, A

eide Jc apdzt _ eile Jc duAdat . eile Je apdazt _ 27 | gide Jc apdzt

Electric charge ge must be quantized q. € Z

Periodicity of U(1) is important.  If the gauge group is R, ¢ge € R due to

$ OpAdzt = 0. [eg. Banks & Seiberg '10].



Dirac quantization (2/2)

2. quantization of magnetic charge ¢m,

® Stokes theorem for Wilson loop: some choices of surfaces

e- J;.‘fr— [ (Yo EI‘S.S'éf?"' dgrv

® One choice of should be equal to another

SS‘ uT, s Faw A SHY =e1131m=l

N

® Magnetic charge must be quantized g, € Z. [back|



Gauge invariance of exp (8’% IS dVMa,,f“”) (1/2)

1. To make integrand of unitary operator gauge invariant, we use Stokes theorem

i z _ o Fuv g4
exp (S?/Vdvﬂauf*“’> = exp (87r2 sz fuv fPd x)

£ v ’
2. We have chosen an auxiliary 4-dim. space Q.

3. Another choice Q/V is possible:




Gauge invariance of exp (8’% IS dVMa,,f“”) (2/2)

3. Two choices should be identical

oxp 8270(2 / fuyf.ul’délx = exXp LO; / fHVfHVdAlx )
T Jay, 8 Q,

Therefore, we have the constraint

forQ:QVUQ’V

v v 2

4. Dirac quantization requires fQ fm,ff“’d‘lz € 2 (2m)?Z for closed Q
5. Therefore exp (ia)) = 1.

[back]



Derivation of 1-form symmetry transformation 0/4

[ Symmetry transformation in terms of correlation function

. 1 7 17272 : : 1 7 Ky g 123
<eza fS ;gf;“,dS ol fe aud1“> _ /Da615+za fS ?f;“,dS +zfc aydx

$

We want to eliminate [ f.,dS"" by field redefinition.

Two problems:
1. Action ([ fuv f*¥) is 2nd. order derivative, but fs f#uds/‘” is 1st order deriv.

2. Action is 4-dim integral, but fs f“,,dS‘“’ is 2-dim. integral



Derivation of 1-form symmetry transf. 1/4

We can rewrite fs fHVdS‘“’ as follows:

f Gauss-Stokes theorem

/ fuvdSH = / A frvdv,
S Vs

Vg = S, dVy: volume element

S Vs

® Tensorial expression of [ E -dS = st vV - EdV

The right-hand side can be rewritten as 4-dim integral



Derivation of 1-form symmetry transf. 2/4

By using delta function, we have

[ 4-dim integral

; Aufrrav, = / d*x O, fH 5, (Vs), where 6,(Vs) = /v dvi, (y)6* (z—y)
S S

Derivation:

/v ) = [ ata /v S @AV

= [ dav, 1 @) ( 5z - y)dvu@))

Vs

Two problems have been solved. Symmetry generator can be absorbed into the action,

5 [l + 00, 5,(V5)) = Slay = a8, (Vs)]

(UV divergence is renormalized.)



Derivation of 1-form symmetry transf. 3/4

By the field redefinition a;, — ad,(Vs) = au,

[ Symmetry generator can be eliminated

<em Is E%f;wds“"ei Iz a#dzu> _ /Daeis+m Is E%fuuds‘w—o-ifc aydzt

. Jeo 6u(Vs)dat <ei Je audw“>

What is [, 6,,(Vs)dz* in the right-hand side?



Derivation of 1-form symmetry transf. 4/4

[ Linking number between S & C ]

/ 8,(Vs)dat = Link (S,C) € Z
C

® Integral = intersection number between Vs & C = linking number between S & C

We arrive at

( U(1) symmetry transformation ]

: 17 . . . .
<eza Is ejfuydsl“’el Je audz“> — et Link (S,C) <e7, Je a;,,dz“>

[back]
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