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Overview

Message: axion electrodynamics has non-invertible 1-form global symmetry

• We find non-invertible 1-form global symmetry by EOM of photon.

• We discuss current algebra of non-invertible global symmetries

from the viewpoint of an effect in axion electrodynamics
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Global symmetries

Conventional definition of symmetry

Symmetry = invariance of action

S[g · Φ] = S[Φ]

under change of variables Φ→ Φ′ = g · Φ with a group g ∈ G,

Importance of symmetries

• Prediction of new particles using representation

• Constraints on interactions

• Nambu-Goldstone theorem

Symmetry generators are topological
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Symmetry generators are topological

• Continuous symmetries: ∂µjµ = 0 ⇒ U = exp
(
iα
∫
d3xj0

)
is topological

• Discrete (internal) symmetries: ∂U
∂t
∝ [U,H] = 0, ∂U

∂xi
∝ [U, Pi] = 0

⇒ U is topological

Generalized global symmetry

Symmetry = existence of topological object
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Generalized global symmetries (1/2) [Gaiotto, Kapustin, Seiberg, Willett ’14][1]

Higher p-form symmetry

Existence of (D − p− 1)-dim. topological object acting on p-dim. object

D: spacetime dim.

ビ%E.de
二 ビの 9

Example: 1-form symmetry in Maxwell theory

• Electric flux
∫
E · dS is topological due to Gauss law

• Charged object = source of elec. flux: Wilson loop (1d) [detail]

Dim. of symmetry generators can be lower than 3d (in (3 + 1)d)
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Generalized global symmetries (2/2) [Gaiotto, Kapustin, Seiberg, Willett ’14][1]

Non-invertible symmetry [e.g., Bhardwaj & Tachikawa ’17]

Existence of topological object that is not associated with group [2]

• Existence of topological object do not require invertibility

• Cf. Ordinary symmetries are invertible U−1U = UU−1 = 1.

Example: Sum of phase factors can be non-invertible

• cosine cosα = 1
2 (e

iα + e−iα): non-invertible (except for α = 0, π)

cf. phase factor eiθ is invertible e−iθeiθ = 1
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Developments of generalized global symmetries

1. Characterization of previously known phases by global symmetries

[Gaiotto, Kapustin, Seiberg, Willett ’14]

• Confined phase of SU(N) Yang-Mills theory = unbroken phase of global 1-form

symmetry

• Topologically ordered phase = broken phase of global 1-form symmetry

2. New phases by global symmetries

• Spontaneous CP symmetry breaking phase of SU(N) Yang-Mills theory at θ = π

[Gaiotto, Kapustin, Komargodski, Seiberg ’17]

3. New understanding of anomalies

• Chiral anomaly → non-invertible symmetry [Choi, Lam, Shao, ’22; Córdova & Ohmori, ’22]

Recent theme of generalized global symmetries (personal view)

How universal are generalized global symmetries?

This talk: existence of non-invertible higher-form symmetry in axion electrodynamics
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Non-invertible 0-form symmetry in axion electrodynamics

review based on Choi, Lam, Shao ’22; Córdova & Ohmori ’22

Message: Non-invertible symmetries exist in a realistic model.



Axion electrodynamics: axion φ + photon aµ + topological coupling

[Wilczek ’87][3]

1

4π2
φE ·B =

1

32π2
φεµνρσfµνfρσ

Features

1. Simple and ubiquitous

φ = QCD axion, inflaton, dark matter, π0 meson, quasi particle in topological

matter,...

2. Topological coupling determined by chiral anomaly

3. Existence of extended objects, e.g., axionic domain walls, magnetic flux,...

Topological coupling → peculiar effects for extended objects
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Sikivie effect [Sikivie ’84] [4]

• Intersection of domain wall and magnetic flux → induced charge

• Gauss law ∇ ·E = 1
4π2∇φ ·B

Generalized global symmetries behind physics of extended objects?
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Action

Massless axion + photon + topological coupling

S = −
∫
d4x

(
v2

2
|∂µφ|2 +

1

4e2
|fµν |2 +

1

32π2
φεµνρσfµνfρσ

)

• Axion: 2π periodic pseudo scalar φ+ 2π ∼ φ

(axion as Nambu-Goldstone boson of U(1) symmetry)

2π periodicity = gauge symmetry (redundancy)

• Photon aµ: U(1) gauge field, Dirac quantization condition∫
S fµνdS

µν =
∫
S B · dS ∈ 2πZ

Non-invertible symmetries can be found by EOM of axion and photon
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EOM of axion = U(1) shift symmetry of axion...? (1/2)

If photon is absent, we have ordinary U(1) symmetry

• EOM as cons. law: v2∂µ(∂µφ) = 0 → jµ = v2∂µφ is conserved.

• Unitary operator Uφ = exp
(
iα
∫
V v

2∂µφ dVµ
)

• U(1) phase rotation Uφeiφ(Uφ)† = eiαeiφ

If the axion-photon coupling φfµν f̃µν is present, ...
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EOM of axion = U(1) shift symmetry of axion...? (2/2)

Conservation law is deformed

• EOM: ∂µ(v2∂µφ− 1
8π2 aν f̃

µν) = 0, cons. current: jµ = v2∂µφ− 1
8π2 aν f̃

µν

• However, unitary operator

exp

(
iα

8π2

∫
V
aν f̃

µνdVµ

)
×e−iα

∫
V v

2∂µφ dVµ

is only gauge invariant if eiα = 1 (Dirac quantization condition) [detail]

• No conventional global symmetry: eiφ → eiαeiφ = eiφ　

Just a consequence of chiral anomaly

Shift symmetry with a rational number, e.g., α = 2π
p

(p ∈ Z)

is still valid at the expense of unitarity!
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Modification using U(1) Chern-Simons theory [Choi, Lam, Shao, ’22; Córdova & Ohmori, ’22]

exp
(

i
4πp

∫
V dVµaν f̃

µν
)

has a gauge invariant expression!

Modification

exp

(
i

4πp

∫
V
dVµaν f̃

µν

)
→
∫
Dcµ exp

(
i

4π

∫
V
dVµ(−p cν d̃µν + 2cν f̃

µν)

)

Essentially 1
p
x2 → −py2 + 2xy

• cµ: auxiliary U(1) gauge field, field strength dµν = ∂µcν − ∂νcµ,

Dirac quant. cond.
∫
dSµνdµν ∈ 2πZ

• Consistent with Dirac quantization condition: p ∈ Z in numerator

• Original one: naive expression after eliminating cµ by its EOM pdµν = fµν

with trivial Dirac quant. cond.
∫
S fµνdS

µν = 0 (mod p)

• Sum (path integral) of phase factors: unitarity is lost

We can construct symmetry generator by this modification.
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Non-invertible 0-form symmetry [Choi, Lam, Shao, ’22; Córdova & Ohmori, ’22]

Symmetry generator

Dφ
α= 2π

p

=

∫
Dcµ exp

(
−
i

4π

∫
V
dVµ(p cν d̃

µν − 2cν f̃
µν)

)
×e

2πi
p

∫
V dVµ∂

µφ

• Symmetry generator is gauge invariant

• Topological: EOM of axion

• 0-form symmetry: acting on 0-dim. axion operator eiφ → e
iφ+ 2πi

p

• Non-invertible (sum of phase factors)

How about EOM of photon?
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Non-invertible 1-form symmetry in axion electrodynamics

RY [2212.05001] (see also Choi, Lam, Shao [2212.04499])

[5, 6, 7, 8]

Message: Non-invertible higher-form symmetry exists

in a realistic model.



EOM of photon = conservation of electric flux = symmetry? (1/2)

If the axion is absent, ...

• EOM as cons. law: ∂µ( 1
e2
fµν) = 0, jµν = 1

e2
fµν is conserved

• Unitary operator Ua = exp
(
iβ
∫
S

1
e2
f̃µνdSµν

)
∫
S f̃µνdS

µν =
∫
E · dS (Gauss law) or

∫
B · drdt (Ampère law)

TimesHe of s

。0挺 .de がdut

• U(1) 1-form symmetry: phase rotation on Wilson loop

If the axion-photon coupling φfµν f̃µν is present, ...
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EOM of photon = conservation of electric flux = symmetry? (2/2)

Conservation law is deformed.

• EOM: ∂µ( 1
e2
fµν − 1

4π2 φf̃
µν) = 0, cons. current jµν = 1

e2
fµν − 1

4π2 φf̃
µν

• However, unitary operator

Uβ = exp

(
iβ

4π2

∫
S
φfµνdS

µν

)
×eiβ

∫
S

1
e2
f̃µνdS

µν

is only invariant under φ→ φ+ 2π if eiβ = 1

• No symmetry?

What we find: symmetry with a rational number, e.g., β = 2π
q

(q ∈ Z)

is still valid at the expense of unitarity!
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Modification using topological field theory [Choi, Lam, Shao, ’22; RY ’22]

exp
(

i
2πq

∫
S φfµνdS

µν
)

has a gauge invariant expression!

Modification

exp

(
i

2πq

∫
S
φfµνdS

µν

)
→
∫
DχDuµ exp

(
−
i

2π

∫
S
dSµν(qχwµν − χfµν − φwµν)

)

Essentially 1
q
xy → −qab+ ax+ by

• Introducing auxiliary fields

• χ: 2π periodic scalar

• uµ: U(1) gauge field, field strength wµν = ∂µuν − ∂νuµ,

Dirac quant. cond.
∫
S wµνdS

µν ∈ 2πZ

• 2π periodicity is preserved.

• Original one: naive expression with trivial Dirac quant. cond.

• Sum (path integral) of phase factors: unitarity is lost
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Non-invertible 1-form symmetry [Choi, Lam, Shao, ’22; RY ’22]

Symmetry generator

Da
β= 2π

q

=

∫
DχDu exp

(
i

2π

∫
S
dSµν (−qχwµν + χfµν + φwµν)

)
·eiβ

∫
S f̃dS

• Symmetry generator is gauge invariant

• Topological: EOM of photon

• 1-form symmetry: phase rotation on Wilson loop

• Non-invertible (sum of phase factors)

16 / 21



Summary of non-invertible symmetries in axion electrodynamics

There are two non-invertible symmetries in axion electrodynamics

• EOM of axion → non-invertible 0-form symmetry

• EOM of photon → non-invertible 1-form symmetry

Question: How about current algebra for these symmetries?

• Ordinary symmetries: current algebra = group theory

• Non-invertible symmetries: current algebra = ?? (category theory?)

Let us discuss current algebra from Sikivie effect.



Current algebra of non-invertible symmetries from Sikivie effect



Sikivie effect [Sikivie ’84] [4]

Induced charge on intersection of axionic domain wall & B

• Modification of Gauss law ∇ ·E = 1
4π2∇φ ·B

Current algebra from Sikivie effect?

Non-inv. 0- & 1-form symmetry generators = axionic domain wall & magnetic flux
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Non-inv. 0-form symmetry generator Dφ

α= 2π
p

= axionic domain wall

Rough explanation

• (2 + 1)-dim. object

• Generating shift of axion by 2π
p
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Non-inv. 1-form symmetry generator Da
β= 2π

q

= static magnetic flux tube

• (1 + 1)-dim. object

• Generating Aharonov-Bohm phase of Wilson loop by 2π
q

Expectation: intersection of Dφα & Daβ gives Sikivie effect
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Sikivie effect by Dφ
α & Da

β [Choi, Lam, Shao, ’22; RY ’22]

• Wilson loop e
i
pq

∫
aµdx

µ

with fractional charge 1
pq

is induced

• Detail

• Intersection → shift transf. φ→ φ+ 2π
p of axion-photon coupling in Daβ :

Daβ → e
i
pq

∫
C aµdx

µ

Daβ

• Fractional charge coincides with Gauss law 1
4π2∇φ ·B = 1

pq

Fractional charge can be captured by another 1-form sym. generator.
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Intersection of Dφ
α, Da

β, Da
β′ = fractional phase rotation [RY ’22]

Rough derivation

• Detection of electric flux from fractional charge by Da
β′

Mixed ’t Hooft anomaly? [cf. Kaidi Nardoni, Zafrir, Zheng, ’23][9]

• Symmetry generators Dφα & Daβ become source of Daβ

→ conservation of Daβ is violated by symmetry generators: 〈DaβD
φ
αD

a
β′ 〉 ∝ e

2πi
pqq′
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Summary: axion electrodynamics has non-invertible 1-form symmetry

• Non-invertible 1-form symmetry is associated with EOM of photon

• Gauge invariant symmetry generator is constructed by path integral of phase

factors

• Current algebra of symmetry generators are derived from the viewpoint of Sikivie

effect

Future work

• Mathematical structure of current algebra?

• New examples of non-invertible symmetries?



Dirac quantization (1/2)

Electric & and magnetic charges should be quantized in U(1) gauge theories

1. Quantization of electric charge

• Periodicity of U(1) → gauge parameter can have a winding number
∮
∂µλdx

µ = 2π

(Insertion of Dirac string)

• Wilson loop should be invariant under gauge transf. with a winding number aµ → aµ + ∂µλ

eiqe
∫
C aµdx

µ
→ eiqe

∫
C ∂µλdx

µ
· eiqe

∫
C aµdx

µ
= e2πiqe · eiqe

∫
C aµdx

µ

• Electric charge qe must be quantized qe ∈ Z

Periodicity of U(1) is important. If the gauge group is R, qe ∈ R due to∮
∂µλdxµ = 0. [e.g., Banks & Seiberg ’10]. [10]



Dirac quantization (2/2)

2. quantization of magnetic charge qm

• Stokes theorem for Wilson loop: some choices of surfaces

• One choice of should be equal to another

• Magnetic charge must be quantized qm ∈ Z. [back]



Gauge invariance of exp
(
iα

8π2

∫
V dVµaν f̃

µν
)

(1/2)

1. To make integrand of unitary operator gauge invariant, we use Stokes theorem

exp

(
iα

8π2

∫
V
dVµaν f̃

µν

)
= exp

(
iα

8π2

∫
ΩV

fµν f̃
µνd4x

)

2. We have chosen an auxiliary 4-dim. space ΩV .

3. Another choice Ω′V is possible:



Gauge invariance of exp
(
iα

8π2

∫
V dVµaν f̃

µν
)

(2/2)

3. Two choices should be identical

exp

(
iα

8π2

∫
ΩV

fµν f̃
µνd4x

)
= exp

(
iα

8π2

∫
Ω′V

fµν f̃
µνd4x

)
,

Therefore, we have the constraint

exp

(
iα

8π2

∫
Ω
fµν f̃

µνd4x

)
= 1

for Ω = ΩV ∪ Ω̄′V

4. Dirac quantization requires
∫
Ω fµν f̃

µνd4x ∈ 2 · (2π)2Z for closed Ω

5. Therefore exp (iα) = 1.

[back]



Derivation of 1-form symmetry transformation 0/4

Symmetry transformation in terms of correlation function

〈eiα
∫
S

1
e2
f̃µνdS

µν

ei
∫
C aµdx

µ
〉 =

∫
DaeiS+iα

∫
S

1
e2
f̃µνdS

µν+i
∫
C aµdx

µ

。0.fi = ビの

s

We want to eliminate
∫
S f̃µνdS

µν by field redefinition.

Two problems:

1. Action (
∫
fµνfµν) is 2nd. order derivative, but

∫
S f̃µνdS

µν is 1st order deriv.

2. Action is 4-dim integral, but
∫
S f̃µνdS

µν is 2-dim. integral



Derivation of 1-form symmetry transf. 1/4

We can rewrite
∫
S f̃µνdS

µν as follows:

Gauss-Stokes theorem

∫
S
f̃µνdS

µν =

∫
VS

∂µf
µνdVν

∂VS = S, dVν : volume element

: 芯
• Tensorial expression of

∫
S E · dS =

∫
VS
∇ ·EdV

The right-hand side can be rewritten as 4-dim integral



Derivation of 1-form symmetry transf. 2/4

By using delta function, we have

4-dim integral

∫
VS

∂µf
µνdVν =

∫
d4x ∂µf

µν δν(VS), where δν(VS) =

∫
VS

dVν(y)δ4(x−y)

Derivation:∫
VS

∂µf
µν(y)dVν(y) =

∫
d4x

∫
VS

δ4(x− y)∂µf
µν(x)dVν(y)

=

∫
d4x∂µf

µν(x)

(∫
VS

δ4(x− y)dVν(y)

)

Two problems have been solved. Symmetry generator can be absorbed into the action,

1
e2

∫
(− 1

4
|fµν |2 + α∂µf

µνδν(VS)) = S[aµ − αδµ(VS)]

(UV divergence is renormalized.)



Derivation of 1-form symmetry transf. 3/4

By the field redefinition aµ − αδµ(VS)→ aµ,

Symmetry generator can be eliminated

〈eiα
∫
S

1
e2
f̃µνdS

µν

ei
∫
C aµdx

µ
〉 =

∫
DaeiS+iα

∫
S

1
e2
f̃µνdS

µν+i
∫
C aµdx

µ

= eiα
∫
C δµ(VS)dxµ 〈ei

∫
C aµdx

µ
〉

What is
∫
C δµ(VS)dxµ in the right-hand side?



Derivation of 1-form symmetry transf. 4/4

Linking number between S & C∫
C
δµ(VS)dxµ = Link (S, C) ∈ Z

• Integral = intersection number between VS & C = linking number between S & C

○ 0
s 「Vs S

InterSection LinKing

We arrive at

U(1) symmetry transformation

〈eiα
∫
S

1
e2
f̃µνdS

µν

ei
∫
C aµdx

µ
〉 = eiαLink (S,C)〈ei

∫
C aµdx

µ
〉

[back]
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