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1. Introduction and Motivation



A Brief History of VSFT

Purely Cubic
Theory

‘85

Noncommutative
Geometry

D-brane as NC Soliton

VSFT

D-brane Charge
=K-theory

OSFT =
Noncommutative Geometry ‘99

Tachyon
CondensationWitten’s OSFT

‘00

‘86
‘01~



Motivation: What is D-brane?

• In effective field theory
– D-brane = Soliton of closed string

• Black hole like object

• In (full) string theory
– D-brane = Boundary condition for open string
– Described by (abstract) Boundary state

(Ln − L −n ) | B〉 = 0
They should be understood as “Solution”

To the second quantized field theory



Why Noncommutative Geometry is relevant to 
understand D-brane?

Open string has Chan-Paton index

Φij
D-branes

: i,j : Chan-Paton Index

Composition of two open strings
ΦijΦ jk = Φikk∑

ki j = Multiplication of matrices



To pick up one D-brane, we use Projector to one 
specific Chan-Paton Index

Projector P
N-dim space k dim linear subspace

P 2 = P
rank(P) = k

Matrix  → Noncommutative Geometry

Projector → Noncommutative Soliton 



D-(p-2) brane out of D-p brane
Idea: Use D-p brane world volume instead of Chan-Paton factor

Start from D-p brane with non-zero B-field

Zero mode of open string becomes noncommutative

( f ∗ g)(x) = e
i
2
θ ij (∂ i∂ ' j −∂ j∂ ' i )

f (x)g(x ')
x '=x

Moyal Product

Moyal plane is the simplest example of NC geometry

f ∗ f = f ⇒ f = exp − 1
2θ

( x1
2 + x 2

2 )
 
 
 

 
 
 Projector equation

θ
Blob with size θ is interpreted 
D-(p-2) brane



Open string as a whole as MatrixOpen string as a whole as Matrix
Ψ1 ∗ Ψ 2Witten’s star product

Ψ1 ∗ Ψ 2 Ψ1 Ψ2

Ψ1 ∗ Ψ 2( )(X) = DYDZ∫ Π
σ =0

π
2
δ(X(σ) −Y (σ))δ(Y (π −σ) − Z(σ))δ(Z(π −σ) − X(π −σ))

 

 
  

 

 
  Ψ1(Y )Ψ2(Z)

Path Integral for the overlap looks like matrix multiplication

Witten’s argument

Triplet (∗ ,Q, ∫)
defines 
Noncommutative Geometry

1. *-product::noncommutative and Associative

2. Q: BRST operator : Q2=0

3. Integration



D-brane is NC soliton for Witten’s star product

Ψ∗ Ψ = ΨMatrix equation

Conformal Invariance (Ln − L −n ) | B〉 = 0Open string 
↓?

Closed String

One to one correspondence 

between solutions?

Matrix=gl(∞)
↓?

Virasoro



V(T)

TT0

A: Witten’s OSFT

= D25 brane background

S = 1
2 Ψ∗ QΨ + 1

3 Ψ3( )∫

B: Tachyon Vacuum

solution by level truncation

Ψ0

Progress until 2002/7

S[Ψ0]− S[0]
τ 25

= 0.9999.... Sen, RSZ, Berkovits, Taylor…

B should be universal for any D-brane

We want re-expand the theory from point B
No analytic solution 
known for Ψ0



Ansatz of the theory at B = VSFT RSZ

• Q → QVSFT :  Pure ghost BRST operator
• NO COHOMOLOGY

• Splitting of variable in wave function

Ψ = Ψmatter ⊗ Ψ ghost

⇓

QVSFT Ψghost + Ψghost ∗ Ψ ghost = 0
Ψmatter ∗ Ψ matter = Ψmatter

Exactly solvable !



Candidate of D-brane = Sliver state
Kostelecky-Potting solution

|Ξ〉 ∝ e
1
2a+CTa+

|0〉

T = 1
2M0

1+ M0 ± (1+ M0)(1−3M0)( )
Wedge state and Sliver state

| n〉 = 0 n     n ∗ m = n + m

| Ξ〉 = lim
n →∞

n( )

Use of square root
And infinite product

Is the origin of 
Trouble



2. Recent developments of VSFT



Topics

• Explicit correspondence with NC Geometry
– Half string Formulation
– Mapping Witten’s star product to Moyal product

• Appearance of Closed string
• Construction of Physical State

– Can variation around sliver reproduces open string 
spectrum?

– Hata-Kawano state, Okawa state, …



2.1 Explicit correspondence with NC Geometry
Witten’s argument uses the path integral formally.

For explicit correspondence, we need to use mode expansion.

Bordes et. al. , 

RSZ, Gross-Taylor
1. Split string formulation

X(σ)
l(σ) = X(σ) 0 ≤ σ ≤ π

2
r(σ) = X(π −σ) π

2
≤ σ ≤ π

 

 
 

 
 l(σ)l(σ) r(σ)

Ψ X( )→ Ψ l,r( )
Ψ1 ∗ Ψ 2( )(l,r) = dt∫ Ψ1(l, t) ∗ Ψ 2(t,r)

Except for the path 

integral, * product looks like 

matrix multiplication



Subtlety in split string

Boundary condition at the midpoint ?

Neumann or

DirichletNeumann

Neumann at M

Labeled by
Even integers

l(σ) = l0 + 2Σele cos(eσ)   (e even, positive)

r(σ) = r0 + 2Σere cos(eσ)  

l(σ) = 2Σolo cos(oσ)   (o even, positive)

r(σ) = 2Σoro cos(oσ)  

Labeled by
Odd integersDirichlet at M

Original Variable
X(σ) = x0 + 2Σn≥0xn cos(nσ) 

Labeled by
Even and Odd

integers



Translation between even and odd mode

Teo = π
4 dσ cos(eσ)cos(oσ)

0

π
2

∫ = 2(−1)(e+o−1)/ 2

π
1

o + e
+ 1

o −e
 
 
 

 
 
 

Roe = T( )oe
− −1( )e / 2T0e “X” in Gross-Jevicki, Gross-Taylor

Hodd Heven
T

TR = RT =1
R

Zero mode part

vo = 1
2

T0,o ∈ H odd ,   we = 2(−1)e / 2+1 ∈ H even

with Tv = 0, v = Tw,  TT =1, TT =1−vv



These relation breaks associativity…

(RT)v = v     but    R(Tv) = 0

(TT)w = w   but   T(Tw) = Tv = 0

• It is not very clear that this anomaly produces the 
associativity anomaly of * product itself.

• As we see later, any string amplitude can be written in terms 
of only one matrix written in terms of T and vector by w.

• In the following discussion, we will use the finite 
dimensional regularization and use ordinary multiplication rule
of matrix everywhere. 



Associativity anomaly in purely cubic theory

Purely cubic theory (Yoneya, Friedan, Witten)

Scubic = 1
3

Ψ3∫    ⇒ e.o.m  Ψ2 = 0

(Horowitz,Lykken, Rohm, Strominger)Solution
Ψ0 = QLI
I :   Identity operator

QL  :  half BRST operator    QL = jBRS σ( )dσ
0

π / 2∫
Ψ0Expansion around Reproduces Witten’s action

It reproduce correct
Open string spectrum!

Scubic[Ψ0 + Ψ1] = SWitten[Ψ1]



Closed string sector in (old) VSFT
How to write space-time reparametrization by 
open string degree of freedom?

Space-Time translation (Horowitz, Strominger)

Λ = PL I  ,        [Λ,Ψ[X]]∗ = ∂
∂ε

Ψ[X +ε]

It breaks associativity explicitly.

(P1L + P2L ) V4 = 0,  (x1 − x 3) V4 = 0

but  P1L + P2L ,x1 − x 3[ ] = − i
2

Closed string sector
breaks associativity?

PL = Σovo∂lo
,PR = Σovo∂ro

In terms of split string variables,

Anomaly of T, R, v, w Anomaly from closed string



Moyal Formulation (Bars, Bars-Matsuo)

Split string Ψ1 ∗ Ψ 2( )(l,r) = Ψ1(l,t)Ψ2(t,r)
−∞

∞∫ dt

Fourier Transformation

A(x, p) = Ψ x+y
2 , x−y

2( )e−ipydy ≡ F Ψ( )
−∞

∞∫ (x, p)

F Ψ1( )∗ F Ψ2( )= F Ψ1 ∗ Ψ 2( )
Moyal

A1 ∗ A2( )(x, p) = e
i
2(∂ x∂ p '−∂ p∂ x ' )A1(x, p)A2(x ', p')

x=x'
p= p'



Extension to OSFT

A xeven,xodd( )= Πodxoe
−2iΣe,o peTeoxo Ψ x0,xe,xo( )∫

1. Matrix T is needed to translate podd to peven

2. On LHS, we do not need split string wave 
function but original wave function

3. Witten’s star product is now realized infinite 
direct product of Moyal planes with same θ
for all the planes…



Note
(Moore-Taylor, Bars-Matsuo)Associativity breaking mode

Kink at the midpoint

= zero mode of K1 (RSZ)

= generator of space-time translation

(Hashimoto-Izhaki, GRSZ)Closed string vertex

δS = V π
2( )Ψ∫

V : closed string vertex

Gauge invariant form



Another formulation of MSFT
Liu, Douglas, Moore, Zwiebach

x(κ ),y(κ ')[ ]∗
= iθ κ( )δ κ −κ '( )

θ κ( )= 2tanh πκ
4( )  ,     κ ≥ 0 , Continuous parameter

x(κ ) = 2Σe=2
∞ ve (κ ) exe ,   y(κ ) = − 2Σo>0

vo(κ )
o

po

In terms of discrete variable x, p,

xe , po[ ]∗
= iΘe,o ,      n,m ≥1

Θe,o = 2Te,o

Comparison with Bars’ :  Fourier transformation without T



Explicit computation in MSFT Bars, Matsuo

Any SFT computation is drastically simplified in MSFT

Operator Formalism MSFT

eΣnan
+ (−1)n an

+

0     ⇔     1Identity: 

A = e−ξ Mξ ,  ξ =
xe

pe

 

 
 

 

 
 

m2 =1,  (m = Mσ)

σ =
0 i
−i 0
 

 
 

 

 
 

ψ = e−a +CTa +

0

MT 2 − (1+ M)T + M = 0
M = CV3

[rr]

Projector:

Nontrivial

Building block

Neumann

Coefficients
Perturbative vacuum



Wedge state and sliver in MSFT

0 ⇔ A0 = N0 exp −ξ M0ξ( )  ,   M0 =
κ e 0
0 Z

 

 
 

 

 
  ,   Z = Tκ o

−1T

A0( )∗

n = Nn exp −ξ Mnξ( ),    Mnσ = (1+ m0)n − (1− m0)n

(1+ m0)n + (1− m0)n ,  m0 = M0σ

Wedge state

Sliver state

ms = Msσ = lim
n →∞

Mnσ = m0

m0
2

 ,   ms
2 =1

m0v
κ( ) = tanh π

4 κ( )v κ( ) ⇒  msv
κ( ) =ε κ( )v κ( )

−∞ <κ < ∞ ,   at κ = 0 indefinite

Singularity at κ=0 !



Relation between OSFT and MSFT
Every Neumann coeffs are expressed in terms of M0 and w

Vn Ψ1 ⊗ L ⊗ Ψ n = Tr A1 ∗ L ∗ An( )
Ai = F Ψi( )

For example, 3-string vertices are expressed as

M0 = m0
2 −1

m0
2 + 3

,     M+ = 2 m0 +1
m0

2 + 3
,    M− = 2 1− m0

m0
2 + 3

V0 = 4m0
2

3 m0
2 + 3( )W ,    V+ =

V00 =W 4m0
2

m0
2 + 3

W

Which satisfies all Gross-Jevicki’s nonlinear identities.



Spectroscopy of Neumann coefficients RSZ

M0, M+/- are simultaneously diagonalized

K1 = L1 + L−1,    K1v
(κ ) =κv(κ ),    κ ≥ 0

zn

nn=1

∞∑ vn
(κ ) = 1

κ
1−exp −κ tan−1z[ ]( )

M0vn
(κ ) = − 1

1+ 2cosh πκ /2( )
vn

(κ ), M±vn
(κ ) = 1+ e±πκ / 2

1+ 2cosh πκ /2( )
vn

(κ )

In Moyal language, this is automatic

Every Neumann coefficients are written by single matrix m0

m0 = tanh π
4 K1( )



2.3 Physical States
Expansion around Sliver state should 

reproduce open string living on corresponding
D-brane (up to gauge transformation)

Variation around Ψ0   (Ψ0
2 = Ψ0)

Ψ'= Ψ0 + Ψ1,    Ψ'2 = Ψ'
Ψ1 = Ψ0 ∗ Ψ1 + Ψ1 ∗ Ψ 0 Very simple!



The Issue

• For finite dim noncommutative geometry 
(=finite matrix), any such variation becomes 
pure gauge

• Naively, there is no matter Virasoro in 
E.O.M. How can it reproduce every 
physical state correctly?



Possible Solutions

• Midpoint subtlety
• Infinite dimensionality
• Infinite conformal transformation associated 

with sliver state

① Hata-Kawano tachyon state

② Okawa state



Hata-Kawano state Hata-Kawano

T = eΣntnan
+a0eipx0 ΞAnsatz

By tuning tn, tachyon state satisfies e.o.m

If we expand,

Parameters {t} are tuned in such way to cancel xe dependence 
of ipx0

x0 = x + Σe>0 we xe,      x = X π
2( )… Roughly speaking. We need delicate deviation

from that to reproduce correct mass-shell condition.

T = eip x Ξ With this form, e.o.m 
follows directly.



Pathology from infinite product
φ e.o.m = 0   for φ  in Fock space

but
φ e.o.m = 0   for φ  in sliver state

Ξ Ξ

Ξ

We have to be very
Careful to define

The definition
Of Hilbert space
Where e.o.m. is

imposed

=

Ξ
Ξ

Ξ

≠Ξ Ξ



Okawa’s state

BCFT consideration (Abstract argument)

(Ln − L−n ) B = 0Boundary stateD-brane

δ B = dσ j σ( )∫ BPhysical open string 
states on D-brane

(Ln − L−n )δ B = 0

Solution in closed string sector



Mapping from boundary state to sliver RSZ, YM

B B +δ BClosed string

0 BB ∈ HBBOpen string Hilbert space

Ξ BB = 0 BB( )∗

∞
Okawa’s stateSliver



Some features of Okawa state

• It correctly reproduces mass-shell condition
for any vertex operator
– Conformal invariance requires the vertex 

operator to have dimension one
• The brane tension computed from three 

tachyon coupling gives correct value.



Remaining questions
• Both HK and Okawa states solve e.o.m.  It seems 

that there are too many solutions.  We need to re-
examine the definition of Hilbert space more 
carefully.

• So far only (infinite) conformal transformation
associated with sliver gives the right mass-shell 
conditions.  Only conformal dimension gives on-
shell condition. Does it also describe gauge degree 
of freedom correctly?



Conclusion
• Noncommutative geometry

– MSFT gives handy description of OSFT
– Now we do not need Neumann coefficients!

• Correct description of physical state on D-brane 
seems to be given.  

• Many problems remain
– Associativity anomaly
– Extra (unphysical) solutions
– Closed string sector
– Supersymmetric extension
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