Noncommutative Geometry and

Vacuum String Field Theory Y.Matsuo
Univ. Tokyo

July 2002, YITP WS on QFT

1. Introduction and Motivation

A Brief History of VSFT

Motivation: What is D-brane?

- In effective field theory
- D-brane $=$ Soliton of closed string
- Black hole like object
- In (full) string theory
- D-brane $=$ Boundary condition for open string
- Described by (abstract) Boundary state

$$
\left(L_{n}-\bar{L}_{-n}\right)|B\rangle=0
$$

They should be understood as "Solution"
To the second quantized field theory

Why Noncommutative Geometry is relevant to understand D-brane?

Open string has Chan-Paton index

$$
\Phi_{i j}
$$

: i,j : Chan-Paton Index

Composition of two open strings

$$
\begin{aligned}
& \sum_{k} \Phi_{i j} \Phi_{j k}=\Phi_{i k} \\
= & \text { Multiplication of matrices }
\end{aligned}
$$

To pick up one D-brane, we use Projector to one specific Chan-Paton Index

Matrix \rightarrow Noncommutative Geometry
Projector \rightarrow Noncommutative Soliton

D-(p-2) brane out of D-p brane

Idea: Use D-p brane world volume instead of Chan-Paton factor
Start from D-p brane with non-zero B-field
Zero mode of open string becomes noncommutative

$$
(f * g)(x)=e^{\frac{i}{2} \theta_{i j}\left(\partial_{i} \partial_{j}-\partial_{j} \partial_{i}^{\prime}\right)} f(x) g\left(x^{\prime}\right) \quad \text { Moyal Product }
$$

Moyal plane is the simplest example of NC geometry
Projector equation $\quad f * f=f \Rightarrow f=\exp \left(-\frac{1}{2 \theta}\left(x_{1}^{2}+x_{2}^{2}\right)\right)$

Blob with size θ is interpreted D-(p-2) brane

Open string as a whole as Matrix

Witten's star product

$$
\Psi_{1} * \Psi_{2}
$$

$\left(\Psi_{1} * \Psi_{2}\right)(X)=\int D Y D Z\left(\prod_{\sigma=0}^{\pi / 2} \delta(X(\sigma)-Y(\sigma)) \delta(Y(\pi-\sigma)-Z(\sigma)) \delta(Z(\pi-\sigma)-X(\pi-\sigma))\right) \Psi_{1}(Y) \Psi_{2}(Z)$

Path Integral for the overlap looks like matrix multiplication

Witten's argument

1. *-product::noncommutative and Associative
2. Q : BRST operator : $\mathrm{Q}^{2}=0$
3. Integration

Idea of VSFT

D-brane is NC soliton for Witten's star product
Matrix equation

$\Psi * \Psi=\Psi$

One to one correspondend
between solutions?
Conformal Invariance

$$
\left(L_{n}-\bar{L}_{-n}\right)
$$

Matrix $=g l(\infty)$
Open string

$$
\downarrow ?
$$

Closed String

Progress until 2002/7

A: Witten's OSFT
= D25 brane background $S=\int\left(\frac{1}{2} \Psi * Q \Psi+\frac{1}{3} \Psi^{3}\right)$

B: Tachyon Vacuum

solution by level truncation
$\underline{\left|S\left[\Psi_{0}\right]-S[0]\right|}=0.9999 \ldots$. τ_{25}

B should be universal for any D-brane
We want re-expand the theory from point B
No analytic solution known for Ψ_{0}

Ansatz of the theory at $B=V S F T$

- $\mathrm{Q} \rightarrow \mathrm{Q}^{\mathrm{VSFT}}:$ Pure ghost BRST operator
- NO COHOMOLOGY
- Splitting of variable in wave function

$$
\begin{aligned}
& \Psi=\Psi^{\text {matter }} \otimes \Psi^{\text {ghost }} \\
& \Downarrow \\
& Q^{V S F T} \Psi^{\text {ghost }}+\Psi^{\text {ghost }} * \Psi^{\text {ghost }}=0 \\
& \Psi^{\text {matter }} * \Psi^{\text {matter }}=\Psi^{\text {matter }}
\end{aligned}
$$

Exactly solvable!

Candidate of D-brane $=$ Sliver state

Kostelecky-Potting solution

$$
\begin{aligned}
& |\Xi\rangle \propto e^{\frac{1}{2} a^{+} C T a^{+}}|0\rangle \\
& T=\frac{1}{2 M_{0}}\left(1+M_{0} \pm \sqrt{\left(1+M_{0}\right)\left(1-3 M_{0}\right)}\right)
\end{aligned}
$$

Wedge state and Sliver state

$$
\begin{aligned}
& |n\rangle=|0\rangle^{n} \quad|\mathrm{n}\rangle *|m\rangle=|n+m\rangle \\
& \left.|\Xi\rangle=\lim _{n \rightarrow \infty}(n\rangle\right)
\end{aligned}
$$

2. Recent developments of VSFT

Topics

- Explicit correspondence with NC Geometry
- Half string Formulation
- Mapping Witten's star product to Moyal product
- Appearance of Closed string
- Construction of Physical State
- Can variation around sliver reproduces open string spectrum?
- Hata-Kawano state, Okawa state, ...

2.1 Explicit correspondence with NC Geometry

Witten's argument uses the path integral formally.
For explicit correspondence, we need to use mode expansion.

1. Split string formulation

Bordes et. al.,
RSZ, Gross-Taylor

$$
\begin{aligned}
& \frac{X(\sigma)}{l(\sigma)}-\left\{\begin{array}{cc}
l(\sigma)=X(\sigma) & 0 \leq \sigma \leq \frac{\pi}{2} \\
r(\sigma)=X(\pi-\sigma) & \frac{\pi}{2} \leq \sigma \leq \pi
\end{array}\right. \\
& \Psi(X) \rightarrow \Psi(l, r) \\
& \left(\Psi_{1} * \Psi_{2}\right)(l, r)=\int d t \Psi_{1}(l, t) * \Psi_{2}, \quad \text { Except for the path }
\end{aligned}
$$

Subtlety in split string

Boundary condition at the midpoint?

Labeled by
 Even integers

Newman at N

$l(\sigma)=l_{0}+\sqrt{2} \Sigma_{e} l_{e} \subset ् \mathrm{O}(e \sigma) \quad(e$ even, positive) $r(\sigma)=r_{0}+\sqrt{2} \Sigma_{e} r_{e} \cos (e)$
Labeled by
Dirichlet at M
$l(\sigma)=\sqrt{2} \Sigma_{o} l_{o}$
ODs $(o \sigma)$ integers $r(\sigma)=\sqrt{2} \Sigma_{o} r_{o} \cos (o \sigma)$
Original Variable

$$
X(\sigma)=x_{0}+\sqrt{2} \Sigma_{n \geq 0} x_{n} \cos (n \sigma) \infty \begin{gathered}
\text { Labeled by } \\
\text { Even and Odd } \\
\text { integers }
\end{gathered}
$$

Translation between even and odd mode

$$
\begin{aligned}
& T_{e o}=\frac{\pi}{4} \int_{0}^{\pi / 2} d \sigma \cos (e \sigma) \cos (o \sigma)=\frac{2(-1)^{(e+o-1) / 2}}{\pi}\left(\frac{1}{o+e}+\frac{1}{o-e}\right) \\
& R_{o e}=(T)_{o e}-(-1)^{e / 2} T_{0 e} \quad \text { "X" in Gross-Jevicki, Gross-Taylor }
\end{aligned}
$$

Zero mode part

$$
\begin{aligned}
& v_{o}=\frac{1}{\sqrt{2}} T_{0, o} \in H^{o d d}, w_{e}=\sqrt{2}(-1)^{e / 2+1} \in H^{\text {even }} \\
& \text { with } T v=0, v=\bar{T} w, T \bar{T}=1, \bar{T} T=1-v \bar{v}
\end{aligned}
$$

These relation breaks associativity...

$$
\begin{array}{lll}
(R T) v=v & \text { but } & R(T v)=0 \\
(T \bar{T}) w=w & \text { but } & T(\bar{T} w)=T v=0
\end{array}
$$

- It is not very clear that this anomaly produces the associativity anomaly of $*$ product itself.
- As we see later, any string amplitude can be written in terms of only one matrix written in terms of T and vector by w.
- In the following discussion, we will use the finite dimensional regularization and use ordinary multiplication rule of matrix everywhere.

Associativity anomaly in purely cubic theory

Purely cubic theory (Yoneya, Friedan, Witten)

$$
S^{c u b i c}=\frac{1}{3} \int \Psi^{3} \Rightarrow \text { e.o.m } \Psi^{2}=0
$$

Solution (Horowitz,Lykken, Rohm, Strominger)

$$
\Psi_{0}=Q_{L} I
$$

I : Identity operator
$Q_{L}:$ half BRST operator $Q_{L}=\int_{0}^{\pi / 2} j_{B R S}(\sigma) d \sigma$
Expansion around $\Psi_{0} \quad$ Reproduces Witten's action

$$
S^{\text {cubic }}\left[\Psi_{0}+\Psi_{1}\right]=S^{\text {Witten }}\left[\Psi_{1}\right]\left\{\begin{array}{l}
\text { It reproduce correct } \\
\text { Open string spectrum! }
\end{array}\right.
$$

Closed string sector in (old) VSFT

How to write space-time reparametrization by open string degree of freedom?

Space-Time translation
(Horowitz, Strominger)

$$
\Lambda=P_{L}|I\rangle, \quad[\Lambda, \Psi[X]]_{*}=\frac{\partial}{\partial \varepsilon} \Psi[X+\varepsilon]
$$

It breaks associativity explicitly.

$$
\left.\begin{array}{l}
\left(P_{1 L}+P_{2 L}\right)\left|V_{4}\right\rangle=0,\left(\bar{x}_{1}-\bar{x}_{3}\right)\left|V_{4}\right\rangle=0 \\
\text { but }\left[P_{1 L}+P_{2 L}, \bar{x}_{1}-\bar{x}_{3}\right]=-i / 2
\end{array}\right\} \quad \begin{aligned}
& \text { Closed string sector } \\
& \text { breaks associativity? }
\end{aligned}
$$

In terms of split string variables, $\quad P_{L}=\Sigma_{o} v_{o} \partial_{l_{o}}, P_{R}=\Sigma_{o} v_{o} \partial_{r_{o}}$
Anomaly of T, R, v, w
Anomaly from closed string

Moyal Formulation

Split string

$$
\left(\Psi_{1} * \Psi_{2}\right)(l, r)=\int_{-\infty}^{\infty} \Psi_{1}(l, t) \Psi_{2}(t, r) d t
$$

Fourier Transformation

$$
\begin{aligned}
& A(x, p)=\int_{-\infty}^{\infty} \Psi\left(\frac{x+y}{2}, \frac{x-y}{2}\right) e^{-i p y} d y \equiv F(\Psi)(x, p) \\
& F\left(\Psi_{1}\right) * F\left(\Psi_{2}\right)=F\left(\Psi_{1} * \Psi_{2}\right)
\end{aligned}
$$

Moyal

$$
\left(A_{1} * A_{2}\right)(x, p)=\left.e^{\left.\frac{i}{2}\left(\partial_{x} \partial_{p}^{\prime}\right)^{\prime}-p_{p} \partial_{x}^{\prime}\right)} A_{1}(x, p) A_{2}\left(x^{\prime}, p^{\prime}\right)\right|_{\substack{x=x^{\prime} \\ p=p^{\prime}}}
$$

Extension to OSFT

$$
A\left(x_{\text {even }}, x_{o d d}\right)=\int \Pi_{o} d x_{o} e^{-2 i \Sigma_{e, o} p_{e} T_{e o} x_{o}} \Psi\left(x_{0}, x_{e}, x_{o}\right)
$$

1. Matrix T is needed to translate $p_{\text {odd }}$ to $p_{\text {even }}$
2. On LHS, we do not need split string wave function but original wave function
3. Witten's star product is now realized infinite direct product of Moyal planes with same θ for all the planes...

Note

Associativity breaking mode (Moore-Taylor, Bars-Matsuo)

Kink at the midpoint
= zero mode of $K_{l}(R S Z)$
= generator of space-time translation

Closed string vertex
(Hashimoto-Izhaki, GRSZ)

$$
\delta S=\int V(\pi / 2) \Psi
$$

V : closed string vertex
Gauge invariant form

Another formulation of MSFT

Liu, Douglas, Moore, Zwiebach

$$
\begin{aligned}
& {\left[x(\kappa), y\left(\kappa^{\prime}\right)\right]_{=}=i \theta(\kappa) \delta\left(\kappa-\kappa^{\prime}\right)} \\
& \theta(\kappa)=2 \tanh (\pi \kappa / 4), \quad \kappa \geq 0, \text { Continuous parameter }
\end{aligned}
$$

$$
x(\kappa)=\sqrt{2} \Sigma_{e=2}^{\infty} v_{e}(\kappa) \sqrt{e} x_{e}, y(\kappa)=-\sqrt{2} \Sigma_{o>0} \frac{v_{o}(\kappa)}{\sqrt{o}} p_{o}
$$

In terms of discrete variable x, p,

$$
\begin{aligned}
& {\left[x_{e}, p_{o}\right]_{*}=i \Theta^{e, o}, \quad n, m \geq 1} \\
& \Theta^{e, o}=2 T_{e, o}
\end{aligned}
$$

Comparison with Bars' : Fourier transformation without T

Explicit computation in MSFT

Any SFT computation is drastically simplified in MSFT

Operator Formalism

Identity:

$$
e^{\Sigma_{n} a_{n}^{+}(-1)^{n} a_{n}^{+}}|0\rangle \quad \Leftrightarrow \quad 1
$$

Projector: $\quad \psi=e^{-a^{+} C T a^{+}}|0\rangle$

$$
\begin{aligned}
& M T^{2}-(1+M) T+M=0 \\
& M=C V_{3}^{[r r]}
\end{aligned}
$$

MSFT

$$
\begin{aligned}
& A=e^{-\bar{\xi} M \xi}, \xi=\binom{x_{e}}{p_{e}} \\
& m^{2}=1, \quad(m=M \sigma) \\
& \sigma=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
\end{aligned}
$$

Nontrivial Neumann
Perturbative vacuum

Wedge state and sliver in MSFT

Wedge state

$$
\begin{aligned}
& |0\rangle \Leftrightarrow A_{0}=N_{0} \exp \left(-\bar{\xi}_{M_{0}} \xi\right), M_{0}=\left(\begin{array}{cc}
\kappa_{e} & 0 \\
0 & Z
\end{array}\right), Z=T \kappa_{o}^{-1} \bar{T} \\
& \left(A_{0}\right)_{*}^{n}=N_{n} \exp \left(-\bar{\xi} M_{n} \xi\right) \quad M_{n} \sigma=\frac{\left(1+m_{0}\right)^{n}-\left(1-m_{0}\right)^{n}}{\left(1+m_{0}\right)^{n}+\left(1-m_{0}\right)^{n}}, m_{0}=M_{0} \sigma
\end{aligned}
$$

Sliver state

$$
\begin{aligned}
& m_{s}=M_{s} \sigma=\lim _{n \rightarrow \infty} M_{n} \sigma=m_{0} / \sqrt{m_{0}^{2}}, m_{s}^{2}=1 \\
& m_{0} v^{(\kappa)}=\tanh \left(\frac{\pi}{4} \kappa\right) v^{(\kappa)} \Rightarrow m_{s} v^{(\kappa)}=\varepsilon(\kappa) v^{(\kappa)} \\
& -\infty<\kappa<\infty, \text { at } \kappa=0 \text { indefinite }
\end{aligned}
$$

Relation between OSFT and MSFT

Every Neumann coeffs are expressed in terms of M_{0} and w

$$
\begin{aligned}
& \left\langle V_{n} \mid \Psi_{1}\right\rangle \otimes \cdots \otimes\left|\Psi_{n}\right\rangle=\operatorname{Tr}\left(A_{1} * \cdots * A_{n}\right) \\
& A_{i}=F\left(\left|\Psi_{i}\right\rangle\right)
\end{aligned}
$$

For example, 3-string vertices are expressed as

$$
\begin{aligned}
& M_{0}=\frac{\underline{m}_{0}^{2}-1}{\underline{m}_{0}^{2}+3}, \quad M_{+}=2 \frac{\underline{m}_{0}+1}{\underline{m}_{0}^{2}+3}, \quad M_{-}=2 \frac{1-\underline{m}_{0}}{\underline{m}_{0}^{2}+3} \\
& V_{0}=\frac{4 \underline{m}_{0}^{2}}{3\left(\underline{m}_{0}^{2}+3\right)} W, \quad V_{+}= \\
& V_{00}=\bar{W} \frac{4 \underline{m}_{0}^{2}}{\underline{m}_{0}^{2}+3} W
\end{aligned}
$$

Which satisfies all Gross-Jevicki's nonlinear identities.

Spectroscopy of Neumann coefficients

RSZ

$M_{0}, M_{+{ }_{+-}}$are simultaneously diagonalized

$$
\begin{aligned}
& K_{1}=L_{1}+L_{-1}, \quad \mathrm{~K}_{1} v^{(\kappa)}=\kappa v^{(\kappa)}, \quad \kappa \geq 0 \\
& \sum_{n=1}^{\infty} \frac{z^{n}}{\sqrt{n}} v_{n}^{(\kappa)}=\frac{1}{\kappa}\left(1-\exp \left[-\kappa \tan ^{-1} z\right]\right) \\
& M_{0} v_{n}^{(\kappa)}=-\frac{1}{1+2 \cosh (\pi \kappa / 2)} v_{n}^{(\kappa)}, M_{ \pm} v_{n}^{(\kappa)}=\frac{1+e^{ \pm \pi \kappa / 2}}{1+2 \cosh (\pi \kappa / 2)} v_{n}^{(\kappa)}
\end{aligned}
$$

In Moyal language, this is automatic

Every Neumann coefficients are written by single matrix m_{0}

$$
\underline{m}_{0}=\tanh \left(\frac{\pi}{4} K_{1}\right)
$$

2.3 Physical States

Expansion around Sliver state should reproduce open string living on corresponding D-brane (up to gauge transformation)

Variation around $\Psi_{0} \quad\left(\Psi_{0}^{2}=\Psi_{0}\right)$

$$
\Psi^{\prime}=\Psi_{0}+\Psi_{1}, \quad \Psi^{\prime 2}=\Psi^{\prime}
$$

$$
\Psi_{1}=\Psi_{0} * \Psi_{1}+\Psi_{1} * \Psi_{0}<\quad \text { Very simple! }
$$

The Issue

- For finite dim noncommutative geometry (=finite matrix), any such variation becomes pure gauge
- Naively, there is no matter Virasoro in E.O.M. How can it reproduce every physical state correctly?

Possible Solutions

- Midpoint subtlety
- Infinite dimensionality
- Infinite conformal transformation associated with sliver state

(1) Hata-Kawano tachyon state
(2) Okawa state

Hata-Kawano state

Ansatz $\quad|T\rangle=e^{\Sigma_{n} t_{n} a_{n}^{+} a_{0}} e^{i p x_{0}}|\boldsymbol{\Xi}\rangle$

By tuning $t_{\underline{n}}$, tachyon state satisfies e.o.m

If we expand,
... Roughly speaking. We need delicate deviation
Parameters $\{t\}$ from that to reproduce correct mass-shell condition of $i p x_{0}$

$$
|T\rangle=e^{i p \bar{x}}|\Xi\rangle
$$

With this form, e.o.m follows directly.

Pathology from infinite product

$\langle\phi|$ e.o. $m\rangle=0$ for ϕ in Fock space

but

$\langle\phi|$ e.o. $m\rangle=0$ for ϕ in sliver state

We have to be very
Careful to define The definition Of Hilbert space Where e.o.m. is imposed

Okawa's state

BCFT consideration (Abstract argument)

D-brane

Boundary state $\quad\left(L_{n}-\bar{L}_{-n}\right)|B\rangle=0$
Physical open string states on D-brane

$$
\begin{array}{r}
\delta|B\rangle=\oint d \sigma j(\sigma)|B\rangle \\
\left(L_{n}-\bar{L}_{-n}\right) \delta|B\rangle=0
\end{array}
$$

Solution in closed string sector

Mapping from boundary state to sliver ${ }^{\text {RSZ, YM }}$

Closed string $|B\rangle \longrightarrow|B\rangle+\delta|B\rangle$

Open string Hilbert space $\quad|0\rangle_{B B} \in H_{B B}$

Sliver $|\Xi\rangle_{B B}=\left(|0\rangle_{B B}\right)_{*}^{\infty} \longrightarrow$
Okawa's state

Some features of Okawa state

- It correctly reproduces mass-shell condition for any vertex operator
- Conformal invariance requires the vertex operator to have dimension one
- The brane tension computed from three tachyon coupling gives correct value.

Remaining questions

- Both HK and Okawa states solve e.o.m. It seems that there are too many solutions. We need to reexamine the definition of Hilbert space more carefully.
- So far only (infinite) conformal transformation associated with sliver gives the right mass-shell conditions. Only conformal dimension gives onshell condition. Does it also describe gauge degree of freedom correctly?

Conclusion

- Noncommutative geometry
- MSFT gives handy description of OSFT
- Now we do not need Neumann coefficients!
- Correct description of physical state on D-brane seems to be given.
- Many problems remain
- Associativity anomaly
- Extra (unphysical) solutions
- Closed string sector
- Supersymmetric extension

