Chiral Symmetry Breaking in Brane Models

Norio Horigome (Saitama Univ.)

to appear in arXive:0708.xxxx [hep-th]

– Collaborators – Madoka Nishimura (Tohoku Koeki Univ.) Yoshiaki Tanii (Saitama Univ.)

YITP Workshop "String Theory and Quantum Field Theory" @ Kinki Univ. (2007.8.6-10)

1. Introduction

AdS/CFT [Maldacena (1997)]

Weakly coupled IIB String Theory on $\text{AdS}_5{\times}\text{S}^5$

 \Leftarrow dual \Rightarrow Strongly coupled 4-D $\mathcal{N}=4$ Super Yang-Mills

We can analyze non-perturbative aspects of QCD by AdS/CFT. (holographic QCD)

 $S\chi SB$ was discussed in many holographic models :

D3/D7 [Babington et al. (2003)], D4/D6 [Kruczenski et al. (2003)], \cdots

 \longrightarrow Chiral symmetry = Rotational symmetry

 $D4/D8-\overline{D8}$ [Sakai-Sugimoto (2004)], · · ·

 \longrightarrow Chiral symmetry = Gauge symmetry

I'd like to discuss $S\chi SB$ in general intersecting Dq/Dp model.

There are

- a *r*-dim. intersection
- a compact x^q direction \rightarrow imposing SUSY breaking B.C.
- a (9 q p + r)-dim. transverse space (assume q + p r < 9)

The theory localized at the intersection is QCD-like \longrightarrow " QCD_{r+1} "

Global symmetry of QCD_{r+1}

$$\mathsf{SO}(1,r)\times\mathsf{SO}(9-q-p+r)\times\mathsf{U}(1)$$

3. Chiral symmetry from rotational symmetry

The theory localized at the intersection is QCD_{r+1}

Rotational symmetry in $\mathbb{R}^{9-q-p+r} \iff \text{Chiral symmetry of } QCD_{r+1}$ Separation of Dq and Dp in $\mathbb{R}^{9-q-p+r} \iff \text{Quark mass} (\rightarrow \chi \text{SB})$

4. Representative configurations of QCD_{r+1}

There are many configurations dual to QCD_{r+1}

 $a^{\overline{\mathsf{NS}}}$ 23 5 78 9 6 0 1 4 (q+p,r)color **D**2 Ο Ο Ο (4, 1)**D**2 $\frac{1}{4}$ flavor 0 Ο Ο (6, 1)D4 0 0 0 Ο 0 0 $\frac{1}{4}$ (8, 1)D6 Ο Ο 0 0 Ο Ο Ο D3 color 0 Ο Ο Ο (6, 2)D3 flavor 0 0 0 Ο $\overline{4}$ (8, 2)D50 0 0 Ο Ο 0 0 $\frac{1}{4}$ (10, 2)D70 Ο Ο 0 Ο Ο Ο Ο color D4 Ο Ο Ο Ο Ο (8,3) $\frac{1}{4}$ D4 flavor 0 Ο 0 Ο Ο (10, 3)D6 0 Ο 0 0 0 Ο Ο Ο

 \longrightarrow classified by the sets of (q+p,r)

Concentrate on $a^{NS} = 0$ configurations.

5. Chiral symmetries in QCD_{r+1}

Rotational symmetry SO(9 - q - p + r) in $\mathbb{R}^{9-q-p+r}$ space

 \implies Chiral symmetry of QCD_{r+1}

 $\cdot \mathsf{QCD}_4$

$$SO(2)_{89} \times U(1) \sim U(1)_V \times U(1)_A$$

 \longrightarrow Abelian chiral symmetry

 $\cdot \text{ QCD}_3$

$$\mathsf{SO}(3)_{789} \times \mathsf{U}(1) \sim \underline{\mathsf{SU}(2)} \times \mathsf{U}(1)_V$$

 \longrightarrow Physical meaning is not clear !

 $\cdot \mathsf{QCD}_2$

$$\begin{split} \mathsf{SO}(4)_{6789} \times \mathsf{U}(1) &\sim \underbrace{\mathsf{SU}(2)_L \times \mathsf{SU}(2)_R}_{\longrightarrow} \times \mathsf{U}(1)_V \\ &\longrightarrow \mathsf{Non-Abelian \ chiral \ symmetry} \end{split}$$

6. Supergravity analysis

Study $\mathrm{D}q/\mathrm{D}p$ model with

• Near horizon limit

 $N_c \text{ D}q\text{-branes} \rightarrow$ "background geometry" (classical SUGRA is valid : $1 \ll \lambda_{q+1} \left(\frac{U_{KK}}{\alpha'}\right)^{q-3} \ll N_c^{\frac{4}{7-q}}$)

- Probe approximation $(N_c \gg N_f = 1)$
 - a Dp-brane \rightarrow " probe " (not affects Dq background)

We can analyze the dynamics of the Dp-brane in the Dq background.

<u>Ansatz</u>

$$x^{r+1,\cdots,q} = \text{const.} , \quad r = r(\lambda) , \quad \theta^a = \text{const.}$$

• $r, \theta^a \cdots$ radial and angular coordinates of $\mathbb{R}^{9-q-p+r}$ space • $\lambda \cdots radial$ coordinate of \mathbb{R}^{p-r} space

7. Probe D*p*-brane dynamics

Effective action of the probe Dp-brane

$$S_{\mathsf{D}p} = -\tilde{T}_p V_{p-r-1} \int d^{r+1} x \int d\lambda \ \rho^{\alpha} \left(1 + \frac{U_{KK}^{7-q}}{4\rho^{7-q}} \right)^{\beta} \lambda^{p-r-1} \sqrt{1 + (r')^2} \ ,$$

where

$$\alpha = \frac{1}{4}(7-q)(4+2r-q-p), \quad \beta = \frac{1}{2}(4+2r-q-p) + \frac{2(p-r)}{7-q}$$

Equation of motion for $r(\lambda)$

$$\frac{d}{d\lambda} \left[\rho^{\alpha} \left(1 + \frac{U_{KK}^{7-q}}{4\rho^{7-q}} \right)^{\beta} \frac{\lambda^{p-r-1} r'}{\sqrt{1+(r')^2}} \right] = \frac{\partial}{\partial r} \left[\rho^{\alpha} \left(1 + \frac{U_{KK}^{7-q}}{4\rho^{7-q}} \right)^{\beta} \right] \lambda^{p-r-1} \sqrt{1+(r')^2}$$

8. AdS/CFT dictionary

Asymptotic behavior of $r(\lambda)$ is

$$r(\lambda) \sim r_{\infty} + c\lambda^{-(p-r-2)}$$
 (for $a^{NS} = 0$ configurations).

The relation between r_∞ , c and m_q , $\left< ar{\psi} \psi \right>$ are

$$m_q = \frac{U_{KK} r_\infty}{2\pi\ell_s^2} , \quad \left\langle \bar{\psi}\psi \right\rangle = -2\pi\ell_s^2 \,\tilde{T}_p V_{p-r-1} U_{KK}^{\alpha+p-r-1} c .$$

9. Numerical solutions (i) D4/D6 with r=3 (QCD₄)

[Kruczenski et al. (2003)]

D6 embedding breaks the rotational symmetry !

Gravity side : Non-zero c even for $r_{\infty} = 0$ $\iff QCD_4$ side : Spontaneous chiral symmetry breaking $SO(2)_{89} \times U(1) \sim U(1)_V \times U(1)_A \rightarrow U(1)_V$

9. Numerical solutions (ii) D3/D5 with r=2 (QCD₃)

Gravity side : Non-zero c even for $r_{\infty} = 0$ $\iff QCD_3$ side : ???

9. Numerical solutions (iii) D2/D4 with r=1 (QCD₂)

D4 embedding breaks the rotational symmetry !

Gravity side : Non-zero c even for $r_{\infty} = 0$ $\iff QCD_2$ side : Spontaneous chiral symmetry breaking

$$\mathsf{SO}(4)_{6789} \sim \mathsf{SU}(2)_L \times \mathsf{SU}(2)_R \to \mathsf{SU}(2)_V$$

10. NG bosons as fluctuations around the embedding

There will be (8 - q - p + r) NG bosons associated with the S χ SB.

Fluctuations around the vaccum embedding

$$x^{r+1,\cdots,q} = 0$$
, $r = r_{vac} + \delta r$, $\theta^a = 0 + \delta \theta^a$
 $\implies S_{\mathsf{D}_p} = S_{vac} + S_{\delta r} + S_{\delta \theta}$

For simplicity we assume that ...

 $\delta\theta^a$ depends only on the coordinates of the intersection : $\delta\theta^a = \delta\theta^a(x^\mu)$ "Pion" effective action at quadratic order

$$S_{\delta\theta} = -f_{\delta\theta}^2 \int d^{r+1}x \; \frac{1}{2} \gamma_{ab} \partial_\mu (\delta\theta^a) \partial^\mu (\delta\theta^b) \; .$$

There appear (8 - q - p + r) massless NG bosons $\delta \theta^a$!

11. Finite temp. analysis (i) D4/D6 with r=3 (QCD₄)

[Kruczenski et al. (2003)]

D6 embedding breaks the rotational symmetry !

Difference from zero-temp.

Gravity side : c = 0 for $T \to \infty$ $\left(T = \overline{M}/\sqrt{r_{\infty}}\right)$ $\iff QCD_4$ side : Chiral symmetry restore at $T \to \infty$

11. Finite temp. analysis (ii) D3/D5 with r=2 (QCD₃)

D5 embedding breaks the rotational symmetry !

Difference from zero-temp.

Gravity side : c = 0 for $T \to \infty$ $(T = \overline{M}/r_{\infty})$ $\iff QCD_3$ side : ???

11. Finite temp. analysis (iii) D2/D4 with r=1 (QCD₂)

D4 embedding breaks the rotational symmetry !

Difference from zero-temp.

Gravity side : c = 0 for $T \to \infty$ $\left(T = \overline{M}/\sqrt{r_{\infty}^3}\right)$ $\iff QCD_2$ side : Chiral symmetry restore at $T \to \infty$

12. Summary

We discussed the χ SB in the Dq/Dp model by AdS/CFT.

- Rotational symmetry in $\mathbb{R}^{9-q-p+r}$ can be interpreted as chiral symmetry in QCD_{r+1} . This chiral symmetry is Non-Abelian for QCD_2 and Abelian for QCD_4 .
- We found S χ SB in QCD_{2,4} ($\langle \bar{\psi}\psi \rangle \neq 0$ even for $m_q = 0$) and (8 q p + r) NG bosons associated with this S χ SB (Physical meaning is not clear for QCD₃).
- We also discussed theory at finite temperature and found chiral symmetry restoration at $T \to \infty$.
- It is interesting to introduce chemical potential in the Dq/Dp system.