フェルミオニックな開弦の境界状態の解析

礒野裕（東京大学）
共同研究者 今村洋介氏，松尾泰氏（東京大学）

Introduction

Boundary State (closed string):
Introduction of boundaries in the closed string worldsheet representing D-branes

Boundary states describe the absorption and emission of closed strings

Boundary State in the open string sector ??

Absorption and emission of open strings
Such situation is realizable in the configuration of multiple D-brane.

In the bosonic string case, such state is explicitly constructed.
We call such a state the "Open Boundary State (OBS) ".

[HI, Matsuo], [Imamura, HI, Matsuo]

Worldsheet

closed string emission from D-brane

Boundary does not have deficit angle

open string emission from D-brane

Boundary have corner of deficit angle
two corners for one OBS
Three boundary conditions for one OBS

Explicit boundary conditions of OBS

Bosonic string case:

$$
\begin{array}{rlrl}
\partial_{\mathrm{n}} X^{\mu} & =0 & & \text { Neumann b.c. } \\
\partial_{\mathrm{t}} X^{\mu} & =0 & \text { Dirichlet b.c. }
\end{array}
$$

applying these conditions, $\partial X(\sigma, \tau) \sim \sum_{n} \alpha_{n} e^{i n(\sigma+i \tau)}$

b.c. for endpoints $\alpha_{n}+\epsilon_{l} \tilde{\alpha}_{n}=0$
b.c. for OBS $\quad \alpha_{n}-\epsilon_{b} \tilde{\alpha}_{-n}=0$

$$
\begin{gathered}
\left(\alpha_{n}+\epsilon_{l} \epsilon_{b} \alpha_{-n}\right)\left|B^{o}, \epsilon_{l} \epsilon_{b}\right\rangle=0 \\
\left|B^{o}\right\rangle \propto \exp \left(-\epsilon_{l} \epsilon_{b} \sum_{n>0} \frac{\alpha_{-n}^{2}}{2 n}\right)|0\rangle
\end{gathered}
$$

$\epsilon:$ sign for b.c.
$\epsilon=+1 \quad$ Neumann
$\epsilon=-1 \quad$ Dirichlet

Fermionic string case:
endpoints A

OBS A

$$
\psi(\sigma=0, \tau)=x \tilde{\psi}(\sigma=0, \tau) \quad i^{\frac{1}{2}} \psi(\sigma, \tau=0)=x_{b}(-i)^{\frac{1}{2}} \tilde{\psi}(\sigma, \tau=0)
$$

Combining $\quad i^{\frac{1}{2}} \psi(\sigma, \tau=0)=x_{b}(-i)^{\frac{1}{2}} \tilde{\psi}(\sigma, \tau=0) \quad 0<\sigma<\pi$ and doubling trick $\quad \psi(\sigma, \tau) \equiv x_{l} \cdot \tilde{\psi}(-\sigma, \tau), \quad-\pi<\sigma<0$ we obtain $\quad \psi(\sigma, 0)=-i x_{b} x_{l} \cdot \psi(-\sigma, 0), \quad 0<\sigma<\pi$

Now, ψ is defined in $-\pi<\sigma<\pi$
Boundary condition in $-\pi<\sigma<0$ is

$$
\psi(\sigma, 0)=i x_{b} x_{l} \cdot \psi(-\sigma, 0), \quad-\pi<\sigma<0
$$

$$
\begin{array}{ll}
\psi(\sigma, 0)=-i x_{b} x_{l} \cdot \psi(-\sigma, 0), & 0<\sigma<\pi \\
\psi(\sigma, 0)=i x_{b} x_{l} \cdot \psi(-\sigma, 0), & -\pi<\sigma<0
\end{array}
$$

ψ has periodicity condition for $\sigma \sim \sigma+2 \pi$

$$
\begin{aligned}
& {\left[\psi(\sigma, 0)+i \operatorname{sign}(\sin \sigma) x_{b} x_{l} \cdot \psi(-\sigma, 0)\right]\left|B^{o}\right\rangle=0}
\end{aligned}
$$

1. If conformal weight is integer, this sign function does not appear.
2. This method can be applicable to primary fields of any conformal weight.
3. the identity state

$$
\begin{array}{r}
{[\psi(\sigma, 0)+i s(\sigma) \psi(\pi-\sigma, 0)]|I\rangle=0} \\
s(\sigma)=\operatorname{sign}(\sin \sigma)
\end{array}
$$

Oscillator representation

$$
[\psi(\sigma, 0)+i \operatorname{sign}(\sin \sigma) \eta \cdot \psi(-\sigma, 0)]\left|B^{o}\right\rangle=0
$$

Mode expansion

$$
\begin{gathered}
\psi(\sigma, 0) \sim \sum_{r} \psi_{r} e^{i r \sigma} \\
\longrightarrow\left(\psi_{r}+\eta \sum_{s} N_{r s} \psi_{-s}\right)\left|B^{o}\right\rangle=0
\end{gathered}
$$

Fourier transformation of N

$$
\begin{gathered}
N_{r s}=-\int \frac{d \sigma}{2 \pi} e^{-i(r+s) \sigma} i \operatorname{sign}(\sin \sigma) \\
N^{2}=1, \quad N^{T}=N
\end{gathered}
$$

$$
\left(\psi_{r}+\eta \sum_{s} N_{r s} \psi_{-s}\right)\left|B^{o}\right\rangle=0
$$

Decomposition in terms of annihilation (mode >0) and creation (mode <0)

$$
\begin{gathered}
N=\left(\begin{array}{cc}
N_{-r,-s} & N_{-r, s} \\
N_{r,-s} & N_{r, s}
\end{array}\right)=\left(\begin{array}{cc}
n_{r s} & \tilde{n}_{r s} \\
-\tilde{n}_{r s} & -n_{r s}
\end{array}\right), \quad \psi=\binom{\psi_{-r}}{\psi_{r}}=\binom{\psi_{r}^{\dagger}}{\psi_{r}} \\
\left(\psi-K \cdot \psi^{\dagger}\right)\left|B^{o}\right\rangle=0 \\
K=\eta \tilde{n}(1-\eta n)^{-1}=-\eta \tilde{n}^{-1}(1+\eta n)=-K^{T} \\
n^{2}-\tilde{n}^{2}=1, n \tilde{n}=\tilde{n} n \\
\longrightarrow\left|B^{o}\right\rangle \propto \exp \left(\sum_{r>0} \frac{\psi^{\dagger} K \psi^{\dagger}}{2}\right)|0\rangle
\end{gathered}
$$

In the case where the zero modes exist, ambiguity in decomposition arises.

Corner anomaly and BRST invariance

Insertions at the corner
Bosonic string

$$
z=w^{2}
$$

for ∂X

$\epsilon_{1}=\epsilon_{2}:$ no operators
$\epsilon_{1}=-\epsilon_{2}:$ twist operator σ

Fermionic string

for ψ

$$
\eta_{1}=\eta_{2} \quad: \text { no operators } \quad \eta_{1}=-\eta_{2} \quad \text { : spin operator } S
$$

BRST invariance of OBS in 26-dim bosonic string

26 corners or pairs of boundary conditions

$$
\epsilon_{l}\left|\epsilon_{b}\right| \epsilon_{r} \quad \epsilon_{l_{x}} \epsilon_{b_{x}} \epsilon_{r}
$$

1. Explicit evaluation

$$
Q_{B}\left|B^{o}\right\rangle \propto \sum_{n} n c_{-n}\left[\left(\sum \epsilon_{l} \epsilon_{b}+6\right)+(-1)^{n}\left(\sum \epsilon_{r} \epsilon_{b}+6\right)\right]\left|B^{o}\right\rangle
$$

2. BRST inv. of OBS \longleftrightarrow Physical condition of vertex operator Physical condition $=($ conformal weight of matter vertex $=1)$

From both methods \#(NN,DD)=10 \#(ND,DN)=16 [6$]=1 / 16$
Vertex operator has 0 momentum.
BRST invariance gives static configurations of intersecting D-branes.

BRST invariance in 10-dim superstring

Physical condition of vertex operator
momentum of insertion $=0$
\longrightarrow static configuration of intersecting branes (no tachyon)

By using physical condition of vertex operator, well-known fact $\# \mathrm{ND}=4$ is realized.

This constraint should be derived from the explicit evaluation of BRST invariance of OBS in the superstring theory

In order to perform this,
more careful treatment of ∞-dim. matrix K correct form of boundary condition

Corner weight and OBS for E-M tensor

Behavior of E-M tensor near the corner

$$
\mathrm{w} \quad z=w^{2}
$$

Due to conformal anomaly, $\quad T(z) \sim \frac{\lambda}{z^{2}} \quad T(w) \sim\left(4 \lambda-\frac{c}{8}\right) \frac{1}{w^{2}}$
Thus, if no insertions, there exists conformal weight of the corner.

$$
\lambda_{\text {corner }}=2 \lambda-\frac{c}{16}
$$

Naive guess for the OBS of E-M tensor $\quad[T(\sigma, 0)-T(-\sigma, 0)]\left|B^{o}\right\rangle=0$
From the behavior of E-M tensor near corners, the correct form is

$$
\begin{array}{r}
{\left[T(\sigma, 0)-T(-\sigma, 0)-4 \pi i\left(\lambda_{\text {corner }}^{l} \delta^{\prime}(\sigma)+\lambda_{\text {corner }}^{r} \delta^{\prime}(\sigma-\pi)\right)\right]\left|B^{o}\right\rangle=0} \\
\text { using } \quad \text { disc. } \frac{1}{w^{2}}=2 \pi i \delta^{\prime}(\sigma)
\end{array}
$$

In the bosonic case, this is derived by explicit calculation using OBS.
Lesson: Singularity near corners can change the boundary.

Problems and Discussion

1. Change of boundary condition due to the insertions at corners for example, spin operator at corners

$$
\left.z=w^{2} \underset{\psi(z) \sim z^{-1 / 2}}{\psi} \quad \begin{array}{c}
\mathrm{z} \\
\left|B^{0}\right\rangle
\end{array}\right)
$$

possibility : singularities at corners $\sigma=0, \pi$ in boundary conditions

$$
[\psi(\sigma, 0)+i s(\sigma) \eta \psi(-\sigma, 0)]\left|B^{o}\right\rangle \neq 0
$$

Exact form of boundary conditions are required.
2. Analytic treatment of coefficient matrix K Generating function for K can be obtained
by using some conformal mappings
Analogy to the identity state case
3. OBS \longrightarrow solitonic operator in OSFT on D-brane ??

