Observables and Correlation Functions in $O S p$ String Field Theory

Koichi Murakami (KEK)

This talk is based on
Y. Baba, N. Ishibashi and K.M., JHEP 05 (2007) 02 [hep-th/0703216]
(YITP Workshop on August 6, 2007)

§1. Introduction

- What we would like to do in this work

In the $O S p$ invariant string field theory (SFT) for bosonic closed strings
(i) define BRST invariant observables corresponding to particle modes
(ii) evaluate correlation functions among them
(iii) derive S -matrix elements derived from the above and show that they coincide with those of the light-cone gauge SFT

- Why OSp invariant SFT?

D-brane state in the second-quantization is proposed in this SFT

$$
\text { (Baba-Ishibashi-KM) } \quad[\rightarrow c f . \quad \text { Baba-kun's talk }]
$$

However

- An extra time variable t (as a 26 dimensional space-time theory) is contained.
- Expanded in terms of component fields, the action looks very different from that of the usual field theory.
(The $O S p$ invariant SFT should be considered as something like stochastic or Parisi-Sourlas type formulation of field theory.

A priori, it is not clear how the closed string particle modes are realized in this SFT
\Rightarrow We would like to clarify this point.

Plan of the talk
§1. Introduction
§2. OSp Invariant SFT
§3. BRST Cohomology and Observables
§4. Correlation Functions and S-matrix Elements
§5. Summary

§2. OSp Invariant SFT

- OSp extension \Leftarrow Procedure for covariantizing the LC gauge SFT (Siegel)

$$
X^{M}(\tau, \sigma)=x^{M}-2 i p^{M} \tau+i \sum_{n \neq 0} \frac{1}{n}\left(\alpha_{n}^{M} e^{-n(\tau+i \sigma)}+\tilde{\alpha}_{n}^{M} e^{-n(\tau-i \sigma)}\right)
$$

with $\left[x^{N}, p^{M}\right\}=i \eta^{N M}, \quad\left[\alpha_{n}^{N}, \alpha_{m}^{M}\right\}=n \eta^{N M} \delta_{n+m, 0}, \quad\left[\tilde{\alpha}_{n}^{N}, \tilde{\alpha}_{m}^{M}\right\}=n \eta^{N M} \delta_{n+m, 0}$

- notations: $\alpha_{n}^{M}=\left(\alpha_{n}^{\mu},-\gamma_{n}, \bar{\gamma}_{n}\right), \quad \alpha_{0}^{M}=\tilde{\alpha}_{0}^{M}=p^{M}=\left(p^{\mu},-\pi_{0}, \bar{\pi}_{0}\right), \quad x^{M}=\left(x^{\mu}, C_{0}, \bar{C}_{0}\right)$
- Action

$$
\begin{aligned}
S=\int d t & \frac{1}{2} \int d 1 d 2\langle R(1,2) \mid \Phi\rangle_{1}\left(i \frac{\partial}{\partial t}-\frac{L_{0}^{(2)}+\tilde{L}_{0}^{(2)}-2}{\alpha_{2}}\right)|\Phi\rangle_{2} \\
& \left.+\frac{2 g}{3} \int d 1 d 2 d 3\left\langle V_{3}^{0}(1,2,3) \mid \Phi\right\rangle_{1}|\Phi\rangle_{2}|\Phi\rangle_{3}\right]
\end{aligned}
$$

- reflector: $\langle R(1,2)|=\delta(1,2){ }_{12}\langle 0| e^{-\sum_{n=1}^{\infty} \frac{1}{n}\left(\alpha_{n}^{M(1)} \alpha_{n}^{N(2)}+\tilde{\alpha}_{n}^{M(1)} \tilde{\alpha}_{n}^{N(2)}\right) \eta_{M N}} \frac{1}{\alpha_{1}}$
- three string vertex: $\left\langle V_{3}^{0}(1,2,3)\right|=\delta(1,2,3) \frac{|\mu(1,2,3)|^{2}}{\alpha_{1} \alpha_{2} \alpha_{3}}{ }_{123}\langle 0| e^{E(1,2,3)} \mathcal{P}_{123}$

$$
\begin{aligned}
& E(1,2,3)=\frac{1}{2} \sum_{n, m \geq 0} \sum_{r, s} \bar{N}_{n m}^{r s}\left(\alpha_{n}^{N(r)} \alpha_{m}^{M(s)}+\tilde{\alpha}_{n}^{N(r)} \tilde{\alpha}_{m}^{M(s)}\right) \eta_{N M}, \\
& { }_{12 \cdots N}\langle 0|={ }_{1}\langle 0|{ }_{2}\langle 0| \cdots{ }_{N}\langle 0|, \quad \mathcal{P}_{123}=\mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3}, \quad \mathcal{P}_{r}=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{i \theta\left(L_{0}^{(r)}-\tilde{L}_{0}^{(r)}\right)}, \\
& \delta(1,2, \ldots, N)=(2 \pi)^{26} \delta^{26}\left(\sum_{r=1}^{N} p_{r}\right) 2 \delta\left(\sum_{s=1}^{N} \alpha_{s}\right) i\left(\sum_{r^{\prime}=1}^{N} \bar{\pi}_{0}^{\left(r^{\prime}\right)}\right)\left(\sum_{s^{\prime}=1}^{N} \pi_{0}^{\left(s^{\prime}\right)}\right), \\
& \mu(1,2,3)=\exp \left(-\hat{\tau}_{0} \sum_{r=1}^{3} \frac{1}{\alpha_{r}}\right), \quad \hat{\tau}_{0}=\sum_{r=1}^{3} \alpha_{r} \ln \left|\alpha_{r}\right|, \quad d r=\frac{\alpha_{r} d \alpha_{r}}{2} \frac{d^{26} p_{r}}{(2 \pi)^{26}} i d \bar{\pi}_{0}^{(r)} d \pi_{0}^{(r)}
\end{aligned}
$$

(Note: The zero modes are expressed by wave functions in the momentum representation)

- commutation relation
$\begin{array}{l}|\Phi\rangle=\left\{\begin{array}{lll}|\bar{\psi}\rangle & \alpha<0 & \text { creation } \\ |\psi\rangle & \alpha>0 & \text { annihilation }\end{array} \quad\left[|\psi\rangle_{r},|\bar{\psi}\rangle_{s}\right]=|R(r, s)\rangle\right. \\ |0\rangle\rangle: \text { vacuum in the 2nd-quantization }\end{array} \Leftarrow$ defined by $\left.|\psi\rangle|0\rangle\right\rangle=0$.
- Relationship between S-matrices in LC gauge SFT and $O S p$ invariant SFT
- S-matrix symmetry in the OSp SFT: $O S p(27,1 \mid 2)$
- Due to the Parisi-Sourlas mechanism,

For on-shell S-matrix elements,
the "longitudinal directions"

$$
X^{ \pm}(\text {i.e. }(t, \alpha))
$$

cancel out each other
the ghost directions (C, \bar{C})

- The resulting $S O(26)$ symmetric S-matrices
\Rightarrow S-matrices of the LC SFT (in the Euclidean signature)
By using this (intuitively obvious) fact, we will provide a prescription for obtaining the S-matrix elements of the LC gauge SFT from the correlation functions in the $O S p$ invariant SFT.
- The action of the $O S p$ invariant SFT is BRST invariant

BRST symmetry $=$ non-linearly realized J^{-C} symmetry of the $\operatorname{OSp}(27,1 \mid 2)$
(Siegel-Zwiebach, Bengtsson-Linden)

$$
\delta_{\mathrm{B}} \Phi=Q_{\mathrm{B}} \Phi+g \Phi * \Phi
$$

- BRST charge

$$
Q_{\mathrm{B}}=\frac{C_{0}}{2 \alpha}\left(L_{0}+\tilde{L}_{0}-2\right)-i \pi_{0} \frac{\partial}{\partial \alpha}+\frac{i}{\alpha} \sum_{n=1}^{\infty}\left(\frac{\gamma_{-n} L_{n}-L_{-n} \gamma_{n}}{n}+\frac{\tilde{\gamma}_{-n} \tilde{L}_{n}-\tilde{L}_{-n} \tilde{\gamma}_{n}}{n}\right)
$$

L_{n}, \tilde{L}_{n} : Virasoro generators

$$
L_{n} \equiv \frac{1}{2} \sum_{m} ஃ \alpha_{n+m}^{M} \alpha_{-m}^{N} \eta_{M N^{\prime}} \circ, \quad \tilde{L}_{n} \equiv \frac{1}{2} \sum_{m} \circ \tilde{\alpha}_{n+m}^{M} \tilde{\alpha}_{-m}^{N} \eta_{M N} \circ
$$

- $*$-product: $|\Phi * \Psi\rangle_{4}=\int d 1 d 2 d 3\left\langle V_{3}(1,2,3) \mid \Phi\right\rangle_{1}|\Psi\rangle_{2}|R(3,4)\rangle$

$$
\left\langle V_{3}(1,2,3)\right|=\delta(1,2,3)_{123}\langle 0| e^{E(1,2,3)} C\left(\sigma_{I}\right) \mathcal{P}_{123} \frac{|\mu(1,2,3)|^{2}}{\alpha_{1} \alpha_{2} \alpha_{3}} \quad\left(\sim\left\langle V^{0}(1,2,3)\right| C\left(\sigma_{I}\right)\right)
$$

§3. BRST Cohomology and Observables

- on-shell physical states
on-shell: $\left(i \frac{\partial}{\partial t}-\frac{L_{0}+\tilde{L}_{0}-2}{\alpha}\right)\left\rangle=0, \quad\right.$ physical: $\left.\left.Q_{\mathrm{B}}\right|\right\rangle=0$
Hamiltonian $\frac{L_{0}+\tilde{L}_{0}-2}{\alpha}$ is Q_{B}-exact \Rightarrow We may set $t=0$ in the Q_{B}-cohomology
- Relationship between Q_{B} in $O S p$ invariant theory and Kato-Ogawa's $Q_{\mathrm{B}}^{\mathrm{KO}}$
- identification

$$
\begin{array}{ll}
C_{0}=2 \alpha c_{0}^{+} & \bar{\pi}_{0}=\frac{1}{2 \alpha} b_{0}^{+} \\
\gamma_{n}=i n \alpha c_{n} & \bar{\gamma}_{n}=\frac{1}{\alpha} b_{n} \\
\tilde{\gamma}_{n}=i n \alpha \tilde{c}_{n} & \tilde{\bar{\gamma}}_{n}=\frac{1}{\alpha} \tilde{b}_{n}
\end{array}
$$

no counter part in (b, c) system

$$
\Longrightarrow \quad Q_{\mathrm{B}}=Q_{\mathrm{B}}^{\mathrm{KO}}-i c\left(\alpha \frac{\partial}{\partial \alpha}+1\right)
$$

$$
\bar{C}_{0}, \quad \underline{\pi_{0}}, \quad \alpha
$$

$\left(\nwarrow\right.$ contained in Q_{B})
$c \equiv \frac{\pi_{0}}{\alpha}$

- Q_{B} cohomology: Solve $Q_{\mathrm{B}}| \rangle=0$

$$
\left.\left.\Rightarrow\left\rangle=\frac{1}{\alpha}\right| \text { phys }\right\rangle+h(\alpha) c \mid \text { phys }\right\rangle
$$

\mid phys $\rangle: Q_{\mathrm{B}}^{\mathrm{KO}}-$ physical , $h(\alpha): \forall$ function of α

For \mid phys \rangle, we can choose $\quad|0\rangle_{b, c} \otimes \mid$ primary; $\left.k\right\rangle_{X} \quad$ or $\quad b_{0}^{+}|0\rangle_{b, c} \otimes \mid$ primary $\left.; k\right\rangle_{X}$

- boundary condition for α direction (C, \bar{C}-representation)

For the bra or ket states, $0<|\alpha|<\infty \Rightarrow$ introduce ω s.t. $\alpha=e^{\omega}$, then $-\infty<\omega<\infty$
\Rightarrow integration measure: $\int_{0}^{\infty} \alpha d \alpha=\int_{-\infty}^{\infty} d \omega \underline{e^{2 \omega}}$
\Rightarrow The wave functions should be expand with respect to $\exp \left(-\omega+i \omega x_{\omega}\right)$

$$
\left(\Longrightarrow\left\{\begin{array}{c}
\bullet \text { the wave functions are delta-function normalizable } \\
\bullet Q_{\mathrm{B}} \text { is hermitian } \\
\text { etc... }
\end{array}\right)\right.
$$

This yields

$$
\begin{aligned}
& \left\rangle=\frac{\left.\left.\frac{1}{\alpha} \right\rvert\, \text { phys }\right\rangle}{\nearrow}\right. \\
& \text { auxiliary fields }
\end{aligned} \frac{\left.\left.\frac{1}{\alpha} \pi_{0} \bar{\pi}_{0} \right\rvert\, \text { phys }\right\rangle}{\nwarrow}+Q_{\mathrm{B}}|*\rangle
$$

- Observable associated with \mid primary; $k\rangle_{X}=|\overline{\operatorname{primary}}\rangle_{X}(2 \pi)^{26} \delta^{26}\left(p_{\mu}-k_{\mu}\right)$

$$
\begin{gathered}
\mathcal{O}(t, k)=\int d r \frac{1}{\alpha_{r}} r\left(c \bar{C}\langle 0| \otimes_{X}\langle\text { primary } ; k|\right)|\Phi(t)\rangle_{r} \\
\text { with } \quad{ }_{X}\langle\overline{\text { primary }} \mid \overline{\text { primary }}\rangle_{X}=1
\end{gathered}
$$

§4. Correlation Functions and S-matrix Elements

- Two-point correlation function for $\mathcal{O}_{r}\left(t_{r}\right)(r=1,2)$ with $\left|\operatorname{primary}_{1}\right\rangle_{X}=\left|\operatorname{primary}_{2}\right\rangle_{X}$, mass $M:\left(L_{0}+\tilde{L}_{0}-2\right) \mid$ primary; $\left.k\right\rangle_{X} \otimes|0\rangle_{C, \bar{C}}=\left(k^{2}+2 i \pi_{0} \bar{\pi}_{0}+M^{2}\right) \mid$ primary; $\left.k\right\rangle_{X} \otimes|0\rangle_{C, \bar{C}}$

$$
\begin{aligned}
& \left.\left\langle\left\langle\tilde{\mathcal{O}}_{1}\left(E_{1}\right) \tilde{O}_{2}\left(E_{2}\right)\right\rangle\right\rangle \equiv \int d t_{1} d t_{2} e^{i E_{1} t_{1}+i E_{2} t_{2}}\left\langle\langle 0| \mathrm{T} \mathcal{O}_{1}\left(t_{1}\right) \mathcal{O}_{2}\left(t_{2}\right) \mid 0\right\rangle\right\rangle \\
& = \\
& =\prod_{r=1}^{2}\left(\frac{i}{2} \int d \alpha_{r} d \bar{\pi}_{0}^{(r)} d \pi_{0}^{(r)}\right) \frac{i \delta(1,2) 2 \pi \delta\left(E_{1}+E_{2}\right)}{\alpha_{1} E_{1}-p_{1}^{2}-M^{2}-2 i \pi_{0}^{(1)} \bar{\pi}_{0}^{(1)}+i \epsilon} \\
& \vdots \\
& = \\
& \quad \frac{2 \pi \delta\left(E_{1}\right) 2 \pi \delta\left(E_{2}\right)}{p_{1}^{2}+M^{2}}(2 \pi)^{26} \delta^{26}\left(p_{1}+p_{2}\right)
\end{aligned}
$$

- $2 \pi \delta(E) \Leftarrow \mathcal{O}(t+\delta t, p)$ and $\mathcal{O}(t, p)$ are BRST equivalent

Thus here we choose

$$
\varphi(p) \equiv \int \frac{d E}{2 \pi} \tilde{\mathcal{O}}(E, p)=\mathcal{O}(t=0, p)
$$

$$
\left\langle\left\langle\varphi_{1}\left(p_{1}\right) \varphi\left(p_{2}\right)\right\rangle\right\rangle_{\mathrm{free}}=\frac{1}{p_{1}^{2}+M^{2}}(2 \pi)^{26} \delta^{26}\left(p_{1}+p_{2}\right)
$$

\Leftarrow Euclidean propagator for a particle of mass M with correct normalization

- N-point correlation functions

$$
\begin{aligned}
\left\langle\left\langle\prod_{r=1}^{N} \tilde{\mathcal{O}}_{r}\left(E_{r}\right)\right\rangle\right\rangle \equiv & \left.\prod_{r=1}^{N}\left(\int d t_{r} e^{i E_{r} t_{r}}\right)\left\langle\langle 0| \mathrm{T} \prod_{r=1}^{N} \mathcal{O}_{r}\left(t_{r}\right) \mid 0\right\rangle\right\rangle \\
\equiv & \prod_{r=1}^{N}\left(\frac{i}{2} \int d \alpha_{r} d \bar{\pi}_{0}^{(r)} d \pi_{0}^{(r)} \frac{i}{\alpha_{r} E_{r}-p_{r}^{2}-M_{r}^{2}-2 i \pi_{0}^{(r)} \bar{\pi}_{0}^{(r)}}\right) \\
& \times \delta^{O S p}\left(\sum_{s=1}^{N} p_{s}^{O S p}\right) G_{\text {amputated }}\left(p_{1}^{O S p}, \ldots, p_{N}^{O S p}\right)
\end{aligned}
$$

where $p^{O S p}=\left(E, \alpha, p^{\mu}, \pi_{0}, \bar{\pi}_{0}\right)$

- Look for singular behaviors at $p_{r}^{2}+M_{r}^{2}=0$. $\left.\begin{array}{l}\text { time evolution op } e^{-i \frac{t}{\alpha}\left(p^{2}+2 i \pi_{0} \bar{\pi}_{0}+M^{2}\right)} \\ \text { interaction vertex }\left\langle V_{3}^{0}(1,2,3)\right|\end{array}\right\} \Leftarrow$ regular at $p_{r}^{2}+M_{r}^{2}=0$.
\Rightarrow For generic p_{r}^{μ}, such singularities come from the integration over α_{r}
\Rightarrow one can find that the singular behavior $\Leftarrow \underline{\text { behavior around } \alpha_{r} \sim 0}$
- Studying the behavior of the integrand around $\alpha_{r} \sim 0$ yields

$$
\begin{aligned}
\left\langle\left\langle\prod_{r=1}^{N} \tilde{\mathcal{O}}_{r}\left(E_{r}\right)\right\rangle\right\rangle & \sim-\left.i\left(\prod_{r=1}^{N} \frac{2 \pi \delta\left(E_{r}\right)}{p_{r}^{2}+M_{r}^{2}}\right)(2 \pi)^{26} \delta^{26}\left(\sum_{r=1}^{N} p_{r}\right) G_{\text {amputated }}\left(p_{r}^{O S p}\right)\right|_{0} \\
& \left(\left.\right|_{0} \Leftrightarrow \quad \operatorname{set} p_{r}^{2}+M_{r}^{2}=E_{r}=\alpha_{r}=\pi_{0}^{(r)}=\bar{\pi}_{0}^{(r)}=0\right)
\end{aligned}
$$

Hence
$\left\langle\left\langle\prod_{r=1}^{N} \varphi_{r}\left(p_{r}\right)\right\rangle\right\rangle \sim-\left.i\left(\prod_{r=1}^{N} \frac{1}{p_{r}^{2}+M_{r}^{2}}\right)(2 \pi)^{26} \delta^{26}\left(\sum_{r=1}^{N} p_{r}\right) G_{\text {amputated }}\left(p_{r}^{O S p}\right)\right|_{0}$
$\Leftarrow 26 \mathrm{dim}$. Euclidean correlation function
Concerning the S-matrix elements $S_{O S p}$ for the $O S p$ invariant SFT for the external states with the vanishing polarization in the $X^{ \pm}, C$ and \bar{C} directions,

$$
\left.G_{\text {amputated }}\left(p_{r}^{O S p}\right)\right|_{0}=\left.S_{O S p}\left(p^{O S p_{r}}\right)\right|_{0} \bar{\uparrow} S_{\mathrm{LC}}^{(\mathrm{E})}\left(p_{\mu, r}\right)
$$

Parisi-Sourlas mechanism
$\Rightarrow \quad$ LC SFT's S-matrix elements in the Euclidean signature
$\Rightarrow \quad$ the LC SFT's S-matrix elements are reproduced after the wick rotation !!!

§5. Summary

- What we did

We considered the on-shell asymptotic states for closed string particles.

- BRST invariant observables
- correlation functions
- S-matrix elements

The kinetic term of the action for the $O S p$ invariant SFT is unusual.
\rightarrow difficult to fix the normalizations of the external states
\Rightarrow We could fix them by evaluating the two-point correlation functionsWe showed the S-matrix elements reproduce the usual results.

- D-brane states $\quad(\Rightarrow$ Baba-kun's talk)
off-shell
\Rightarrow nonlinear terms in the BRST transformation should be taken into account

