Deformation of Super Yang-Mills Theories in R-R 3-form Background

Hiroaki Nakajima (Sungkyunkwan U., Korea) in collaboration with

Katsushi Ito (TITech) and Shin Sasaki (U. Helshinki, Finland)
based on JHEP 07 (2007) 068, [arXiv:0705.3532]
Aug. 9, 2006
contents

1. Introduction
2. Deformation in $\mathcal{N}=4$ Super Yang-Mills
3. Non-abelian Chern-Simons term
4. Reduction to $\mathcal{N}=2$ Super Yang-Mills
5. Summary and Outlook

1. Introduction

non-perturbative properties of supersymmetric gauge theory from string theory

- Effective field theory on D-brane $\rightarrow U(N)$ super Yang-Mills
- We turn on the constant closed string backgrounds.
(NSNS B-field, RR fields)
- Nekrasov formula for $\mathcal{N}=2$ super Yang-Mills
- Dijgraaf-Vafa theory for $\mathcal{N}=1$ supersymmetric gauge theory

Closed string background plays an important role in these cases.

- Other effect of the closed string background \rightarrow It deforms the structure of worldvolume spacetime (or superspace).
example 1.
constant NSNS B-field \Rightarrow noncommutative space(-time)

$$
\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \Theta^{\mu \nu}=i\left(B^{-1}\right)^{\mu \nu} .
$$

example 2.
constant self-dual graviphoton field strength from RR 5-form \Rightarrow non(anti)commutative $\mathcal{N}=1$ superspace

$$
\left\{\hat{\theta}^{\alpha}, \hat{\theta}^{\beta}\right\}=C^{\alpha \beta}=\left(2 \pi \alpha^{\prime}\right)^{3 / 2} \mathcal{F}^{\alpha \beta}, \quad \mathcal{N}=1 \rightarrow \mathcal{N}=1 / 2
$$

What about other RR fields?
\star Here we will consider $\mathcal{N}=2,4$ super Yang-Mills theories in the background of RR 3-form (with fixed $\left(2 \pi \alpha^{\prime}\right)^{1 / 2} \mathcal{F}$).
[Billo-Frau-Fucito-Lerda, 2006]

- Consider D3/D(-1) system in type IIB on $\mathbf{R}^{2} \times \mathbf{R}^{4} / \mathbf{Z}_{2}$ with constant $\mathcal{F}^{\alpha \beta}$ from RR 3-form. $\left(\mathbf{R}^{2} \times \mathbf{R}^{4} / \mathbf{Z}_{2} \Rightarrow \mathcal{N}=2\right)$
- Calculate the disk amplitudes of $D(-1)$ and mixed amplitude of $\mathrm{D} 3 / \mathrm{D}(-1)$ with insertion of $\mathcal{F}^{\alpha \beta}$.
- Taking $\alpha^{\prime} \rightarrow 0$ limit with fixed $\left(2 \pi \alpha^{\prime}\right)^{1 / 2} \mathcal{F}^{\alpha \beta}$ and integrating out ADHM moduli, Nekrasov formula is obtained.
calculation in D3 side \Rightarrow deformed action is obtained.
$\left\{\begin{array}{l}\text { What is the property of the deformed action? } \\ \text { Extension to } \mathcal{N}=4 \text { case }\end{array}\right.$

2. Deformation in $\mathcal{N}=4$ Super Yang-Mills

- undeformed part (ordinary $\mathcal{N}=4$ super Yang-Mills) vertex operators (D3-branes in type IIB on $\mathbf{R}^{4} \times \mathbf{R}^{6}$)

$$
V_{A}, \quad V_{\Lambda}, \quad V_{\bar{\Lambda}}, \quad V_{\varphi}, \quad V_{H_{A A}}, \quad V_{H_{A \varphi}}, \quad V_{H_{\varphi \varphi}}
$$

$\left(H_{A A}\right)_{\mu \nu},\left(H_{A \varphi}\right)_{\mu a},\left(H_{\varphi \varphi}\right)_{a b}$: auxiliary fields to reduce higher order amplitudes to the lower ones
[Dine-Ichinose-Seiberg, 1987], [Atick-Dixon-Sen, 1987]
(ex.) $-\frac{1}{4}\left[A_{\mu}, A_{\nu}\right]^{2} \rightarrow\left(H_{A A}\right)_{\mu \nu}\left(H_{A A}\right)^{\mu \nu}+\left(H_{A A}\right)^{\mu \nu}\left[A_{\mu}, A_{\nu}\right]$.

The disk amplitudes in $\alpha^{\prime} \rightarrow 0$ limit give $\left(\left(H_{A A}\right)_{\mu \nu} \rightarrow H_{\mu \nu}\right.$, etc. $)$

$$
\begin{aligned}
\mathcal{L}_{\mathcal{N}=4} & =\frac{-1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[\frac{1}{2}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}+i \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]\right. \\
& +\frac{1}{2} H_{\mu \nu} H^{\mu \nu}+\frac{1}{2} H_{\mu \nu}\left[A^{\mu}, A^{\nu}\right]+\frac{1}{2} H_{a b} H^{a b}+\frac{1}{\sqrt{2}} H_{a b}\left[\varphi_{a}, \varphi_{b}\right] \\
& +\frac{1}{2} \partial_{\mu} \varphi_{a} \partial^{\mu} \varphi_{a}+i \partial_{\mu} \varphi_{a}\left[A^{\mu}, \varphi_{a}\right]+\frac{1}{2} H_{\mu a} H^{\mu a}+H_{\mu a}\left[A^{\mu}, \varphi_{a}\right] \\
& \left.+i \Lambda^{A} \sigma^{\mu} D_{\mu} \bar{\Lambda}_{A}-\frac{1}{2}\left(\Sigma^{a}\right)^{A B} \bar{\Lambda}_{A}\left[\varphi_{a}, \bar{\Lambda}_{B}\right]-\frac{1}{2}\left(\bar{\Sigma}^{a}\right)_{A B} \Lambda^{A}\left[\varphi_{a}, \Lambda^{B}\right]\right] .
\end{aligned}
$$

After integrating out $H_{\mu \nu}, H_{\mu a}, H_{a b}$, the Lagrangian $\mathcal{L}_{\mathcal{N}=4}$ becomes the standard form of the Lagrangian of $\mathcal{N}=4$ super Yang-Mills theory.
$V_{\mathcal{F}}(z, \bar{z})=\left(2 \pi \alpha^{\prime}\right) \mathcal{F}^{\alpha \beta A B}\left[S_{\alpha}(z) S_{A}(z) e^{-\frac{1}{2} \phi(z)} S_{\beta}(\bar{z}) S_{B}(\bar{z}) e^{-\frac{1}{2} \phi(\bar{z})}\right]$.
$S_{\alpha}(z), S_{A}(z)$: spin field, ϕ : bosonized superconformal ghost

- classification of the "graviphoton" field strength $\mathcal{F}^{\alpha \beta A B}$ (S: symmetric, A: antisymmetric)

1. (S,S)-type (RR 5-form) $\mathcal{F}^{(\alpha \beta)(A B)}=\mathcal{F}^{\mu \nu a b c}\left(\sigma_{\mu \nu}\right)^{\alpha \beta}\left(\Sigma_{[a} \bar{\Sigma}_{b} \Sigma_{c]}\right)^{A B}$
2. (S,A)-type (RR 3-form) $\mathcal{F}^{(\alpha \beta)[A B]}=\mathcal{F}^{\mu \nu a}\left(\sigma_{\mu \nu}\right)^{\alpha \beta}\left(\Sigma_{a}\right)^{A B}$
3. (A,S)-type (RR 3-form) $\mathcal{F}^{[\alpha \beta](A B)}=\mathcal{F}^{a b c} \epsilon^{\alpha \beta}\left(\Sigma_{[a} \bar{\Sigma}_{b} \Sigma_{c]}\right)^{A B}$
4. (A,A)-type (RR 1-form) $\mathcal{F}^{[\alpha \beta][A B]}=\mathcal{F}^{a} \epsilon^{\alpha \beta}\left(\Sigma_{a}\right)^{A B}$

Here $\left(\Sigma_{a}\right)^{A B},\left(\bar{\Sigma}_{a}\right)_{A B}$: six-dimensional gamma-matrices
Note. $\mathcal{F}^{\mu \nu a}$ and $\mathcal{F}^{a b c}$ satisfy the self-dual condition.

$$
\mathcal{F}^{\mu \nu a}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \mathcal{F}_{\rho \sigma}{ }^{a}, \quad \mathcal{F}^{a b c}=\frac{i}{3!} \epsilon^{a b c d e f} \mathcal{F}_{d e f} .
$$

- (S,A)-deformation up to second order
contribution from $\left\langle\left\langle V_{A} V_{\varphi} V_{\mathcal{F}}\right\rangle\right\rangle,\left\langle\left\langle V_{H_{A A}} V_{\varphi} V_{\mathcal{F}}\right\rangle\right\rangle$ and $\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{\mathcal{F}}\right\rangle\right\rangle$ in $\alpha^{\prime} \rightarrow 0$ limit with fixed $\left(2 \pi \alpha^{\prime}\right)^{1 / 2} \mathcal{F}^{(\alpha \beta)[A B]}$

$$
\begin{aligned}
& \mathcal{L}_{(\mathrm{S}, \mathrm{~A})}= \\
& \frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[C^{\mu \nu a}\left(i \varphi_{a} F_{\mu \nu}+\frac{1}{2}\left(\bar{\Sigma}_{a}\right)_{A B} \Lambda^{A} \sigma_{\mu \nu} \Lambda^{B}\right)+\frac{1}{2} C^{\mu \nu a} C_{\mu \nu}{ }^{b} \varphi_{a} \varphi_{b}\right] .
\end{aligned}
$$

Here
$C^{\mu \nu a}=C^{(\alpha \beta)[A B]}\left(\sigma^{\mu \nu}\right)_{\alpha \beta}\left(\bar{\Sigma}^{a}\right)_{A B}, C^{(\alpha \beta)[A B]}=-2 \pi\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \mathcal{F}^{(\alpha \beta)[A B]}$.
deformed SUSY transformation

$$
\begin{aligned}
\delta A_{\mu}= & i\left(\xi^{A} \sigma_{\mu} \bar{\Lambda}_{A}+\bar{\xi}_{A} \bar{\sigma}_{\mu} \Lambda^{A}\right) \\
\delta \Lambda^{A}= & \sigma^{\mu \nu} \xi^{A}\left(F_{\mu \nu}-i C_{\mu \nu}^{a} \varphi_{a}\right) \\
& \quad+\left(\Sigma_{a}\right)^{A B} \sigma^{\mu} \bar{\xi}_{B} D_{\mu} \varphi_{a}-i\left(\Sigma_{a b}\right)_{B}^{A} \xi^{B}\left[\varphi_{a}, \varphi_{b}\right] \\
\delta \bar{\Lambda}_{A}= & \bar{\sigma}^{\mu \nu} \bar{\xi}_{A} F_{\mu \nu}+\left(\bar{\Sigma}_{a}\right)_{A B} \bar{\sigma}^{\mu} \xi^{B} D_{\mu} \varphi_{a}-i\left(\bar{\Sigma}_{a b}\right)_{A}^{B} \bar{\xi}_{B}\left[\varphi_{a}, \varphi_{b}\right] \\
\delta \varphi_{a}= & i\left(\xi^{A}\left(\bar{\Sigma}_{a}\right)_{A B} \Lambda^{B}+\bar{\xi}_{A}\left(\Sigma_{a}\right)^{A B} \bar{\Lambda}_{B}\right)
\end{aligned}
$$

and we have to require the condition:

$$
\varepsilon_{A B C D} C^{(\alpha \beta)[B C]} \xi_{\beta}^{D}=0, \quad C^{(\alpha \beta)[A B]} \bar{\xi}_{\dot{\alpha} B}=0
$$

- The deformed SUSY transf. contains only the term linear in C. (In non(anti)commutative case, the SUSY transformation contains higher order terms of C.)
[Araki-Ito-Ohtsuka, 2004], [Ito-H.N, 2005]
- In generic deformation, all of SUSY are broken. (non(anti)commutative case $\Rightarrow \mathcal{N}=1 / 2$ SUSY)
number of unbroken SUSY (only $C^{(\alpha \beta)[12]}, C^{(\alpha \beta)[34]} \neq 0$)

		rank of $C^{(\alpha \beta)[12]}$		
		0	1	2
rank of $C^{(\alpha \beta)[34]}$	0	$\mathcal{N}=(2,2)$	$\mathcal{N}=(3 / 2,1)$	$\mathcal{N}=(1,1)$
	1	$\mathcal{N}=(3 / 2,1)$	$\mathcal{N}=(1,0)$	$\mathcal{N}=(1 / 2,0)$
	2	$\mathcal{N}=(1,1)$	$\mathcal{N}=(1 / 2,0)$	$\mathcal{N}=(0,0)$

- (A,S)-deformation up to second order
contribution from $\left\langle\left\langle V_{H_{\varphi \varphi}} V_{\varphi} V_{\mathcal{F}}\right\rangle\right\rangle$ and $\left\langle\left\langle V_{\bar{\Lambda}} V_{\bar{\Lambda}} V_{\mathcal{F}}\right\rangle\right\rangle$ in $\alpha^{\prime} \rightarrow 0$ limit
$\mathcal{L}_{(\mathrm{A}, \mathrm{S})}=$
$\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[C^{(A B)}\left[\left(\bar{\Sigma}^{a b c}\right)_{A B} \varphi_{a} \varphi_{b} \varphi_{c}+2 \bar{\Lambda}_{A} \bar{\Lambda}_{B}\right]+\frac{1}{4} C^{a b c} C^{a b d} \varphi_{c} \varphi_{d}\right]$,
where

$$
\begin{aligned}
C^{(A B)} & =-\pi i\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \mathcal{F}^{[\alpha \beta](A B)} \epsilon_{\alpha \beta}, \\
C^{a b c} & =C^{(A B)}\left(\bar{\Sigma}^{a b c}\right)_{A B}=C^{(A B)}\left(\bar{\Sigma}^{[a} \Sigma^{b} \bar{\Sigma}^{c]}\right)_{A B} .
\end{aligned}
$$

- "mass" and superpotential deformation
- SUSY condition $\Rightarrow \mathcal{N}=(1 / 2,0)$ or $(0,0)$
- second-order deformation
- We insert only one graviphoton vertex operator.
- second-order deformation \Leftarrow integration of auxiliary fields Are there other contributions to the second-order term?
second-order amplitude $\{$ reducible (reduced to first-order ampl.)

$$
\left\langle\left\langle V_{\mathcal{F}} V_{\mathcal{F}} \cdots\right\rangle\right\rangle \quad \text { irreducible }
$$

possible form of the irreducible amplitude at second order

- (S,A)-type: $\left\langle\left\langle V_{H_{\varphi \varphi}} V_{\mathcal{F}} V_{\mathcal{F}}\right\rangle\right\rangle$, but probably no contribution (conjecture from consistency with $\mathcal{N}=2$ theory)
- (A,S)-type: no irreducible amplitude
- fuzzy sphere in (S,A)-deformation
scalar potential

$$
V(\varphi)=-\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[\frac{1}{4}\left[\varphi_{a}, \varphi_{b}\right]^{2}+\frac{1}{2}\left(C^{\mu \nu a} \varphi_{a}\right)^{2}\right]
$$

stationary condition and fuzzy sphere ansatz

$$
\left[\varphi_{b},\left[\varphi_{a}, \varphi_{b}\right]\right]+C_{\mu \nu a} C^{\mu \nu b} \varphi_{b}=0, \quad\left[\varphi_{a}, \varphi_{b}\right]=i f_{a b c} \varphi_{c}
$$

relation between $f_{a b c}$ and $C^{\mu \nu a}$
$f_{a b c} f_{b c d}=C_{\mu \nu a} C^{\mu \nu}{ }_{d} . \quad$ Killing metric is given by $C^{\mu \nu a}$.
self-dual condition of $C^{\mu \nu a}$
$\Rightarrow($ Killing metric $)=\operatorname{diag}(X, Y, Z, 0,0,0) \Rightarrow$ fuzzy \mathbf{S}^{2}.

3. Non-abelian Chern-Simons term

D-brane action $\Rightarrow \mathrm{DBI}$ action +CS term (due to RR fields)
DBI action \rightarrow super Yang-Mills action in $\alpha^{\prime} \rightarrow 0$ limit CS term \rightarrow (first-order) deformation term in $\alpha^{\prime} \rightarrow 0$ limit

- CS term [Myers, 1999]

$$
\frac{1}{\lambda^{2} g_{\mathrm{YM}}^{2}} \mathrm{STr} \int_{\mathcal{M}_{4}} P\left[\exp \left(i \lambda \mathrm{i}_{\varphi}^{2}\right) \lambda^{1 / 2} \mathcal{A}\right] \wedge \exp (\lambda F), \quad \lambda=2 \pi \alpha^{\prime}
$$

STr: symmetrized trace, $P[\cdots]$: pullback, i_{φ} : interior product, \mathcal{A} : formal sum of RR potential, F : gauge field strength on D-brane

- (S,A)-deformation

4-dim. self-dual condition: $*_{4} \mathcal{F}^{\mu \nu a}=\mathcal{F}^{\mu \nu a} \rightarrow *_{10} \mathcal{F}^{\mu \nu a}=*_{6} \mathcal{F}^{\mu \nu a}$ \Rightarrow We have to consider dual 7 -form in addition to 3 -form.
lowest contribution from 3-form (potential: $\mathcal{A}_{\mu a}, \mathcal{A}_{\mu \nu}$)

$$
\frac{\lambda^{-1 / 2}}{g_{\mathrm{YM}}^{2}} \operatorname{STr} \int P[\mathcal{A}] \wedge F=\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr} \int d^{4} x \lambda^{1 / 2} \frac{\left(\partial_{a} \mathcal{A}_{\mu \nu}+\partial_{[\mu} \mathcal{A}_{\nu] a}\right)}{=\mathcal{F}_{\mu \nu a}} \varphi_{a} F^{\mu \nu} .
$$

Then under $\alpha^{\prime} \rightarrow 0$ limit: $\lambda^{1 / 2} \mathcal{F}^{\mu \nu a} \sim C^{\mu \nu a}=$ fixed, this contribution gives the deformation term $\operatorname{Tr}\left(C^{\mu \nu a} \varphi_{a} F_{\mu \nu}\right)$.
contribution from 7 -form \Rightarrow higher order of α^{\prime} then it disappears in $\alpha^{\prime} \rightarrow 0$ limit.

- (A,S)-deformation

6-dim. self-dual condition: $*_{6} \mathcal{F}^{a b c}=i \mathcal{F}^{a b c} \rightarrow *_{10} \mathcal{F}^{a b c}=i *_{4} \mathcal{F}^{a b c}$ \Rightarrow We have to consider dual 7 -form in addition to 3 -form. contribution from 3-form \Rightarrow higher order of α^{\prime} then it disappears in $\alpha^{\prime} \rightarrow 0$ limit.
lowest contribution from 7 -form (potential: $\mathcal{A}_{\mu \nu \rho \sigma a b}, \mathcal{A}_{\mu \nu \rho a b c}$)

$$
\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr} \int d^{4} x \lambda^{1 / 2} \frac{\left(\partial_{[a} \mathcal{A}_{b c] \mu \nu \rho \sigma}+\partial_{[\mu} \mathcal{A}_{\nu \rho \sigma] a b c}\right)}{=\mathcal{F}_{\mu \nu \rho \sigma a b c}=\epsilon_{\mu \nu \rho \sigma} \mathcal{F}_{a b c}} \epsilon^{\mu \nu \rho \sigma}\left(\varphi_{a} \varphi_{b} \varphi_{c}\right) .
$$

Then under $\alpha^{\prime} \rightarrow 0$ limit: $\lambda^{1 / 2} \mathcal{F}^{a b c} \sim C^{a b c}=$ fixed, this contribution gives the deformation term $\operatorname{Tr}\left(C^{a b c} \varphi_{a} \varphi_{b} \varphi_{c}\right)$.

4. Reduction to $\mathcal{N}=2$ Super Yang-Mills

- Orbifolding in (S,A)-deformation

$$
\begin{aligned}
& \mathcal{N}=4: \text { type IIB on } \mathbf{R}^{4} \times \mathbf{R}^{6} \Rightarrow \\
& \mathcal{N}=2: \text { type IIB on } \mathbf{R}^{4} \times \mathbf{R}^{2} \times \mathbf{R}^{4} / \mathbf{Z}_{2}
\end{aligned}
$$

We put N fractional D3-branes at the singularity of the orbifold $\mathbf{R}^{4} / \mathbf{Z}_{2}$. In terms of the fields, Orbifold projection is expressed by

$$
\Lambda_{\alpha}^{A}=0 \text { for } A=3,4, \quad \varphi_{a}=0 \text { for } a=3,4,5,6,
$$

and only $C^{\mu \nu[12]}$ and $C^{\mu \nu[34]}$ are nonzero.

Under the reduction, $\mathcal{L}_{\mathcal{N}=4}$ becomes $\mathcal{L}_{\mathcal{N}=2}$.

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{N}=2}= \frac{1}{g_{\mathrm{YM}}^{2}} \\
& \operatorname{Tr}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} F_{\mu \nu} \tilde{F}^{\mu \nu}-D_{\mu} \varphi D^{\mu} \bar{\varphi}-\frac{1}{2}[\varphi, \bar{\varphi}]^{2}\right. \\
&-\left.i \Lambda^{i \alpha}\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} D_{\mu} \bar{\Lambda}_{i}^{\dot{\beta}}-\frac{i}{\sqrt{2}} \Lambda^{i}\left[\bar{\varphi}, \Lambda_{i}\right]+\frac{i}{\sqrt{2}} \bar{\Lambda}_{i}\left[\varphi, \bar{\Lambda}^{i}\right]\right] .
\end{aligned}
$$

deformation term ([Billo-Frau-Fucito-Lerda] for $\bar{C}=0$ case)
$\mathcal{L}_{(\mathrm{S}, \mathrm{A})}=$
$\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[i\left(C^{\mu \nu} \bar{\varphi}+\bar{C}^{\mu \nu} \varphi\right) F_{\mu \nu}-\frac{1}{\sqrt{2}} \bar{C}^{\mu \nu} \Lambda^{i} \sigma_{\mu \nu} \Lambda_{i}+\frac{1}{2}\left(C^{\mu \nu} \bar{\varphi}+\bar{C}^{\mu \nu} \varphi\right)^{2}\right]$.
Here $C^{\mu \nu}$ and $\bar{C}^{\mu \nu}$ are defined by

$$
C^{\mu \nu}=2 \sqrt{2} i C^{\mu \nu[12]}, \quad \bar{C}^{\mu \nu}=-2 \sqrt{2} i C^{\mu \nu[34]} .
$$

$C^{\mu \nu}$: VEV of graviphoton field strength in $\mathcal{N}=2$ SUGRA
$\bar{C}^{\mu \nu}$: coming from vector multiplet in $\mathcal{N}=2$ SUGRA
SUSY condition

$$
\bar{C}^{(\alpha \beta)} \xi_{\beta}^{i}=0, \quad \bar{\xi}_{i}=0 \text { or } C^{(\alpha \beta)}=0 .
$$

number of unbroken SUSY

		rank of $C^{(\alpha \beta)}$		
	0	1	2	
rank of $\bar{C}^{(\alpha \beta)}$	0	$\mathcal{N}=(1,1)$	$\mathcal{N}=(1,0)$	$\mathcal{N}=(1,0)$
	1	$\mathcal{N}=(1 / 2,1)$	$\mathcal{N}=(1 / 2,0)$	$\mathcal{N}=(1 / 2,0)$
	2	$\mathcal{N}=(0,1)$	$\mathcal{N}=(0,0)$	$\mathcal{N}=(0,0)$

- case of (A, S)-deformation
orbifold projection

$$
C^{(A B)}=\frac{1}{2}\left(\begin{array}{cc}
C^{(i j)} & 0 \\
0 & \bar{C}^{(\hat{i} \hat{j})}
\end{array}\right), \quad i, j=1,2, \quad \hat{i}, \hat{j}=3,4 .
$$

deformation term
$\mathcal{L}_{(\mathrm{A}, \mathrm{S})}=\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left[C^{(i j)} \bar{\Lambda}_{\dot{\alpha} i} \bar{\Lambda}_{j}^{\dot{\alpha}}-C^{(i j)} C_{(i j)} \bar{\varphi}^{2}-\bar{C}^{(\hat{j} \hat{j})} \bar{C}_{(\hat{i} \hat{j})} \varphi^{2}\right]$.

- "mass" deformation
- SUSY condition $\Rightarrow C^{(i j)} \bar{\xi}_{j}=0 \Rightarrow \mathcal{N}=(1,0)$ or $(1,1 / 2)$

5. Summary and Outlook

Summary

1. We construct $\mathcal{N}=2,4$ super Yang-Mills theory with (S, A) and (A,S)-type deformation up to the second order of the R-R 3-form background.
2. In both case of (S, A) and (A, S)-type deformation, the number of unbroken supersymmetry depends on the rank of deformation parameter. We also find the fuzzy sphere configuration.
3. (S, A) and (A, S)-type deformations are consistent with the $C S$ coupling in D-brane effective action.

Outlook

1. instanton calculus with ($\mathrm{S}, \mathrm{A})$-deformation

- $\mathcal{N}=2$ case \rightarrow Nekrasov formula can be obtained.
[Billo-Frau-Fucito-Lerda]
- $\mathcal{N}=4$ case \rightarrow ???

2. physical and geometrical meaning of deformation

- (A,S)-type \rightarrow "mass" and superpotential deformation
- (S,A)-type \rightarrow correspondence to Ω-background?

3. instanton effects in string theory ($\mathrm{D}(-1)$-side), AdS/CFT, . . .
