2007/08/10 @ Kinki Univ.

Two-dimensional $\mathcal{N}=(2,2)$ super Yang-Mills theory on computer

Hiroshi Suzuki (RIKEN, Theor. Phys. Lab.)
arXiv:0706.1392 [hep-lat]

It will be very exciting if non-perturbative questions in SUSY gauge theories can be studied numerically at one's will!

- spontaneous SUSY breaking
- string/gauge correspondence
- test of various "solutions" (e.g., Seiberg-Witten)

$$
\begin{aligned}
& \text { SUSY vs lattice! } \\
& \qquad\left\{Q, Q^{\dagger}\right\} \sim P
\end{aligned}
$$

SUSY restores only in the continuum limit !

Present status:

- For 4d $\mathcal{N}=1$ SYM (gaugino condensation, degenerate vacua, Veneziano-Yankielowicz effective action, etc.), numerically promising formulation exists
- Even in this "simplest realistic" model, no conclusive evidence of SUSY has been observed
- Investigation of low-dimensional SUSY gauge theories (simpler UV structure) would thus be useful to test various ideas
- Kaplan et. al., Sugino, Catterall, Sapporo group. . .
- SUSY QM (16 SUSY charges!) \Leftarrow Takeuchi-kun

In this work, we carry out a (very preliminary) Monte Carlo study of Sugino's lattice formulation of $2 \mathrm{~d} \mathcal{N}=(2,2)$ SYM (4 SUSY charges)
F. Sugino, JHEP 03 (2004) 067 [hep-lat/0401017]

Two-dimensional square lattice (size L)

$$
\wedge=\left\{x \in a \mathbb{Z}^{2} \mid 0 \leq x_{\mu}<L\right\}
$$

The lattice action

$$
S=Q a^{2} \sum_{x \in \Lambda}\left(\mathcal{O}_{1}(x)+\mathcal{O}_{2}(x)+\mathcal{O}_{3}(x)+\frac{1}{a^{4} g^{2}} \operatorname{tr}\{\chi(x) H(x)\}\right)
$$

where
$\mathcal{O}_{1}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{\frac{1}{4} \eta(x)[\phi(x), \bar{\phi}(x)]\right\}$
$\mathcal{O}_{2}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{-i \chi(x) \widehat{\Phi}_{\mathbf{T L}}(x)\right\}$
$\mathcal{O}_{3}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{i \sum_{\mu=0}^{1} \psi_{\mu}(x)\left(\bar{\phi}(x)-U(x, \mu) \bar{\phi}(x+a \widehat{\mu}) U(x, \mu)^{-1}\right)\right\}$

A lattice counterpart of the BRST-like transformation Q

$$
\begin{aligned}
& Q U(x, \mu)=i \psi_{\mu}(x) U(x, \mu) \\
& Q \psi_{\mu}(x)=i \psi_{\mu}(x) \psi_{\mu}(x)-i\left(\phi(x)-U(x, \mu) \phi(x+a \widehat{\mu}) U(x, \mu)^{-1}\right) \\
& Q \phi(x)=0 \\
& Q \chi(x)=H(x) \quad Q H(x)=[\phi(x), \chi(x)] \\
& Q \bar{\phi}(x)=\eta(x) \quad Q \eta(x)=[\phi(x), \bar{\phi}(x)]
\end{aligned}
$$

$Q^{2}=0$ on gauge invariant quantities
From this nilpotency, the lattice action is manifestly invariant under one of four super-transformations, Q.

More explicitly
$S=a^{2} \sum_{x \in \Lambda}\left(\sum_{i=1}^{3} \mathcal{L}_{\mathbf{B} i}(x)+\sum_{i=1}^{6} \mathcal{L}_{\mathbf{F} i}(x)+\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{H(x)-\frac{1}{2} i \widehat{\Phi}_{\mathbf{T L}}(x)\right\}^{2}\right)$
where

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{B} 1}(x)= \frac{1}{a^{4} g^{2}} \operatorname{tr} \\
&\left.\mathcal{L}_{\mathrm{B} 2}(x)=\frac{1}{4}[\phi(x), \bar{\phi}(x)]^{2}\right\} \\
& a^{4} g^{2} \operatorname{tr}\left\{\frac{1}{4} \widehat{\Phi}_{\mathrm{TL}}(x)^{2}\right\} \\
& \mathcal{L}_{\mathrm{B} 3}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{\sum_{\mu=0}^{1}\left(\phi(x)-U(x, \mu) \phi(x+a \widehat{\mu}) U(x, \mu)^{-1}\right)\right. \\
&\left.\quad \times\left(\bar{\phi}(x)-U(x, \mu) \bar{\phi}(x+a \widehat{\mu}) U(x, \mu)^{-1}\right)\right\}
\end{aligned}
$$

and

$\mathcal{L}_{\mathbf{F} 1}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{-\frac{1}{4} \eta(x)[\phi(x), \eta(x)]\right\}$
$\mathcal{L}_{\mathrm{F} 2}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\{-\chi(x)[\phi(x), \chi(x)]\}$
$\mathcal{L}_{\mathrm{F} 3}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{-\psi_{0}(x) \psi_{0}(x)\left(\bar{\phi}(x)+U(x, 0) \bar{\phi}(x+a \widehat{0}) U(x, 0)^{-1}\right)\right\}$
$\mathcal{L}_{\mathrm{F}_{4}}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{-\psi_{1}(x) \psi_{1}(x)\left(\bar{\phi}(x)+U(x, 1) \bar{\phi}(x+a \widehat{1}) U(x, 1)^{-1}\right)\right\}$
$\mathcal{L}_{\mathrm{F} 5}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\{i \chi(x) Q \Phi(x)\}$
$\mathcal{L}_{\mathrm{F} 6}(x)=\frac{1}{a^{4} g^{2}} \operatorname{tr}\left\{-i \sum_{\mu=0}^{1} \psi_{\mu}(x)\left(\eta(x)-U(x, \mu) \eta(x+a \widehat{\mu}) U(x, \mu)^{-1}\right)\right\}$

Advantage of this formulation

- Q-invariance (a part of the supersymmetry) is manifest even with finite lattice spacings and volume (probably, so far the unique formulation?)
- global $\mathrm{U}(1)_{R}$ symmetry (this is a chiral symmetry!)

$$
\begin{array}{lr}
U(x, \mu) \rightarrow U(x, \mu) & \psi_{\mu}(x) \rightarrow e^{i \alpha} \psi_{\mu}(x) \\
\phi(x) \rightarrow e^{2 i \alpha} \phi(x) & \\
\chi(x) \rightarrow e^{-i \alpha} \chi(x) & H(x) \rightarrow H(x) \\
\bar{\phi}(x) \rightarrow e^{-2 i \alpha} \bar{\phi}(x) & \eta(x) \rightarrow e^{-i \alpha} \eta(x)
\end{array}
$$

is also manifest

Possible disadvantage of the formulation

- The pfaffian $\operatorname{Pf}\{i D\}$ resulting from the integration of fermionic variables is generally a complex number (lattice artifact)
- would imply the sign (or phase) problem in Monte Carlo simulation
cf. H.S. and Taniguchi, JHEP 10 (2005) 082 [hep-lat/0507019]

Continuum limit:
$a \rightarrow 0$, while g and L are kept fixed

It can be argued that the full SUSY of the 1PI effective action for elementary fields is restored in this limit

- Power counting
- scalar mass terms are the only source of SUSY breaking \Leftarrow super-renormalizability
- exact Q-invariance forbids the mass terms

Monte Carlo study ($S U(2)$ only)

For SUSY, quantum effect of fermions is vital!

Quenched approximation ($S_{\mathbf{B}}$ bosonic action)

$$
\langle\mathcal{O}\rangle=\frac{\int \mathrm{d} \mu_{\mathbf{B}} \mathcal{O} e^{-S_{\mathbf{B}}}}{\int \mathrm{d} \mu_{\mathbf{B}} e^{-S_{\mathbf{B}}}}
$$

is meaningless, though it provides a useful standard

Here we adopt the re-weighting method

$$
\langle\langle\mathcal{O}\rangle\rangle=\frac{\int \mathrm{d} \mu \mathcal{O} e^{-S}}{\int \mathrm{~d} \mu e^{-S}}=\frac{\langle\mathcal{O} \operatorname{Pf}\{i D\}\rangle}{\langle\operatorname{Pf}\{i D\}\rangle}
$$

(potential overlap problem)

We developed a hybrid Monte Carlo algorithm code for the action S_{B} by using a C++ library, FermiQCD/MDP

For each configuration, we compute the inverse (i.e., fermion propagator) and the determinant of the lattice Dirac operator $i D$ by using the LU decomposition

Expressing the determinant of the Dirac operator as

$$
\operatorname{det}\{i D\}=r e^{i \theta}, \quad-\pi<\theta \leq \pi
$$

(the complex phase is lattice artifact) we define

$$
\operatorname{Pf}\{i D\}=\sqrt{r} e^{i \theta / 2}, \quad \because(\operatorname{Pf}\{i D\})^{2}=\operatorname{det}\{i D\}
$$

However, with this prescription, the sign may be wrong

To estimate the systematic error introduced with this, we compute also the phase-quenched average
$\langle\langle\mathcal{O}\rangle\rangle_{\text {phase-quenched }}=\frac{\langle\mathcal{O}| \operatorname{Pf}\{i D\}| \rangle}{\langle | \operatorname{Pf}\{i D\}| \rangle}$

Parameters in our Monte Carlo study ($\beta=2 N_{c} /\left(a^{2} g^{2}\right)$)

N	8	7	6	5	4
β	16.0	12.25	9.0	6.25	4.0
$N_{\text {conf }}$	1000	10000	10000	10000	10000
$a g$	0.5	0.571428	0.666666	0.8	1.0

This sequence corresponds to the fixed physical lattice size $L g=4.0$

For each value of β, we stored $1000-10000$ independent configurations extracted from 10^{6} trajectories of the molecular dynamics

Statistical error is estimated by the jackknife analysis
(The constant ϵ for the admissibility is fixed to be $\epsilon=2.6$)

One-point SUSY Ward-Takahashi identities

Since the action is Q-exact, we have $\langle\langle S\rangle\rangle=0$, or
$\sum_{i=1}^{3}\left\langle\left\langle\mathcal{L}_{\mathbf{B} i}(x)\right\rangle\right\rangle+\sum_{i=1}^{6}\left\langle\left\langle\mathcal{L}_{\mathbf{F}_{i}}(x)\right\rangle\right\rangle+\frac{1}{a^{4} g^{2}}\left\langle\left\langle\operatorname{tr}\left\{H(x)-\frac{1}{2} i \Phi_{\mathbf{T L}}(x)\right\}^{2}\right\rangle\right\rangle=0$ but

$$
\sum_{i=1}^{6}\left\langle\left\langle\mathcal{L}_{\mathbf{F} i}(x)\right\rangle\right\rangle=-2\left(N_{c}^{2}-1\right) \frac{1}{a^{2}}
$$

and

$$
\frac{1}{a^{4} g^{2}}\left\langle\left\langle\operatorname{tr}\left\{H(x)-\frac{1}{2} i \Phi_{\mathbf{T L}}(x)\right\}^{2}\right\rangle\right\rangle=\frac{1}{2}\left(N_{c}^{2}-1\right) \frac{1}{a^{2}}
$$

Thus

$$
\sum_{i=1}^{3}\left\langle\left\langle\mathcal{L}_{\mathbf{B} i}(x)\right\rangle\right\rangle-\frac{3}{2}\left(N_{c}^{2}-1\right) \frac{1}{a^{2}}=0
$$

Expectation values of $\sum_{i=1}^{3} \mathcal{L}_{\mathbf{B} i}(x)-\frac{3}{2}\left(N_{c}^{2}-1\right) \frac{1}{a^{2}}$

- The real part is consistent with the expected identity within 1.5σ (\Rightarrow strongly supports the correctness of our code/algorithm)
- The imaginary part is consistent with zero
- No notable difference of the phase-quenched average (\Rightarrow systematic error due to wrong-sign determination is negligible)
- Clear distinction from the quenched average (\Rightarrow effect of dynamical fermions is properly included)
- Effect of quenching starts at 2-loop $\sim g^{2} \ln (a / L)$

Another exact relation

$$
\left\langle\left\langle Q \mathcal{O}_{1}(x)\right\rangle\right\rangle=\left\langle\left\langle\mathcal{L}_{\mathbf{B}_{1}}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F}_{1}}(x)\right\rangle\right\rangle=0
$$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F}_{1}}(x)$

- The relation is confirmed within 2σ (note the difference in scale of vertical axis compared to the previous figure)
- The quenched average is certainly inconsistent with the SUSY relation
- No clear separation between the re-weighted average and the quenched one (\Leftarrow The effect of quenching starts at 3loop $\sim a^{2} g^{4} \ln (a / L)$)

Another relation

$$
\left\langle\left\langle Q \mathcal{O}_{2}(x)\right\rangle\right\rangle=\frac{1}{a^{4} g^{2}}\left\langle\left\langle\operatorname{tr}\left\{-i H(x) \widehat{\Phi}_{\mathbf{T L}}(x)\right\}\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F}_{5}}(x)\right\rangle\right\rangle=0
$$

but

$$
H(x)=\frac{1}{2} i \bar{\Phi}_{\mathbf{T L}}(x)
$$

and thus

$$
2\left\langle\left\langle\mathcal{L}_{\mathbf{B} 2}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 5}(x)\right\rangle\right\rangle=0
$$

Expectation values of $2 \mathcal{L}_{\mathbf{B} 2}(x)+\mathcal{L}_{\mathbf{F} 5}(x)$

The situation is again similar with the last piece of the relation

$$
\left\langle\left\langle Q \mathcal{O}_{3}(x)\right\rangle\right\rangle=\left\langle\left\langle\mathcal{L}_{\mathbf{B} 3}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 3}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 4}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 6}(x)\right\rangle\right\rangle=0
$$

Expectation values of $\mathcal{L}_{\mathbf{B} 3}(x)+\mathcal{L}_{\mathbf{F} 3}(x)+\mathcal{L}_{\mathbf{F} 4}(x)+\mathcal{L}_{\mathbf{F} 6}(x)$

So far, we have observed WT identities implied by the exact Q-symmetry of the lattice action

The continuum theory is invariant also under other fermionic transformations, Q_{01}, Q_{0} and Q_{1}

$$
\begin{array}{ll}
Q_{01} A_{\mu}=-\epsilon_{\mu \nu} \psi_{\mu} & Q_{01} \psi_{\mu}=i \epsilon_{\mu \nu} D_{\nu} \phi \\
Q_{01} \phi=0 & Q_{01} H=\frac{1}{2}[\phi, \eta] \\
Q_{01} \eta=2 H & Q_{01} \chi=-\frac{1}{2}[\phi, \bar{\phi}]
\end{array}
$$

$$
\begin{array}{ll}
Q_{0} A_{0}=\frac{1}{2} \eta & Q_{0} \eta=-2 i D_{0} \bar{\phi} \\
Q_{0} A_{1}=-\chi & Q_{0} \chi=i D_{1} \bar{\phi} \\
Q_{0} \bar{\phi}=0 & \\
Q_{0} \psi_{1}=-H & Q_{0} H=\left[\bar{\phi}, \psi_{1}\right] \\
Q_{0} \phi=-2 \psi_{0} & Q_{0} \psi_{0}=\frac{1}{2}[\bar{\phi}, \phi]
\end{array}
$$

Another fermionic symmetry Q_{1} is obtained by further exchange $\psi_{0} \leftrightarrow \psi_{1}$

Invariance under these transformations is expected to be restored only in the continuum limit

In the supersymmetric continuum theory
$\left.\left\langle\left\langle Q_{01} \frac{1}{g^{2}} \operatorname{tr}\left\{-\frac{1}{2} \chi[\phi, \bar{\phi}]\right\}\right\rangle\right\rangle\right\rangle_{\text {continuum }}$
$=\frac{1}{g^{2}}\left\langle\left\langle\operatorname{tr}\left\{\frac{1}{4}[\phi, \bar{\phi}]^{2}\right\}\right\rangle\right\rangle_{\text {continuum }}+\frac{1}{g^{2}}\langle\langle\operatorname{tr}\{-\chi[\phi, \chi]\}\rangle\rangle_{\text {continuum }}=0$
Corresponding to this relation, one might expect

$$
\left\langle\left\langle\mathcal{L}_{\mathbf{B} 1}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 2}(x)\right\rangle\right\rangle \rightarrow 0 ?
$$

holds in the continuum limit $a \rightarrow 0$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F}_{2}}(x)$

- It appears that the average approaches a non-zero number around 0.15 (not zero)
- This does not contradict with SUSY restoration. The argument of SUSY restoration is not applied to correlation functions containing composite operators
- Composite operators $\mathcal{L}_{\mathbf{B} 1}(x)$ and $\mathcal{L}_{\mathrm{F}_{2}}(x)$ induce logarithmic UV divergence at 2-loop level. If SUSY of the 1PI effective action is restored, this 2-loop level divergence should be the only source of UV divergence
- Moreover, that remaining 2-loop level divergence is cancelled out in the sum $\left\langle\left\langle\mathcal{L}_{\mathbf{B} 1}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 2}(x)\right\rangle\right\rangle$
- This argument indicates that, if SUSY in the 1PI effective action restores, $\left\langle\left\langle\mathcal{L}_{\mathbf{B} 1}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F}_{2}}(x)\right\rangle\right\rangle$ approaches a constant (but not necessarily zero) as $a g \rightarrow 0$
- The behavior is consistent with this picture based on a restoration of SUSY
- Within almost 1σ the re-weighted average and the quenched average are degenerate and this also appears consistent with a perturbative picture (\Leftarrow The effect of quenching starts at 3-loop $\sim a^{2} g^{4} \ln (a / L)$)
- So, the figure is consistent with the scenario of SUSY restoration, but, it may be dangerous to conclude the restoration of SUSY from the above result alone.

Another example:
$\left\langle\left\langle Q_{0} \frac{1}{g^{2}} \operatorname{tr}\left\{-\frac{1}{2} \psi_{0}[\phi, \bar{\phi}]\right\}\right\rangle\right\rangle_{\text {continuum }}$
$=\frac{1}{g^{2}}\left\langle\left\langle\operatorname{tr}\left\{\frac{1}{4}[\phi, \bar{\phi}]^{2}\right\}\right\rangle\right\rangle_{\text {continuum }}+\frac{1}{g^{2}}\left\langle\left\langle\operatorname{tr}\left\{-\psi_{0}\left[\psi_{0}, \bar{\phi}\right]\right\}\right\rangle\right\rangle_{\text {continuum }}=0$ and one might expect

$$
\left\langle\left\langle\mathcal{L}_{\mathbf{B} 1}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 3}(x)\right\rangle\right\rangle \rightarrow 0 ?
$$

in the continuum limit $a \rightarrow 0$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F} 3}(x)$

Yet another:

$$
\left\langle\left\langle\mathcal{L}_{\mathbf{B} 1}(x)\right\rangle\right\rangle+\left\langle\left\langle\mathcal{L}_{\mathbf{F} 4}(x)\right\rangle\right\rangle \rightarrow 0 ?
$$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F}_{4}}(x)$

Gauge invariant scalar bi-linear operators

Classical "moduli space"

$$
[\phi, \bar{\phi}]=0
$$

This degeneracy is not lifted to all order of loop expansion (the so-called flat directions)

Gauge-invariant scalar bi-linear operators

$$
\begin{aligned}
& a^{-2} \operatorname{tr}\{\phi(x) \bar{\phi}(x)\} \\
& a^{-2} \operatorname{tr}\{\phi(x) \phi(x)\}
\end{aligned}
$$

$a^{-2} \operatorname{tr}\{\phi(x) \bar{\phi}(x)\}$ is invariant under the global $\mathrm{U}(1)_{R}$ transformation

$$
\phi(x) \rightarrow e^{2 i \alpha} \phi(x) \quad \bar{\phi}(x) \rightarrow e^{-2 i \alpha} \bar{\phi}(x)
$$

The continuum limit of this quantity itself is meaningless, because it is a bare quantity and suffers from UV divergence. Power counting shows that the over-all UV divergence comes from the simplest 1-loop diagram and $\sim \ln (a / L) g^{2}$

If SUSY of the 1PI effective action is restored in the continuum limit, this 1 -loop divergence is the only source of UV divergence

So we define the renormalized operator (the normal product)

$$
\mathcal{N}\left[a^{-2} \operatorname{tr}\{\phi(x) \bar{\phi}(x)\}\right] \equiv a^{-2} \operatorname{tr}\{\phi(x) \bar{\phi}(x)\}-\left(N_{c}^{2}-1\right) c(a / L) g^{2}
$$

This subtraction must remove all the UV divergence of the composite operator

$$
c(a / L=1 / N)=\frac{1}{2 N^{2}} \sum_{n_{0}=0}^{N-1} \sum_{n_{1}=0}^{N-1} \frac{1}{\sum_{\mu=0}^{1}\left(1-\cos \frac{2 \pi}{N} n_{\mu}\right)}
$$

Expectation values of $\mathcal{N}\left[a^{-2} \operatorname{tr}\{\phi(x) \bar{\phi}(x)\}\right]$

- Clear separation between the re-weighted average and the quenched one (quantum effect of dynamical fermions)
- Fermions actually uplifts the expectation value !
- The expectation value appears to approach some finite number (in a unit of g^{2}) in the continuum limit after the renormalization
- Without the renormalization, there is a tendency that the expectation values grow as $a g \rightarrow 0$
- If SUSY is restored in the continuum limit, the expectation value is expected to become independent of $a g$ as $a \rightarrow$ 0 . The behavior in figure is more or less consistent with this expectation (though we need much data to conclude this)

Expectation values of $a^{-2} \operatorname{tr}\{\phi(x) \phi(x)\}$

Conclusion

- Preliminary numerical study of Sugino's lattice formulation of $2 \mathbf{d} \mathcal{N}=(2,2)$ SYM
- WT identities associated with the Q-symmetry were confirmed in fair accuracy (\Rightarrow re-weighting method is basically working)
- On the other hand, all results are consistent with the basic scenario of SUSY restoration (encouraging), though we could not conclude the restoration of full SUSY in a definite level

Prospects

- Much larger lattice with (RIKEN) PC cluster
- Two-point functions (conservation of SUSY current, mass spectrum)
- Wilson loops (screening by adjoint fermions?)
- 2d $\mathcal{N}=(4,4) \mathbf{S Y M}$ (and 2d $\mathcal{N}=(8,8)$ SYM)

RIKEN Symposium

Quantum Field Theory and Symmetry

12/22 (Sat.) and 12/23 (Sun.)

You Are Welcome!

To be announced in sg-I (hopefully) soon

Appendix

Comparison with

Catterall, JHEP 04 (2007) 015 [hep-lat/0612008]

Expectation values of $\mathcal{L}_{\mathbf{B}_{1}}(x)+\mathcal{L}_{\mathbf{F}_{1}}(x)$

Expectation values of $2 \mathcal{L}_{\mathbf{B} 2}(x)+\mathcal{L}_{\mathbf{F} 5}(x)$

Expectation values of $\mathcal{L}_{\mathbf{B} 3}(x)+\mathcal{L}_{\mathbf{F} 3}(x)+\mathcal{L}_{\mathbf{F} 4}(x)+\mathcal{L}_{\mathbf{F} 6}(x)$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F}_{2}}(x)$

Expectation values of $\mathcal{L}_{\mathbf{B} 1}(x)+\mathcal{L}_{\mathbf{F}_{3}}(x)$

