Hagedorn Strings and Corrsponding Principle in AdS_3

Dan Tomino (National Taiwan Normal University)

with

Feng-Li Lin, Toshihiro Matsuo Based on arXiv. 0705.4514

1. Introduction

String theory in finite temperature:

Old and interesting problem

.

Even in gas, Statistical/ thermodynamic treatment draws much more non-trivial aspects than what we expect from free theory.

Many body effects in string theory: Some of them may be observed through the finite temperature system a fundamental question:

What happens when strings are in high temperature environment?

Known interesting behavior of thermal string gas in flat space is

Hagedorn Singularity/Transition

Canonical partition function $= \infty$ /non-analytic

If $\beta \leq \beta_H$: Hagedorn inverse temperature

String density of states in high energy:

$$\Omega(E) \sim e^{\beta_H E}$$

Canonical partition function:

$$Z_{can}(\beta) = \int \Omega(E) e^{-\beta E} dE$$

non-analytic behavior in $\beta \leq \beta_H$.

There have been many speculations about this phenomenon:

- Ends of thermal ensemble?
- Phase transition to black hole?

It still be an interesting quastion to ask what really happens to strings above the Hagedorn temperature.

Why AdS₃?

- Solvable example of curved space string
- Application to strings/BH correspondence, AdS/CFT (in future)

Plan of the talk

- $\sqrt{1}$. Introduction
 - 2. Strings in AdS_3
 - 3. Thermal partition function

Hagedorn behavior, (Density of states)

- 4. Application to BH
- 5. Summary

2. Strings in AdS_3

 AdS_3 space metric:

$$ds^2/k = -\cosh^2\rho dt^2 + d\rho^2 + \sinh^2\rho d\theta^2.$$

$$k = l_{AdS}^2/l_{string}^2.$$

Use another coordinate for the target space:

$$V = \sqrt{k} \sinh \rho e^{i\theta}, \quad \bar{V} = \sqrt{k} \sinh \rho e^{-i\theta}, \quad \Phi = \sqrt{k} (t - \log \cosh \rho).$$

 AdS_3 string action: SL(2, R) WZW action

$$S = \frac{1}{\pi} \int d^2 z \left[-\partial \Phi \bar{\partial} \Phi + \left(\partial \bar{V} + \frac{\partial \Phi \bar{V}}{\sqrt{k}} \right) \left(\bar{\partial} V + \frac{\bar{\partial} \Phi V}{\sqrt{k}} \right) \right].$$

central charge: $c_{SL} = 3 + \frac{6}{k-2}$.

For consistency, we need some "internal space" s.t. $AdS_3 \times \mathcal{M}$. Request is

$$c_{SL} + c_{int} = 26 \quad \Rightarrow \quad c_{int} = 23 - \frac{6}{k-2}.$$

We set internal CFT as free boson's one (technical reason).

2-kinds of string in AdS_3 (Maldacena, Ooguri '00)

• Short string

Localize around $r\sim 0$ with discreat spectrum

$$E_{short} = 1 + q + \bar{q} + 2w + \sqrt{1 + 4(k-2)\left(N_w + h - 1 - \frac{1}{2}w(w+1)\right)}$$

 q,\bar{q},h,N_w,w are integer.

• Long string

Stretch over whole space with continuous stectrum

$$E_{long} = \frac{k}{2}w + \frac{1}{w}\left(\frac{2s^2 + \frac{1}{2}}{k-2} + \tilde{N} + h + \tilde{\bar{N}} + \bar{h} - 2\right)$$

s is continuous.

3. Thermal Partition Function

AdS₃ part: 1-loop determinant of the Euclidean WZW action $(t \Rightarrow t_E = it)$ with

$$\Phi(z+2\pi) = \Phi(z) + \beta n, \qquad \Phi(z+2\pi\tau) = \Phi(z) + \beta m,$$
$$V(z+2\pi) = V(z), \qquad V(z+2\pi\tau) = V(z),$$

- β : thermal period, (m, n): thermal winding numbers,
- τ : moduli parameter of string world sheet (torus).

Evaluated by Gawedzki '86.

Total partition function:

$$\begin{aligned} \mathcal{Z}(\beta) &= \int_{F_0} \frac{d^2 \tau}{4\tau_2} \mathcal{Z}_{gh} \mathcal{Z}_{int} \mathcal{Z}_{AdS} \\ &= V_{int} \int_R \frac{d^2 \tau}{4\tau_2} \frac{\beta (1 - 2/k)^{1/2} |\eta(\tau)|^{4 - 2c_{int}}}{(4\pi^2 \alpha' \tau_2)^{(c_{int} + 1)/2}} \\ &\sum_{m = -\infty}^{\infty} \frac{e^{-\beta^2 |m - n\tau|^2 / 4\pi \alpha' \tau_2 + 2\pi (\operatorname{Im} U_{n,m})^2 / \tau_2}}{|\vartheta_1(\tau, U_{n,m})|^2} \bigg|_{n=0}, \end{aligned}$$

R: strip domain $|\tau_1| \leq \frac{1}{2}, \tau_2 \geq 0.$

Dominant contribution:

 $(m, n) = (\pm 1, 0), \quad Im(\tau) = \tau_2 \to 0.$

Note (I) : Many divergent points!

The points $2\pi\tau = (U \pm l)/w$ for integer (l, w) give pole.

We need regularization.

Note (II) :

$$\mathcal{Z}(\beta) = \sum_{E_{short}} e^{-\beta E_{short}} + \int dE_{long}(s) \ \rho(s) e^{-\beta E_{long}(s)},$$

$$\rho(s) = \frac{1}{\pi} \log \epsilon + \frac{1}{2\pi i} \frac{d}{2ds} \log \left(\frac{\Gamma(\frac{1}{2} - is - m(w, s, N, h))\Gamma(\frac{1}{2} - is + \tilde{m}(w, s, \tilde{N}, \tilde{h}))}{\Gamma(\frac{1}{2} + is - m(w, s, N, h))\Gamma(\frac{1}{2} + is + \tilde{m}(w, s, \tilde{N}, \tilde{h}))} \right)$$

 $\log \epsilon$ divergence.

 $\epsilon:$ regularization parameter

Derived by Maldacena, Ooguri and Son '00.

• Hagedorn behavior

Asymptotic form of partition function in $|\tau| \to 0$:

$$\mathcal{Z} \simeq \frac{\sqrt{\pi} V_{int} (k-2)^{1/2}}{4(4\pi^2)^{(c_{int}+1)/2}}$$
$$\lim_{\epsilon \to 0} \sum_{w=w_{min}}^{\infty} \int_{w+\epsilon}^{w+1-\epsilon} \frac{dy}{y} \left(\frac{\beta}{2\pi\sqrt{ky}}\right)^{(c_{int}+1)/2} \frac{\exp\left[-\frac{\beta^2 - \beta_{AdS}^2}{2\beta}\sqrt{ky}\right]}{|\sin(\pi y)|}$$

comes from the domain $\frac{-2\pi\sqrt{k}}{\beta} \leq \frac{\tau_1}{\tau_2} \leq \frac{2\pi\sqrt{k}}{\beta}$.

(No Hagedorn behavior in other domains.)

 β_{AdS}^{-1} : Hagedorn temperature of string gas in $AdS_3 \times \mathcal{M}$

$$\beta_{AdS} = \frac{4\pi}{l_s} \sqrt{\frac{k - \frac{9}{4}}{k - 2}}$$

(Main result)

- unitarity of internal CFT: $k > 2 + \frac{6}{23} (> \frac{9}{4}) \Rightarrow \beta_{AdS} > 0$
- universality if internal CFT is unitary and compact

• Density of states

Further evaluation:

$$\mathcal{Z}(\beta) = |\ln \epsilon| \frac{V_{int}(k-2)^{1/2}}{2\sqrt{\pi}} \left(\frac{\beta}{8\pi^3\sqrt{k}}\right)^{\frac{c_{int}+1}{2}} \\ \sum_{w=w_{min}}^{\infty} w^{-\frac{c_{int}+3}{2}} \exp\left[-\frac{\beta^2 - \beta_{AdS}^2}{2\beta}\sqrt{k}w\right] + O(\epsilon^0).$$

Can be identified with the long string contribution.

 $|\log \epsilon|$: related IR divergence due to infinite vol. of AdS space.

Maxwell-Boltzmann gas approximation:

$$Z \simeq e^{\mathcal{Z}}$$

Free energy:

$$F \simeq -h(\beta)(\beta - \beta_{AdS})^{(c_{int}+1)/2} + \text{regular part} \quad (\beta \to \beta_{AdS}).$$

Non-analyticity is similar to the one of flat space case.

Inverse Laplace transformation:

$$\Omega(E) = \oint \frac{d\beta}{2\pi i} e^{\beta E} Z(\beta)$$

= $CV \frac{e^{\beta_{AdS}E + \gamma_0 V}}{E^{(c_{int}+1)/2+1}} (1 + O(1/E))$

- $\log \Omega(E) \sim \beta_{AdS} E$
- Implies single long string dominance of distribution
- Break down of thermodynamics (Famous in flat space) $E < 0, C = \frac{\partial E}{\partial T} < 0$ (above β_{AdS}^{-1}) in microcanonical ensemble
- Introducing winding strings in \mathcal{M} may cure this pathology

4. Application to Black Hole

Bekenstein-Hawking entropy of AdS_{d+1} Schwarzschild black hole

$$S_{BH} = \frac{d-2}{d-1} \frac{1 + \frac{d}{d-2} \frac{r_{+}^{2}}{l_{AdS}^{2}} - \mu^{2}}{1 + \frac{r_{+}^{2}}{l_{AdS}^{2}} + \mu^{2}} \beta_{BH} M,$$

$$\beta_{BH} = \frac{4\pi l_{AdS}^{2} r_{+}}{(d-2)(1-\mu^{2}) l_{AdS}^{2} + dr_{+}^{2}}, \qquad \mu = \frac{w_{d+1}Q}{2r_{+}^{d-2}}$$

 $S_{BH} \propto \beta_{BH}(M)M \Rightarrow \rho(M) \sim e^{\beta_{BH}(M)M}$

 $(S_{string} \sim \beta_{st} M, \quad \Omega(E) \sim e^{\beta_{st} E})$

Strings/BH correspondence in AdS space

Strings may correspond to BH

if $\beta_{st} \sim \beta_{BH}$ then $S_{string} \sim S_{BH}$

Let us examine AdS_3 : $\beta_{BH}(r_+) = 2\pi \frac{l_{AdS}^2}{r_+}$

$$\frac{r_{+}}{l_{s}} = \frac{k}{2}\sqrt{\frac{k-2}{k-9/4}}$$

 $l_{AdS} >> l_s$, then r_+ large(stable, different from flat space). $l_{AdS} \sim l_s$, then r_+ has minimum.

5. Summary

- String gas in AdS₃ × M
 Evaluated 1-loop partition function of SL(2,R) WZW and internal+ghost CFT
- Hagedorn temperature $\beta_{AdS}(k)$, Density of states $\Omega(E)$. Single long string is dominant configuration in $\beta \sim \beta_{AdS}$.
- Strings/BH correspondence in AdS₃.

Stable BH with large size is possible. Minimum size of BH?

Outlook

- String gas in $AdS_3 \times \mathcal{M}$ Effect of gravity, discrepancy from MB gas
- Hagedorn temperature β_{AdS}(k), Density of states Ω(E).
 Introducing chemical potentioal, winding string, short string effect
- Strings/BH correspondence in AdS_3 .

More verification, prediction

(END)

Fiuger of the relation between β and AdS BH radius

Discussion: Stirngs in BTZ BH

 AdS_3 and BTZ BH are related by coordinate transformation. Moduli parameter of boundary torus:

$$\tau_{AdS} = \frac{i\beta}{2\pi\sqrt{k}}, \quad \tau_{BTZ} = \frac{i\beta_{BTZ}}{2\pi\sqrt{k}}$$

Relation :

$$\tau = -1/\tau_{BTZ}.$$

The string partition function on BTZ

$$\mathcal{Z}_{BTZ}(\beta_{BTZ}) = \mathcal{Z}(\frac{4\pi^2 k}{\beta}).$$

Hagedorn divergence if $\beta_{BTZ} \ge \frac{4\pi^2 k}{\beta_{AdS}} \equiv \beta_{BTZ}^{Hag}$.

It may implies minimum size of BTZ: $r_{+}^{min} = \frac{\beta_{AdS}}{2\pi}$. String α' correction makes BTZ unstable.