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We consider A/ = 2 supersymmetric gauge theories in 4-
dimensions and study the case when the theory possesses
the conformal invariance.
Simplest example of a conformal invariant theory:

SU (2) gauge theory with N = 4 hypermultiplets
We may consider its generalizations

A chain of SU (2) gauge theories with bifundamen-

tals and fundamental at the ends: quiver gauge theories



As is well-known, such quiver theories are obtained using the
brane construction as shown in the figure:

D4-branes
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NS5-branes 26,10
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One has n + 1 NS5 branes and a pair of D4 branes are sus-



pended between neighbouring NS5 branes giving rise to
SU(2)1 x SU(2)3:-- x SU(2), gauge symmetry. Two D4
branes at extreme left and right extend to xg = oc repre-
senting fundamental hypermultiplets. In such a configuration
each SU;(2) theory couples to N = 4 hypermultiplets and
iIs conformally invariant. Thus there exists a set of marginal
parameters in the theory
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Uplifting this brane configuration to 11 dimensions
—> M theory picture with an M5 brane wrapping a Riemann



surface (cylinder) with punctures.

Thus, conformal A/ = 2 theories
~ an M5 brane wrapping a Riemann surface C' with
a number of punctures.

Number of parameters of Riemann surface Cg ,, of genus g



with n punctures: 3g —3+n
This agrees with the number of gauge theory parameters {t; }.
Hence one expects Gaiotto

S-duality group of quiver gauge theory —

mapping class group of Riemann surface Cy p,



Remarkable observation Alday,Gaiotto,Tachikawa

AGT relation
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Liouville Nekrasov partition function
correlation function  of SU (2) gauge theory in (2 background
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Background charges
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Nekrasov formula

Sum over Yang tableau; Y = (A1 > A2 > --+)

ZNek = Z q|levector(C—ia Y)Zantifund(aa Y, ml)
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Here

Zyector(d, }7 H H (azg E1LYj(S) + ‘52(AY,,;(3) T 1))—
1,7=1,2 s€Y;

x | (aji + e1Ly,(t) — e2(Ay;(t) + 1) + 6+)

tey;
Zind (@ Y,p) = J] ]] (@i+e(t—1) +ex(m—1) —p+ey)
1=1,2 s€Y;
Z antifund (@, 1—}7 p) = H H (a; + e1(£ — 1) + e2(m — 1) + p)
i=1,2 s€Y;

€+ = €1 + €2, a;; = a; — a;. Ly(s) and Ay (s) are leg and
arm length of the site s.



Nekrasov formula is obtained by summing over contributions
from fixed points in the ADHM formula under gauge and Lorenz
transformation (SO(4) = SU(2);, X SU(2)Rr € (€1, €2)).

First exact relationship between 4-dim CFT and 2-dim CFT.
Higher rank generalization:  Toda theories



& Atftempts at direct proof Fateev-Litvinov

Detailed study of the algebraic structure of conformal block

in Liouville theory , i.e. the recursion relation by Al.B.Zamolodchikowv.

R, A —n
.1 :F.a , (q)
A — Amon

(Vo) = Fi (@), Fi(@) =) q¢™

and comparison with the sum over Yang tableaus of gauge
theory side.

Conformal block of 1-point function in Liouville theory on a
torus = A/ = 4 gauge theory perturbed by the mass of the
adjoint hypermultiplet (A" = 2* theory)



& Exact Integration
Consider Liouville correlation function in free field represen-
tation
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Dotesnko-Fatteev integral



This is an integration of Selberg type.
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Attempts at exact evaluation and comparison with conformal
blocks.
Morozov-Kironov-Shakirov,

ltoyama-Oota. - -



& Monodromy fransformations

SWcurve ¥ :  z? = ¢a(2),

¢o has double poles ~ L
(2 — z;)?
1 1 i i 1 OF
. wdz:ai, —% ajdz:a,D, a’D: .
2T JA; 27 /B, 4mi0a;

In the semi-classical limit 7 — 0, €12 << a;,m;

Z = exp (—



Liouville stress tensor T'(z)

(T(2)Viny (51) - Vina (20)) & 5 82(2)(Vimy (21) -+~ Vi ()

Degenerate field

—b
Consider a field ®5 ;(z) = ez 2(2) which possesses a de-
generacy at level 2

92 ®y1(2) = —b? : T(2)®2,1(2) :



Correlation function with an extra insertion of ®5 ;

Z(a3; z) = ($2,1(2) Vimy (21) * - - Vimy, (20))

In the semi-classical limit

Z(ay: z) ~ exp (_F(ai) | bW (a;; 2) +)

2 h
One finds

(OW)? = ¢a(z) = o(2)°

Hence

Wi(z) == /: xdz



shift around A, B cycles gives
271b
——aj)Z(as; 2)

2mib
- al)Z(ais )

Z(a;;z + Aj) = exp(

Z(a;; z + Bj) = exp(

Similarly we may consider the process

1. Insert identity operator inside the Liouville correlator
2. P21 QP21 ~1

3. Transport one of 5 1’s around A, B cycle

4. Pair annihilate two ®’s into identity



cos(wb(2a — Q)
cos(mwbQ)
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These processes give monodromy factors corresponding to

the action of Wilson loop, 't Hooft loop and surface operators.

Alday-Gaiotto-Gukov-Tachikawa-Verlinde

Drukker-Gomis-Okuda-Teschner



& Mairix Model

Dotsenko-Fatteev integral when b = 1 suggests a matrix model
interpretation with an action

S = Zma log(M — qq)
a

and {z;} are identified as matrix eigenvalues.
Dijkgraaf-Vafa

We find that this model in fact reproduces Seiberg-Witten the-
ory (also for the asymptotically free cases N = 2, 3). But it
still has mysterious features. T.E.-Maruyoshi



Let us consider the simple case of 4 hypermultiplets with masses
m4, m4. Define

1 1 _ -
mg = §(m+ —m_), my = §(m+ — m_)

1 1 _ -
mo = §(m_|_ +m_), m3 = §(m_|_ +m_)

Condition:

Zmi = 2gsIN



M theory curve is given by

Crr: (v—my)(v—m_)z?
+ec1(vP+ Mv—U)z+ci(v —my)(v—m_) =0

For convenience, set c; = —(1 + q), c2 = q. By shifting v to

eliminate the linear term and setting v = =z

Crp s 2? — <m2z2 + 1+ g2+ m3¢1> :
z(z —1)(z — q)
(fmO — mz)z —(14+q)Uz + (fm1 — m3)q
z%(z — 1)(z — q)




Seiberg-Witten differential behaves at a pole as

rdz My

)‘SW — .
271 Z — Zx

0

Mass appears at residues.

Pole at z = 0, z = oc; residue +=my, =my.

Require pole at z = 1 with residue +m+o and z = ¢ with

residue =ms —

& UV and IR gauge coupling constant



Standard SW curve of IV f= 4 In massless case

Csw : y° = 4z° — gouz® — ggu”
Here
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On the other hand M theory curve in the masssless limit is



given by

. (1+q)U
O (2 —1)(z—q)

Here U is related to u = tr¢? as

U = Au

and we have used ¢’ in order to distinguish it from g of Cgyy .

By comparing the periods we find

, 92(q)? A — 1
17 9@ 92(q)* + 93(q)*




We regard q in SW curve as the gauge coupling in the infra-
red regime ¢ = qrr and ¢’ in M theory curve as the ultra-
violet gauge coupling constant ¢’ = g;7y-. Relation

_ 92(qrr)?
Y3(qrR)?

has been obtained by various authors.

quv

Grimm et al, Marshakov et al

& Mairix model and modular invariance
Equation of motion




We have q; = 0,q2 = 1, q3 = qr7yv- Eigenvalue distribution is

as given in the figure.
A
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Resolvent of the theory is defined by

Rin(z) = gsTr

and satisfies the loop equation

(Bm(2))? = — (Bn(2)W/(2) + 1)
B W/(z) - W/(M)\ S
f(z)_4gSTr< z— M >_i§::12_qri

Matrix model curve (spectral curve) is defined by the dis-



criminant of the loop eq.

Cspec.curve * x? = VV,(Z)2 + f(2)
mq mo m3 \? (m3—>; mzz)z + qcq
| + +
z(z —1)(z — q)

z z—1 =z —gq

Eq. of motion =—> » "¢; = 0

')
Residue at oo being +mg —> ¢z + gcz = m2 — (3 m;)?
Then

ge1 = (1 + @ymi + (1 — q)m3 + 2gmymy — 2gmams3
+2mim3 — (1 + q)U
—> Cw = Cspec.curve



e Modular invariance

Consider the massless limit of spectral curve

22 A+q9U 9%4,
z(z —1)(z — q) z(z —1)(z — q)

This is invariant under

I:(z,w)—>(%—z,w), gq—1—qg, u— —u, S
II:(z,:L')—>(—,—zza:), q——, u—u, STS
z q

4
Recall g = —2.
q 9%



Consider massive case. Under the S- and STS-transformations

mass parameters are transformed info each other

I:(0,1,q,00) — (1,0,1 — q,00), My < M2

1
IT:(0,1,q,00) — (oo,l,a,O), mg < My

Under these transformations, the spectral curve should be in-
variant. By imposing the conditions

2 2

€T (z; Mmoo, M7, 72, M3 q) =X (1 — z;mg, m2, M1, Mm3; 1 — Q)
5 1 51 1

x(z; mg, m1, My, M3;q) = ;JJ (;;m1,m09m29m3 . a)



one can completely fix the mass dependence of the param-

eter U. Solution to the above conditions is given by

u
(1+ @)U = —3 — a(mz + m3)* +— Zm
3

e Asymptotically free theory with Ny = 3

precise relationship between u and T'r¢?



3
1
u = (Tro?) — E(ﬂj + 19%) Z m?
1=0

Recdll

m4

We take the limit

with

Mo -

m_ — 00,

- ™My,

m_q = As

M4+ = Mg

q — 0,

fixed

- M1,



Matrix action reduces to
. A3
W (M) =m4 log M — o + molog(M — 1).

the spectral curve for N, = 3 theory becomes
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5 A% my As u — (mo + 5m4)Ag m(z)

424 z3(z — 1) B z2(z — 1) * z(z — 1)
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| ms m2A3
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Predicts the same free energy and discriminant as that of the



standard SW curve

1
2 = z%(z —u) — ZA%(Z — u)?
L 2 | =2\ x2 -
—Z(m_l_ +mZ + m_|_)A3(Z —u) + mym_m4 A3z
1

2, 2 2 ~2 ~ 2 2
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e Asymptotically free theory with N = 2

Matrix action:

W (M) = 4 log M Az AM
= my lo — — —
+ 708 oM~ 2




Spectral curve:

2 _ AZ S myAy u+m+A2+A_§
4z4I Iz2 z 4

ZS

Computation of free energy

1
gsIN1 = —.%w(u)dz
4711

(/N1 denotes the filling fraction of the first cut ”17).
Derivative of free energy in A» is given by
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On the other hand
ia(gle) _ dz

471
ou C1 / Ps(2)
where
4?7’L_|_ 4u 4m_|_
Pi(2) = z% 4 23 4 52 z+1

This is a complete elliptic integral and we can expand u In

terms of a = 2g; N1 (we put m4 = my = m for simplicity)

2 4 2 .2 4

m a — om-“a 5%20)

u=a’+ A5+ i
2a2




Then by integrating over A, we finally obtain

a? + m2A2 n at — 6a?m? + 5m?
2a? 64a5
+ ...

AFy, = 2(a* — m?%)log Ay + A4

This gives the same free energy as the standard SW curve

1 1 i
r? = (2% — ZA%)(z —u) + m+'fh+A§z - Z(mﬁ_ -+ 'm_|_)A%



& Discussions

1. We want a much wider class of correspondences:
Liouville, Toda
—> WZW, cosets, parafermions efc.
N = 2 Yang-Mills on R*
—> on ALE spaces, rational surfaces?
2. Want five-dimensional version of AGI. It is known that 5-
dimensional Nekrasov formula counts the number of holo-
morphic curves in non-comapct CY manifolds (geometric

engineering). 5-dim. AGT — CFT acting on the space of
Gromov-Witten invariants.



