A lattice study of $\mathcal{N}=2$ Landau-Ginzburg model using a Nicolai map

based on arXiv:1005.4671

Hiroki Kawai (in collaboration with Y.Kikukawa) Institute of Physics, The University of Tokyo

Outline

1. Purpose of this study

2.Lattice formulation of WZ model

3.Simulation Method

4.Numerical results

5. Summary and future plan

l Purpose

2d CFT

critical phenomena of 2d statistical systems

 $\mathcal{N} = 2$ minimal models $\overset{\sum c_i = 9}{\Longrightarrow} \mathcal{N} = 1$ space-time SUSY (compactified string)

A problem which remains unsolved is the determination of the correspondence between CFTs and systems (Lagrangians) .

2d $\mathcal{N}=2$ Landau-Ginzburg model (LG model)

$$S = \int d^2x d^4\theta \, K(\Phi, \bar{\Phi}) + \bigg(\int d^2x d^2\theta \, W(\Phi) + c.c. \bigg), \qquad \Phi \, \dots \text{ chiral superfield.}$$

<u>At the IR fixed point</u>, $W(\Phi) = \lambda \Phi^n$ is believed to describe the $\mathcal{N} = 2$, $c = 3(1 - \frac{2}{n})$ minimal model. \swarrow check for $K(\Phi, \overline{\Phi}) = \overline{\Phi}\Phi$ (WZ model) $\lambda_{\text{eff}} \to \infty$, lattice !

Why it is believed that LG models describe CFTs ?

2d bosonic case '86 A.B.Zamolodchikov In the $c = 1 - \frac{6}{n(n+1)}$ minimal model, the fusion rule implies $\dots \phi_{(2,2)}^{2n-3} \propto \partial^2 \phi_{(2,2)}$ In the 2d bosonic LG model $\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \lambda \phi^{2n-2}$, EOM is $\dots \phi^{2n-3} \propto \partial^2 \phi$ $\stackrel{\text{conjecture}}{\Rightarrow} \phi = \phi_{(2,2)}$ at the IR fixed point. Extending this idea, \dots

How to check the conjecture

early studies

We computed correlation functions non-perturbatively for $W(\Phi) \propto \Phi^3$.

susceptibility of CFT:

$$\chi \equiv \int d^2 x \langle \phi(x) \phi^*(0) \rangle \xrightarrow{\text{finite volume}} \int_V d^2 x \frac{1}{|x|^{2h+2\bar{h}}} \propto V^{1-h-\bar{h}}$$

$$\Rightarrow \log \chi = \underbrace{(1-h-\bar{h})}_{/} \log \mathsf{V} + \text{const.}$$
For the present $W(\Phi) \propto \Phi^3$, the conjecture expects $1-h-\bar{h} = 1 - \frac{1}{6} - \frac{1}{6} = 0.666...$

2 Lattice Formulation of WZ model

 \mathcal{S}

Relying on the existence of the Nicolai map as the guiding principle,

'83 Sakai and Sakamoto '09 Kadoh and Suzuki

$$= \sum \left\{ \phi^* T \phi + W^* (1 - \frac{a^2}{4} T) W + \left(W'(-S_1 + iS_2) \phi + c.c. \right) \right. \quad (02 \text{ Kikukawa and Nakayama} \\ + \bar{\psi} \left(D + \frac{1 + \gamma_3}{2} W'' \frac{1 + \hat{\gamma}_3}{2} + \frac{1 - \gamma_3}{2} W''^* \frac{1 - \hat{\gamma}_3}{2} \right) \psi \right\}$$
where $D = \frac{1}{2} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right] = T + \gamma_1 S_1 + \gamma_2 S_2, \quad X = 1 - \frac{a}{2} \left[\gamma_\mu (\nabla^+_\mu - \nabla^-_\mu) - a \nabla^+_\mu \nabla^-_\mu \right], \\ W = \frac{\lambda}{3} \Phi^3.$

 λ is the unique mass parameter (besides a) $\Rightarrow \begin{cases} \text{continuum limit} : a\lambda \to 0 & \text{modes!} \\ \text{To see CFT, } L \gg (a\lambda)^{-1} \text{ is needed.} \end{cases} \overset{\lambda}{}_{0}$

no extra fine-tunings $\Leftarrow \begin{cases} & \text{one SUSY } Q & \leftarrow \text{Nicolai map} \\ & Z_3 \text{ R-symmetry } \leftarrow \text{overlap fermion} \end{cases}$

This lattice model faces the sign problem

$$D + F|$$
 is real, but can be negative. $\Leftarrow \gamma_1 (D + F) \gamma_1 = (D + F)^*$
$$\int (\Pi_n \, d\phi_n \cdots) e^{-S_{lat.}} = \int (\Pi_n \, d\phi_n d\phi_n^*) \, \underbrace{|D + F|}_{\text{real, but can be negative.}} e^{-S_B}$$

3 Simulation Method

Idea '91 Curci et al.

We utilized the Nicolai map : $\eta = W' + (\phi - \frac{a}{2}W')T + (\phi^* - \frac{a}{2}W^{*\prime})(S_1 + iS_2).$

$$\begin{split} \int \left(\Pi_n \, d\phi_n \cdots \right) e^{-S_{lat.}} \\ &= \int \mathcal{D}\phi \mathcal{D}\phi^* |D+F| \, e^{-S_{\rm B}}, \qquad \mathcal{D}\phi \mathcal{D}\phi^* \equiv \Pi_n \, d\phi_n d\phi_n^* \\ &= \int \mathcal{D}\phi \mathcal{D}\phi^* \left[\int \mathcal{D}\eta \mathcal{D}\eta^* \delta(\eta - W' - (\phi - \frac{a}{2}W')T - (\phi^* - \frac{a}{2}W^{*\prime})(S_1 + iS_2)) \right] |D+F| \, e^{-S_{\rm B}} \\ &= \int \mathcal{D}\phi \mathcal{D}\phi^* \left[\int \mathcal{D}\eta \mathcal{D}\eta^* \sum_{i=1}^{N(\eta)} \frac{\delta(\phi - \phi_i(\eta))}{||D+F||} \right] |D+F| \, e^{-S_{\rm B}} \\ &= \int \mathcal{D}\eta \mathcal{D}\eta^* \left[\sum_{i=1}^{N(\eta)} \operatorname{sgn} |D+F(\phi_i)| \right] e^{-\sum_n |\eta_n|^2}. \end{split}$$

$$\Rightarrow \quad \langle \mathcal{O} \rangle = \frac{\left\langle \sum_{i=1}^{N(\eta)} \mathcal{O}(\phi_i) \operatorname{sgn} | D + F(\phi_i) | \right\rangle_{\eta}}{\left\langle \sum_{i=1}^{N(\eta)} \operatorname{sgn} | D + F(\phi_i) | \right\rangle_{\eta}}, \qquad \text{where } \langle X \rangle_{\eta} \equiv \frac{\int \mathcal{D}\eta \mathcal{D}\eta^* X \, e^{-\sum_n |\eta_n|^2}}{\int \mathcal{D}\eta \mathcal{D}\eta^* \underbrace{e^{-\sum_n |\eta_n|^2}}_{\text{positive}}}.$$

Using this expression, we calculated the susceptibility $\chi = \int d^2x \langle \phi(x)\phi^*(0) \rangle$.

Algorithm

$$\langle \mathcal{O} \rangle = \frac{\left\langle \sum_{i=1}^{N(\eta)} \mathcal{O}(\phi_i) \operatorname{sgn} | D + F(\phi_i) | \right\rangle_{\eta}}{\left\langle \sum_{i=1}^{N(\eta)} \operatorname{sgn} | D + F(\phi_i) | \right\rangle_{\eta}} \xrightarrow{a \to 0} \text{ Witten index } \Delta = 2 \text{ (cubic potential)}$$

where
$$\begin{cases} \langle X \rangle_{\eta} \equiv \frac{\int \left(\prod_{n} d\eta_{n} d\eta_{n}^{*} \right) X(\eta) e^{-\sum_{x} |\eta|^{2}}}{\int \left(\prod_{n} d\eta_{n} d\eta_{n}^{*} \right) e^{-\sum_{x} |\eta|^{2}}} \\ N(\eta) \text{ counts the solutions of the Nicolai map } \phi_{1}, ..., \phi_{N(\eta)} \\ \eta = W' + (\phi - \frac{a}{2}W')T + (\phi^{*} - \frac{a}{2}W^{*\prime})(S_{1} + iS_{2}) \end{cases}$$

- 1. Assigning $\{\eta, \eta^*\}$ as the standard normal distribution,
- 2. Solving the Nicolai map by the Newton-Raphson algorithm,
- 3. We sample the configurations of $\{\phi, \phi^*\}$.

advantage	no sign problem, no autocorrelation
difficulty	$\dots N(\eta)$

Tests for the configurations

$$\langle \sum_{i=1}^{N(\eta)} \operatorname{sgn} | D + F | \rangle_{\eta} \xrightarrow{a \to 0}$$
 Witten index $\Delta = 2$ (cubic potential)

Why Witten index ?

 $\rightarrow \mathsf{P.B.C.} \quad \& \quad \mathsf{For} \ W(\Phi) = \frac{m}{2} \Phi^2 \ (\Delta = 1), \ (\operatorname{Re} \eta, \operatorname{Im} \eta) = (\operatorname{Re} \phi, \operatorname{Im} \phi) \left(D + m(1 - \frac{a}{2}D) \right)$ $\rightarrow \text{ correctly normalized}$

Ward identity for $\langle \eta(x_1) \cdots \eta(x_m) \eta^*(y_1) \cdots \eta^*(y_n) \rangle$ on the lattice

From $Q\psi_+ = -\eta^*$, $Q\psi_- = -\eta$, $Q\eta = \frac{\delta}{\delta\psi_+}S_{lat.}$, $Q\eta^* = \frac{\delta}{\delta\psi_-}S_{lat.}$, $\langle Q(\cdots)\rangle = 0$, and the Schwinger-Dyson eq.,

$$\frac{\left\langle \eta(x_1)\cdots\eta^*(y_n)\sum_{i=1}^{N(\eta)}\operatorname{sgn}|D+F|\right\rangle_{\eta}}{\left\langle \sum_{i=1}^{N(\eta)}\operatorname{sgn}|D+F|\right\rangle_{\eta}} = \begin{cases} 0 & m\neq n\\ \sum_{\sigma}\Pi_{k=1}^m\delta_{x_k,y_{\sigma(k)}} & m=n. \end{cases}$$

For example, m = n = 1 provides $\sum_{x} \langle \eta(x) \eta^*(x) \rangle = \langle S_B \rangle = L^2$.

$$\Rightarrow$$
 If $\sum_{i=1}^{N(\eta)} \operatorname{sgn} |D + F| = 2$ over the η , OK.

4 Numerical Results

Samples with $W(\Phi) = \frac{\lambda}{3} \Phi^3$, $a\lambda = 0.3$, L = 18, 20, ..., 32

(Newton iter. from 100 initial config. for each noise) × 320 noises

L	18	20	22	24	26	28	30	32	test
(+, +)	316	319	319	316	316	314	307	316	$\sum \operatorname{sorn} D + F - 2$
(-,+,+,+)	3	0	1	3	4	6	10	4	
(+)	1	1	0	0	0	0	1	0	\checkmark $\sum \text{sgn} D + F \neq 2$
(+, +, +)	0	0	0	1	0	0	2	0	,but rare.
Δ	1.997	1.997	2	2.003	2	2	1.994	2	- ,
δ [%]	0.3	0.0	0.1	0.4	0.4	0.4	0.4	0.2	_

$$\Delta$$
 ... Witten index, δ ... $rac{\langle S_B
angle - L^2}{L^2}$ (a Ward identity)

For 99% noises, $\sum_{i=1}^{N(\eta)} {\rm sgn}\; |D+F|=2$

Witten index $\Delta = 2$ and Ward identities are well reproduced.

Susceptibility: $\chi_{\phi} \equiv \sum_{x \geq 3} \langle \phi(x)\phi(0) \rangle$ $W(\Phi) = \frac{\lambda}{3}\Phi^3$, $a\lambda = 0.3$, L = 18, 20, ..., 32

consistent with the conjecture $\chi_\phi \propto V^{0.666...}$

5 Summary and future plan

Summary

- We observed $\chi = \int_V dx^2 \langle \phi(x) \phi^*(0) \rangle$ in the cubic potential case, and got the consistent result with the conjecture $\chi \sim V^{0.666...}$.
- We also extracted the effective coupling constant K of the Gaussian model, and obtained $K = 0.242 \pm 0.010$ which is consistent with the $\mathcal{N} = 2$ SUSY point $K = \frac{3}{4\pi} = 0.238...$ This implies the restoration of all supersymmetries in the IR. (see more detail in arXiv:1005.4671)

Future Plan

• further check of the A-D-E classification:

$$\begin{split} W &= \Phi^4 & \to A_3 \text{ model ?} \\ & \Phi^3 + \Phi'^4 & \to E_6 = A_2 \otimes A_3 \text{ model ?} \\ & \Phi^2 + \Phi \Phi'^2 & \to D_3 \text{ model ?, ...} \end{split}$$

- $\bullet~$ c-function $\rightarrow~$ central charge, c-theorem
- 2d $\mathcal{N} = 1$ LG model with $W \propto \Phi^3$ ($\stackrel{\text{infrared}}{\rightarrow}$ tricritical ising model) \Rightarrow dynamical SUSY breaking

Appendix

Lattice formulation of WZ model

continuum theory

$$\begin{split} S_{cont.} &= Q \int d^2 x_E \bigg[-H\psi_- + 2\psi_+ \bar{\partial}\phi^* - W'\psi_+ - W^{*\prime}\psi_- \bigg] \\ &= \int d^2 x_E \bigg[\partial_\mu \phi^* \partial_\mu \phi + |W'|^2 + \bar{\psi} \big(\gamma_\mu \partial_\mu + W'' \frac{1+\gamma_3}{2} + W^{*\prime\prime} \frac{1-\gamma_3}{2} \big) \psi \bigg], \quad H \text{-onshell.} \end{split}$$

<u>notation</u>

$$\begin{split} \gamma_{1} &= \sigma_{3}, \, \gamma_{2} = -\sigma_{2}, \, \gamma_{3} = -i\gamma_{1}\gamma_{2} = \sigma_{1}, \\ \psi &= \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}, \, \bar{\psi} = (\bar{\psi}_{1}, \bar{\psi}_{2}), \, \psi_{\pm} = \frac{1}{\sqrt{2}}(\psi_{1} \pm \psi_{2}), \, \bar{\psi}_{\pm} = \frac{1}{\sqrt{2}}(\bar{\psi}_{1} \mp \bar{\psi}_{2}), \, \partial = \frac{1}{2}(\partial_{1} - i\partial_{2}) \text{ and} \\ Q^{2} &= 0 \begin{cases} Q\phi = -\bar{\psi}_{-}, & Q\phi^{*} = -\bar{\psi}_{+}, & Q\bar{\psi}_{\pm} = 0, \\ Q\psi_{+} = 2\partial\phi + H, & Q\psi_{-} = 2\bar{\partial}\phi^{*} + H^{*}, & \Rightarrow QS_{cont.} = Q^{2} \int (\cdots) = 0. \\ QH = 2\partial\bar{\psi}_{-}, & QH^{*} = 2\bar{\partial}\bar{\psi}_{+}, \end{cases}$$

symmetry

SO(2), translation,
$$\mathcal{N} = 2$$
 SUSY,
 $U(1)_V$, $U(1)_R \ \left(\phi \to e^{-2i\alpha}\phi, \ \psi \to e^{i\alpha\gamma_3}\psi, \ \bar{\psi} \to \bar{\psi}e^{i\alpha\gamma_3}\right)$ for $W = \frac{\lambda}{3}\phi^3$

lattice theory '02 Kikukawa-Nakayama cf. '83 Sakai-Sakamoto, '09 Kadoh-Suzuki $S_{lat.} \equiv Q \sum_{n} a^{2} \left[-H\psi_{-} + \psi_{+} \left(-T\phi + (S_{1} + iS_{2})\phi^{*} \right) - W'\hat{\psi}_{+} - W^{*'}\hat{\psi}_{-} \right]$ $= a^{2} \sum_{n} \left[\phi^{*} \frac{2T}{a} \phi + W'^{*} (1 - \frac{aT}{2})W' + \left(W'(-S_{1} + iS_{2})\phi + c.c. \right) + \bar{\psi} \left(D + \frac{1 + \gamma_{3}}{2} W'' \frac{1 + \gamma_{3}}{2} + \frac{1 - \gamma_{3}}{2} W''^{*} \frac{1 - \gamma_{3}}{2} \right) \psi \right], \quad H\text{-onshell.}$

$$\begin{split} D &= \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], \qquad X = 1 - \frac{a}{2} \left[\gamma_{\mu} (\nabla_{\mu}^{+} - \nabla_{\mu}^{-}) - a \nabla_{\mu}^{+} \nabla_{\mu}^{-} \right] \\ D \hat{\gamma}_{3} &+ \gamma_{3} D = 0 \text{ with } \hat{\gamma}_{3} = \gamma_{3} (1 - a D). \end{split}$$

notation

$$\begin{split} D &= T + \gamma_1 S_1 + \gamma_2 S_2, \quad \hat{\psi}_{\pm} = \frac{1}{\sqrt{2}} (1, \pm 1) \frac{1 \pm \hat{\gamma}_3}{2} \psi \text{ and} \\ Q^2 &= 0 \ \begin{cases} Q\phi = -\bar{\psi}_-, \quad Q\phi^* = -\bar{\psi}_+, \quad Q\bar{\psi}_{\pm} = 0, \\ Q\psi_+ = -T\phi^* + (S_1 - iS_2)\phi + H, \quad Q\psi_- = -T\phi + (S_1 + iS_2)\phi^* + H^*, \\ QH &= -T\bar{\psi}_+ + (S_1 - iS_2)\bar{\psi}_-, \quad QH^* = -T\bar{\psi}_- + (S_1 + iS_2)\bar{\psi}_+. \end{split}$$

symmetry

a-translation, one SUSY Q, $U(1)_V$, $Z_{3R} \left(\phi \to e^{-2i\alpha} \phi, \ \psi \to e^{i\alpha \hat{\gamma}_3} \psi, \ \bar{\psi} \to \bar{\psi} e^{i\alpha \gamma_3}, \ \alpha = \frac{n\pi}{3}, n \in \mathbf{Z} \right)$ for $W = \frac{\lambda}{3} \phi^3$. Desired continuum limit is achieved by $a \rightarrow 0$ without extra fine-tunings.

redefinition: $\varphi \equiv \lambda \phi = (\text{mass})^1$, $\chi \equiv \lambda \psi = (\text{mass})^{\frac{3}{2}}$, $\bar{\chi} \equiv \lambda \bar{\psi} = (\text{mass})^{\frac{3}{2}}$.

$$S_{lat.} = \frac{1}{\lambda^2} a^2 \sum_n \left[\varphi^* \frac{2T}{a} \varphi + \varphi^{*2} \left(1 - \frac{aT}{2} \right) \varphi^2 + \left(\varphi^2 (-S_1 + iS_2) \varphi + c.c. \right) \right]$$
$$+ \bar{\chi} \left(D + \frac{1 + \gamma_3}{2} \varphi^2 \frac{1 + \hat{\gamma_3}}{2} + \frac{1 - \gamma_3}{2} \varphi^{*2} \frac{1 - \hat{\gamma_3}}{2} \right) \chi \right]$$
same role as \hbar

A radiative correction is

 δ

$$S = \frac{1}{\lambda^2} \int d^2 C \mathcal{O}(\varphi, \chi)$$

counting the number of loops l as \hbar
 $\Rightarrow \quad \text{If } \mathcal{O} \text{ has } (\text{mass})^p,$

$$C = a^{p-4} \sum_{l=0}^{\infty} c_l (a^2 \lambda^2)^l \qquad \stackrel{a \to 0}{\to} \underbrace{a^{p-4} c_0}_{\text{tree}} + a^{p-2} c_1 \lambda^2 + a^p c_2 \lambda^4.$$

 \Rightarrow We have to consider $p \leq 2$.

 $\mathcal{O}_{p\leq 2}$ which preserves Z_{3R} and fermion number are a *const.* and $\varphi^*\varphi$. But the *const.* has no effect and $\varphi^*\varphi$ is forbidden by the SUSY Q.

 \Rightarrow no extra fine-tunings.

Further Support

It is possible to construct the $\mathcal{N}=2$, c=1 SCA by the Gaussian model:

$$S_G = \frac{K}{2} \int d^2 x \,\partial_\mu X \,\partial_\mu X, \qquad X \sim X + 2\pi, \qquad K = \frac{1}{12\pi}, \frac{3}{4\pi}.$$

$$T_{
m B}(z)$$

EOM $\partial \bar{\partial} X = 0$ allows $X(z, \bar{z}) = X^L(z) + \theta^R(\bar{z}), \ \langle X^L(z) X^L(0) \rangle = -\frac{1}{4\pi K} \ln z.$ Then $T_{\rm B}(z) = -2\pi K : (\partial X^L(z))^2 :, \quad T_{\rm B}(z) T_{\rm B}(0) \sim \frac{1}{2} \frac{1}{z^4} \ (\Rightarrow c = 1).$

$$\frac{G^{\pm}(z)}{X^{L}(z)} \equiv \frac{1}{\sqrt{4\pi K}} \bigg[q - ia_0 \ln z + i \sum_{n \neq 0} \frac{a_n}{n} z^{-n} \bigg], \quad X^{R}(\bar{z}) \equiv \frac{1}{\sqrt{4\pi K}} \bigg[\bar{q} - i\bar{a}_0 \ln \bar{z} + i \sum_{n \neq 0} \frac{\bar{a}_n}{n} \bar{z}^{-n} \bigg].$$

where a_n satisfies the U(1), k = 1 Kac-Moody algebra.

$$[a_n, a_m] = n\delta_{n+m,0}, \quad [a_0, q] = -i, [\bar{a}_n, \bar{a}_m] = n\delta_{n+m,0}, \quad [\bar{a}_0, \bar{q}] = -i.$$

Then, at only $K = \frac{1}{12\pi}$, $\frac{3}{4\pi}$, there are two operators of $(h, \bar{h}) = (\frac{3}{2}, 0)$: $G^{\pm}(z) = e^{\pm 3iX^{L}(z)}$

 \Rightarrow These $T_{\rm B}(z)$, $G^{\pm}(z)$, a_n construct the complete $\mathcal{N}=2$, c=1 SCA.

On the other hand, in the $\mathcal{N}=2$ LG model ...

 $W \propto \Phi^3$ should provide the $\mathcal{N}=2$, c=1 minimal model.

If one writes $\phi = |\phi|e^{i\theta}$, the R-symmetry is $\theta \to \theta + const.$, which is not to be broken. (Coleman)

 \Rightarrow It is natural to identify θ as X in the IR.

 \Rightarrow If this scenario works, the R-charge suggests $K = \frac{3}{4\pi}$.

$$\Rightarrow \chi_{\theta} \equiv \int \mathrm{d}^2 x \langle e^{i\theta(x)} e^{-i\theta(0)} \rangle \sim V^{1 - \frac{1}{4\pi K}}, \qquad K = \frac{3}{4\pi} = 0.238...$$

So we also observed this χ_{θ} and K to provide the further support for the conjecture.

Susceptibility: $\chi_{\theta} \equiv \sum_{x \geq 3} \langle e^{i\theta(x)} e^{-i\theta(0)} \rangle$

$$W(\Phi) = \frac{\lambda}{3}\Phi^3$$
, $a\lambda = 0.3$, $L = 18, 20, ..., 32$

 $\chi_{\theta} \propto V^{0.671 \pm 0.014}$, $K = 0.242 \pm 0.010$ consistent with the conjecture K = 0.238...