Two-dimensional lattice for four-dimensional N =4 supersymmetric Yang-Mills

~ Hybrid Discretization ~

So Matsuura Keio University

Based on collaboration with M.Hanada and F.Sugino arXiv:1004.5513

2010/7/23

§1 Introduction

Supersymmetric Gauge Theory

- Natural extension of flat space-time. (philosophical importance)
- Necessary to unify the interactions. (phenomenological importance)
- Exact results in quantum field theory. (theoretical importance) (Seiberg-Witten theory, Dijkgraaf-Vafa theory, Nekrasov's formula, etc...)
- Gauge/Gravity duality
- Connection to superstring theory

We need non-perturbative analysis.

Possible two ways for non-perturbative analysis

1. SUSY algebra

- strong algebraic constraint by supersymmetry
- exact analysis (Seiberg-Witten, Dijkgraaf-Vafa, Nekrasov's formula etc...)

Powerful enough to get exact results

but

We can see (usually) only a part of the theory.

2. Numerical computation by **non-perturbative regularization** Typical example: Lattice QCD

Once SUSY gauge theory is regularized non-perturbatively • • •

① We can compute any physical quantity numerically in principle.

② We obtain a "definition" of the theory.

<u>Difficulty</u>

It is difficult to keep *all* supersymmetry on a lattice.

We do not have enough symmetry to single out the continuum theory.

Especially for 4d theory, we need many fine tunings to take the continuum limit. (almost impossible to carry it out)

non-perturbative formulations for SUSY gauge theories

1) 1d theories (matrix quantum mechanics)

- lattice formulations S. Catterall, T. Wiseman (2008)
- non-lattice formulations (momentum cutoff)

2) 2d theories

- Sugino's lattice model for
 - ✓ N=(2,2), (4,4) SYM F. Sugino (2002-2005)
 - ✓ N=(2,2) theory with matter F. Sugino (2008)
- Suzuki-Taniguchi lattice model for N=(2,2) SYM H.

H. Suzuki, Y. Taniguchi (2005)

2d N=(8,8) theory (matrix string theory) is missing.

3) 3d theories

- lattice formulation for 3d N=1 SYM N. Maru, J. Nishimura (1997)
- 3d N=8 SYM on $R \times fuzzy S^2$

4) 4d theories

- J.M. Maldacena, M.M. Sheikh-Jabbari, M. Van Raamsdonk (2003)
- lattice formulation for N=1 pure SYM e.g. J. Nishimura (1997)
- 4d large N (planar) N=4 SYM on $R \times S^3$

T. Ishii, G. Ishiki, S. Shimasaki, A. Tsuchiya (2008)

M. Hanada, J. Nishimura, S. Takeuchi (2007)

4d N=2 and 4 SYM with finite rank gauge group is missing.

In this talk, I will give

1. a new lattice formulation for 2d N=(8,8) U(N) SYM (matrix string theory)

 a possible scenario to obtain 4d N=4 U(k) SYM from fuzzy S² background of the 2d lattice theory.

Plan of this talk

- §1 Introduction
- § 2 Continuum 2d N=(8,8) SYM theory
- § 3 Plane-wave like mass deformation
- 4 Lattice formulation of the mass deformed 2d N=(8,8) SYM
- § 5 A scenario to obtain 4d N=4 U(k) SYM theory

§6 Conclusion

§ 2 continuum 2d N=(8,8) SYM

Euclidean action

$$\frac{1}{S_0} = \frac{2}{g_{2d}^2} \int d^2 x \, Tr \left(\frac{1}{2} F_{12}^2 + \frac{1}{2} \left(D_\mu X^I \right)^2 - \frac{1}{4} [X^I, X^J]^2 + \frac{1}{2} \Psi^T (D_1 + \gamma_2 D_2) \Psi + \frac{i}{2} \Psi^T \gamma_I [X^I, \Psi] \right)$$

where $\mu = 1, 2, I, J = 3, 4, \cdots, 10.$

	fields	 4_μ : gauge field K^I : 8 scalar fields Ψ : 16-component spinor 	$\begin{array}{c} 2 \text{ SUSY } Q_{\pm} \\ and \\ SU(2)_R \end{array}$
(symmetries	16 supersymmetries	become manifest

16 supersymmetries SO(8) R-symmetry

2010/7/23

Ffield redefinition (BTFT form)

$$X^{I} \implies \begin{cases} X_{i} & (i = 3, 4) \\ B_{A} & (A = 1, 2, 3) \\ C, \phi_{+}, \phi_{-} \end{cases} \qquad \Psi \implies \begin{cases} \psi_{+\mu}, \rho_{+i}, \chi_{+A}, \eta_{+} \\ \psi_{-\mu}, \rho_{-i}, \chi_{-A}, \eta_{-} \end{cases}$$

$$\begin{pmatrix} \psi_{+\mu} \\ \psi_{-\mu} \end{pmatrix}$$
, $\begin{pmatrix} \chi_{+A} \\ \chi_{-A} \end{pmatrix}$, $\begin{pmatrix} \eta_{+} \\ -\eta_{-} \end{pmatrix}$, $\begin{pmatrix} Q_{+} \\ Q_{-} \end{pmatrix}$: SU(2) doublets

$$Q_{\pm}A_{\mu} = \psi_{\pm\mu}, \quad Q_{\pm}\psi_{\pm\mu} = \pm iD_{\mu}\phi_{\pm}, \quad Q_{\mp}\psi_{\pm\mu} = \frac{i}{2}D_{\mu}C \mp \tilde{H}_{\mu}, \\ Q_{\pm}\tilde{H}_{\mu} = [\phi_{\pm}, \psi_{\mp\mu}] \mp \frac{1}{2}[C, \psi_{\pm\mu}] \mp \frac{i}{2}D_{\mu}\eta_{\pm}, \\ Q_{\pm}X_{i} = \rho_{\pm i}, \quad Q_{\pm}\rho_{\pm i} = \mp [X_{i}, \phi_{\pm}], \quad Q_{\mp}\rho_{\pm i} = -\frac{1}{2}[X_{i}, C] \mp \tilde{h}_{i}, \\ Q_{\pm}\tilde{h}_{i} = [\phi_{\pm}, \rho_{\mp i}] \mp \frac{1}{2}[C, \rho_{\pm i}] \pm \frac{1}{2}[X_{i}, \eta_{\pm}], \\ Q_{\pm}B_{A} = \chi_{\pm A}, \quad Q_{\pm}\chi_{\pm A} = \pm [\phi_{\pm}, B_{A}], \quad Q_{\mp}\chi_{\pm A} = -\frac{1}{2}[B_{A}, C] \mp H_{A}, \\ Q_{\pm}H_{A} = [\phi_{\pm}, \chi_{\mp A}] \pm \frac{1}{2}[B_{A}, \eta_{\pm}] \mp \frac{1}{2}[C, \chi_{\pm A}], \\ Q_{\pm}C = \eta_{\pm}, \quad Q_{\pm}\eta_{\pm} = \pm [\phi_{\pm}, C], \quad Q_{\mp}\eta_{\pm} = \mp [\phi_{\pm}, \phi_{-}], \\ Q_{\pm}\phi_{\pm} = 0, \quad Q_{\mp}\phi_{\pm} = \mp \eta_{\pm}. \end{cases}$$

TIP WORKShop

 $\begin{pmatrix} \phi_+ \\ C \end{pmatrix}$: SU(2) triplet

 $-\phi_{-}$

$$S_0 = Q_+ Q_- \mathcal{F}^{(0)}$$

$$\mathcal{F}^{(0)} = \frac{1}{g_{2d}^2} \int d^2 x \, \text{Tr} \Big\{ -iB_A \Phi_A - \frac{1}{3} \epsilon_{ABC} B_A [B_B, B_C] \\ -\psi_{+\mu} \psi_{-\mu} - \rho_{+i} \rho_{-i} - \chi_{+A} \chi_{-A} - \frac{1}{4} \eta_+ \eta_- \Big\},$$

where

$$\Phi_1 = 2(-D_1X_3 - D_2X_4), \quad \Phi_2 = 2(-D_1X_4 + D_2X_3),$$

$$\Phi_3 = 2(-F_{12} + i[X_3, X_4])$$

2010/7/23

§ 3 Plane-wave like mass deformation

We deform the theory s.t.

(1) Q_{\pm} and $SU(2)_R$ are still symmetries of the deformed theory

2 add **mass terms** to all scalars

③ add a **Myers term** to the triplet (ϕ , $\overline{\phi}$, C)

STEP 1: deform Q_{\pm} SUSY as

$$(A) \begin{cases} Q_{\pm}A_{\mu} = \psi_{\pm\mu}, \quad Q_{\pm}\psi_{\pm\mu} = \pm iD_{\mu}\phi_{\pm}, \quad Q_{\mp}\psi_{\pm\mu} = \frac{i}{2}D_{\mu}C \mp \tilde{H}_{\mu}, \\ Q_{\pm}\tilde{H}_{\mu} = [\phi_{\pm}, \psi_{\mp\mu}] \mp \frac{1}{2}[C, \psi_{\pm\mu}] \mp \frac{i}{2}D_{\mu}\eta_{\pm} + \frac{M}{3}\psi_{\pm\mu}, \\ (X) \begin{cases} Q_{\pm}X_{i} = \rho_{\pm i}, \quad Q_{\pm}\rho_{\pm i} = \mp [X_{i}, \phi_{\pm}], \quad Q_{\mp}\rho_{\pm i} = -\frac{1}{2}[X_{i}, C] \mp \tilde{h}_{i}, \\ Q_{\pm}\tilde{h}_{i} = [\phi_{\pm}, \rho_{\mp i}] \mp \frac{1}{2}[C, \rho_{\pm i}] \pm \frac{1}{2}[X_{i}, \eta_{\pm}] + \frac{M}{3}\rho_{\pm i}, \\ Q_{\pm}B_{A} = \chi_{\pm A}, \quad Q_{\pm}\chi_{\pm A} = \pm [\phi_{\pm}, B_{A}], \quad Q_{\mp}\chi_{\pm A} = -\frac{1}{2}[B_{A}, C] \mp H_{A}, \\ Q_{\pm}H_{A} = [\phi_{\pm}, \chi_{\mp A}] \pm \frac{1}{2}[B_{A}, \eta_{\pm}] \mp \frac{1}{2}[C, \chi_{\pm A}], + \frac{M}{3}\chi_{\pm A} \\ (C) \begin{cases} Q_{\pm}C = \eta_{\pm}, \quad Q_{\pm}\eta_{\pm} = \pm [\phi_{\pm}, C] + \frac{2M}{3}\phi_{\pm}, \\ Q_{\mp}\eta_{\pm} = \mp [\phi_{\pm}, \phi_{-}] \pm \frac{M}{3}C, \quad Q_{\pm}\phi_{\pm} = 0, \quad Q_{\mp}\phi_{\pm} = \mp \eta_{\pm} \end{cases} \end{cases}$$

Nilpotency

 $Q_{\pm}^2 = (\text{infinitisimal gauge transformation by } \pm \phi_{\pm}) \pm \frac{M}{3}J_{\pm\pm},$

 $\{Q_+, Q_-\} = (\text{infinitisimal gauge transformation by C}) - \frac{M}{3} J_0.$

STEP 2: add mass terms

$$S = \left(Q_{+}Q_{-} - \frac{M}{3}\right)\left(\mathcal{F}_{0} + \Delta\mathcal{F}\right) = S_{0} + \Delta S$$

$$\Delta\mathcal{F} = \frac{1}{g_{2d}^{2}}\int d^{2}x \operatorname{Tr}\left[\sum_{A=1}^{3} \frac{a_{A}}{2}B_{A}^{2} + \sum_{i=3}^{4} \frac{c_{i}}{2}X_{i}^{2}\right]$$

$$\Delta S = \frac{1}{g_{2d}^{2}}\int d^{2}x \operatorname{Tr}\left\{\frac{2M^{2}}{81}\left(B_{A}^{2} + X_{i}^{2}\right) - \frac{M}{2}C[\phi_{+}, \phi_{-}] + \frac{M^{2}}{9}\left(\frac{C^{2}}{4} + \phi_{+}\phi_{-}\right) + \frac{2M}{3}\psi_{+\mu}\psi_{-\mu} + \frac{2M}{9}\rho_{+i}\rho_{-i} + \frac{4M}{9}\chi_{+A}\chi_{-A} - \frac{M}{6}\eta_{+}\eta_{-} - \frac{4iM}{9}B_{3}\left(F_{12} + i[X_{3}, X_{4}]\right)\right\}.$$

N.B

- S is Q_{\pm} invariant: $Q_{\pm} S = 0$.
- When $a_A, c_i \in (-\frac{2M}{3}, 0)$, the scalars B_A, X_i have positive mass terms.

We set $a_1 = a_2 = a_3 = -\frac{2M}{9}$, $c_3 = c_4 = -\frac{4M}{9}$ in order to cancel as many terms as possible.

Important result

(1) fuzzy S^2 is a classical configuration

$$[\phi_+, \phi_-] = \frac{M}{3}C, \quad [C, \phi_\pm] = \pm \frac{2M}{3}\phi_\pm, \quad B_A = X_i = 0$$

2 There is no scalar flat direction after the deformation.

N.B

- This configuration is Q_{\pm} -invariant: $Q_{\pm}\eta_{\pm} = \pm [\phi_{\pm}, C] + \frac{2M}{3}\phi_{\pm}, \quad Q_{\mp}\eta_{\pm} = \mp [\phi_{+}, \phi_{-}] \pm \frac{M}{3}C,$
- This deformation **softly** breaks the other 14 of 16 supersymmetries.

Q_{\pm} -exact form of the continuum action

Lattice Action in *Q*_±-exact form

2010/7/23

Obtained lattice action:

 $||A|| \equiv \sqrt{Tr(AA^{\dagger})}$

$$S_{\text{lat}} = \begin{cases} \left(Q_{+}Q_{-} - \frac{M_{0}}{3}\right)\mathcal{F}_{\text{lat}} & ||1 - U_{12}(x)|| < \epsilon \text{ for any } x \\ +\infty & \text{otherwise} \end{cases}$$

$$Trivial latticization of \mathcal{F} : \qquad \text{necessary to single out} \\ \frac{1}{g_{2d}^{2}} \int d^{2}x \rightarrow \frac{1}{g_{0}^{2}} \sum_{x}, \quad M \rightarrow M_{0} \end{cases}$$

$$recessary to single out the trivial vacuum \\ frivial vacuum \\ \mathcal{F}^{(0)} = \frac{1}{g_{2d}^{2}} \int d^{2}x \operatorname{Tr} \left\{ -iB_{A}\Phi_{A} - \frac{1}{3}\epsilon_{ABC}B_{A}[B_{B}, B_{C}] - \psi_{+\mu}\psi_{-\mu} - \rho_{+i}\rho_{-i} - \chi_{+A}\chi_{-A} - \frac{1}{4}\eta_{+}\eta_{+} + \sum_{A=1}^{3} \frac{a_{A}}{2}B_{A}^{2} + \sum_{i=3}^{4} \frac{c_{i}}{2}X_{i}^{2} \right\}$$

This action clearly preserves Q_{\pm} supersymmetries.

2010/7/23

Important properties

① fuzzy sphere configuration is still classical configuration keeping Q_{\pm} :

(potential terms)
$$\ni \left(i[X_p(x), X_q(x)] + \frac{M_0}{3}\epsilon_{pqr}X_r(x)\right)^2$$

with $C = 2X_8$, $\phi_{\pm} = X_9 + iX_{10}$ (*p*, *q*, *r* = 8,9,10).

- ② The flat directions of the scalar fields are lifted up with keeping Q_{\pm} .
- ③ We do not need any fine tuning in taking 2d continuum limit:

We can show that all possible relevant and marginal operators are forbidden by the Q_{\pm} -symmetry and $SU(2)_R$ symmetry.

We can now simulate Matrix String Theory on computer! <u>N.B.</u>

We have to keep M finite in taking the continuum limit. We take $M \rightarrow 0$ after that.

§ 5 4d N=4 U(k) SYM theory

Let us recall **deformed continuum 2d theory R** The deformed theory has fuzzy sphere solution. **R** Let us set N = (2n + 1)k. If we expand the action around the solution, $C = \frac{2M_0}{3} \hat{L}_3 \otimes 1_k, \, \phi_{\pm} = \frac{M_0}{3} (\hat{L}_1 \pm i \hat{L}_2) \otimes 1_k$ we obtain 4d N=4 SYM on $\mathbb{R}^2 \times fuzzy S^2$. (UV cutoff = $nM \equiv \Lambda$, IR cutoff = M) • We can obtain the 2d continuum theory without any fine tuning from the lattice theory.

idea

- ✓ There is no problem in **step 1**.
- ✓ **Step 2** is OK at tree level.
- ✓ Only the problem is whether quantum corrections appear or not.

CLAIM: Any quantum correction disappears in STEP 2. that is We can obtain the 4d theory without any fine-tuning.

Radiative correction

Superficial degrees of divergence of a graph $D = 4 - E_B - \frac{3}{2}E_F$

 $E_B \cdots$ # of bosonic external lines $E_F \cdots$ # of fermionic external lines

The most severe UV divergences come from $E_B = 2 (\Lambda^2)$ (1-point function is forbidden by the Q_{\pm} symmetry.)

The deformation parameter M is IR origin and is soft in 4d sense.

possible structure of the divergent terms:

$$A \cdot \Lambda^2 + O\left(M^p \left(\log \frac{\Lambda}{M}\right)^q\right) \qquad (p, q = 1, 2, \cdots)$$

- The leading term is canceled because of the original 16 SUSY.
- The next leading terms vanish in the continuum limit:

$$M^p \left(\log \frac{\Lambda}{M} \right)^q \sim M^p (\log N)^q \to 0 \quad \text{since } M \propto N^{-\frac{1}{2}} \to 0.$$

We obtain 4d N=4 U(k) SYM on $\mathbb{R}^2 \times$ noncommutative \mathbb{R}^2 without any fine tuning !

point

FINAL STEP: Smooth commutative limit

In 4d N=4 SYM, it is believed that $\theta \rightarrow 0$ limit is smooth. Matusis-Susskind-Toumbas

If we believe this conjecture, we obtain commutative 4d N=4 SYM on \mathbb{R}^4 without any fine tuning!

§ 6 Conclusion and Future Works

- 1. We constructed a new lattice formulation of 2d N=(8,8) SYM theory(matrix string theory).
 - ✓ numerical approach to matrix string theory
 - ✓ application to black hole physics
- 2. We discuss a possible scenario to obtain 4d N=4 U(k) SYM from the 2d lattice theory.
 - We have to check the validity of the step 2 at least perturbatively.
 AdS/CFT beyond SUGRA level !
- 3. We can use the same method to regularized 4d N=2 SYM.
 - Many other applications to numerical analysis of SUSY gauge theories

Strategy

- ① Lattice gauge fields are on links: $A_{\mu}(x) \Rightarrow U_{\mu}(x) = e^{iaA_{\mu}}$ and all other fields are on sites.
- ② Make all the lattice fields and coupling constants dimensionless by

 $(\text{scalars})^{lat} = a(\text{scalars})^{\text{cont}}, \quad (\text{fermions})^{\text{lat}} = a^{\frac{3}{2}}(\text{fermions})^{\text{cont}}$ $Q_{\pm}^{lat} = a^{\frac{1}{2}}Q_{\pm}^{cont}, \quad g_0 \equiv ag_{2d}, \quad M_0 \equiv aM$

- ③ change the Q_{\pm} -transformation consistently.
- ④ The action is obtained through the Q-exact form of the continuum action.