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S 1 Introduction

Supersymmetric Gauge Theory

» Natural extension of flat space-time. (philosophical importance)
> Necessary to unify the interactions. (phenomenological importance)

> Exact results in quantum field theory. (theoretical importance)
(Seiberg-Witten theory, Dijkgraaf-Vafa theory, Nekrasov’s formula, etc...)

> Gauge/Gravity duality
» Connection to superstring theory

We need non-perturbative analysis.
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Possible two ways for non-perturbative analysis

1. SUSY algebra

* strong algebraic constraint by supersymmetry

 exact analysis (Seiberg-Witten, Dijkgraat-Vafa, Nekrasov’s formula etc...)

Powerful enough to get exact results
but

We can see (usually) only a part of the theory.
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2. Numerical computation by non-perturbative regularization
Typical example: Lattice QCD

Once SUSY gauge theory is regularized non-perturbatively * < -

@ We can compute any physical quantity numerically in principle.

@ We obtain a “definition” of the theory.
Difficulty

It is difficult to keep all supersymmetry on a lattice.

-

We do not have enough symmetry to single out the continuum theory.

-

Especially for 4d theory, we need many fine tunings to take the continuum limit.
(almost impossible to carry it out)
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non-perturbative formulations for SUSY gauge theories

1) 1d theories (matrix quantum mechanics)

e lattice formulations S- Catterall, T. Wiseman (2008)
* non-lattice formulations (momentum cutoff)

2) 2d theories M. Hanada, J. Nishimura, S. Takeuchi (2007)
* Sugino’s lattice model for
v N=(2,2), (4/4) SYM F. Sugino (2002-2005)
v’ N=(2,2) theory with matter F.Sugino (2008)
* Suzuki-Taniguchi lattice model for N=(2,2) SYM H. Suzuki, Y. Taniguchi (2005)
2d N=(8,8) theory (matrix string theory) is missing.
3) 3d theories

o Jattice formulationfor 3d N=1SYM N. Maru, J. Nishimura (1997)

« 3dN=8SYMonR X fuzzy S*
4) Aitheo oo J.M. Maldacena, M.M. Sheikh-Jabbari, M. Van Raamsdonk (2003)

* lattice formulation for N=1 pure SYM e ] Nishimura (1997)

* 4dlarge N (planar) N=4 SYM on R X §°
T. Ishii, G. Ishiki, S. Shimasaki, A. Tsuchiya (2008)

4d N=2 and 4 SYM with finite rank gauge group is missing.
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In this talk, I will give

1. anew lattice formulation for 2d N=(8,8)
U(N) SYM (matrix string theory)

2. a possible scenario to obtain 4d N=4 U(k)

SYM from fuzzy S* background of the 2d
lattice theory.
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Plan of this talk
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§ 2 continuum 2d N=(8,8) SYM

Euclidean action

2 1 1 R &
So =g_§dfd2x”” (EFlzz +§(DuXI) —Z[X‘I,X]]2

i

1
D ey D)Wy [ lp]) é“’

2 2
Where# = 1;2, IJ] = 314'1 ey 10. %
fields A, : gauge field
XT . 8 scalar fields 2SUSY Q.
¥ :16-component spinor and
SU(2)g
become manifest

symmetries 16 supersymmetries
SO(8) R-symmetry
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Ffield redefinition (BTET form)

1/’+,u110+i!)(+A:7?+

Xi (l - 3,4)
e — 0 G ) Ny {

Cirh- e
s 0 o
(), (™), [ %F) :SU(2) doublets ¢ |:SU(2) triplet
(V X—A —1)- Q- _o_
/Q:I:Au — T;b:l:JLL: Q:I:T,bzlzg — :I:?:quf’:i:: Q$¢’ip — ;D,U,C + H,U-a B \
- 1 I
Q+H, = [P+, ?J’%u-} + > C, @!’:I:,u} B %Duﬂ’?:l:a
1 _
QiX; = p+i. Quipyi = F[Xi,0+], Qxp+i= —E[X::a Cl F hy,
- 1 1 nilpotent
Q+h; = [p+.pi] T 5 [C, p+i] £ 5 [Xint]. . - up to
QtBa=xxa, Qixza = *lp2,Bal. Qzxza = —3[Ba,ClF Ha, gauge trans.
1 1
Q+H, = [P+, xzAl £ 5 [Ba,n+] F > [C, x+A],
Q+C =ns, Qint==*[¢+,Cl, Qnt=7F |¢p4.¢ |,
Q+P+ =0, Qxdtr = Fnz+. _ /
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Action in 0, 0_-exact form

s N\
0
So = Q. Q_F©
\_ J
}‘(0) — gi%d d2az Tr{—iBACI)A == %EABCBA[BBa BC]

1
— e = T — 177+77—}7

where

¢y =2(—D1 X3 — D3 Xy), Py =2(—D1X4+ D3X3),
(I)3 = 2(—F12 = i[X3, X4])
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§ 3 Plane-wave like mass deformation

We deform the theory s.t.

@ Q. and SU(2)p are still symmetries of the deformed theory
@ add mass terms to all scalars

@ add a Myers term to the triplet (¢, ¢, C)
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STEP 1: deform Q4+ SUSY as
A) {Q:I:Au =Yiy, @ity =TLiD,ody, Qxty, = %D“C =l

> 1 ) M
Oel, e e | o 3 [Cais ] =F —D;ﬂ?iﬂL??/&m

2
=5 1 =
G s = apn, = 28| e only O = —E[Xi, O E
b= 1 1 M
Q+hi = [¢+, p3i] F 5 € mei == 5 [ X, n+] +?p:|:i:
= 1
QLB = iy Gy = =mlbne B Ol — _§[BA7 C| ¥ Ha,
(B) 1 1 M
_Q:I:HA = [¢x, x74] £ 3 [Ba,n+) F 3 |Gt s
E Q:C =1y, Quin:==x[¢s,C] +%¢i,
(C) = M
_Q:Fni = F [¢4, 9] i?C, Q+9+ =0, Q+0+=Fns
Nilpotency
. M
Qi = rai | b+) £ 44,
{Q+:Q—}= _310
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STEP 2: add mass terms

S = (Q+Q_ = %) (Fo+ AF) = S+ AS

4 )
AF = —/deTr — B2 —X:
2 A 7
J2d A=1 2 i=3 2
\__ J
/ 1 2M? M M? (C? \
1 [ 2 oy _ M el Bl
L %7’& w + % . . % — %
3 -I—/J, — K 9 p+’bp—’& 9 X+AX—A 6 77-|-77—
43 M :
\ — TBs (Fi2 + [ X3, X4]) } /
N.B

* Sis Qi-invariant: Q4+ S = 0.

* Whenay,c; €
We set

2M
3

(_

as many terms as possible.
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Important result

@ fuzzy S* is a classical configuration

[¢+7¢—] = %07 [Ca ¢:|:] = i%¢ﬂ:a BA = Xz =0

@2 There is no scalar flat direction after the deformation.

N.B

* This configuration is Q-invariant:
2M M
Qe = £ (62, Cl+—-0s, Qne =F (¢4, ¢-|E5C,

* This deformation softly breaks the other 14 of 16 supersymmetries.

DOTO 725 YITP Workshop

14



§ 4 Lattice formulation of
the mass deformed 2d N=(8,8) SYM

Q .-exact form of the continuum action
Xi(x),Ba(X), Y4 (xX)etc...

Sugino’s construction }
of /
SUSY lattice é
Uy(x)
Lattice Action in @..-exact for
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Obtained lattice action: 14| = /Tr(AAT)

- D
(Q+Q- — 20) Fiat  ||1 — Ur2(w)|| < € for any =

Slat — .
+00 / otherwise \

- / \ J
Trivial latticization of F : necessary to single out
1 - 1 the trivial vacuum
= M — M,
2 2 ’
924 e
cf)
o _ 1 2 : 1 1
F = g_2 d°x TI'{ —ZBA(I)A— §€ABCBA[BB)BC] _¢+M¢—M_p+ip—i_X+AX—A_ 177_'_77_
2d

4

3
Y%+ 3 5]
A=1

=3

This action clearly preserves Q. supersymmetries.
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Important properties
@ fuzzy sphere configuration is still classical configuration keeping Q-

(potential terms) > (z'[Xp(a:), X, (z)] + %epqur(w))

With C - 2X8' (pi — Xg =5 inO (p, q,T' — 8,9,10).
@ The flat directions of the scalar fields are lifted up with keeping Q.
@ We do not need any fine tuning in taking 2d continuum limit:

We can show that all possible relevant and marginal
operators are forbidden by the Q;-symmetry and SU(2)z symmetry.

-

We can now simulate Matrix String Theory on computer!
N.B.

We have to keep M finite in taking the continuum limit.
We take M — 0 after that.
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§ 5 4d N=4 U(k) SYM theory

Let us recall deformed continuum 2d theory

R The deformed theory has fuzzy sphere solution.

R Letus set N = (2n + 1)k. If we expand the action
around the solution,

C =220 @ 1y, ¢y = 2 (Ly#ily) @ 1
we obtain 4d N=4 SYM on R? X fuzzy S>.

(UV cutoff =nM = A, IR cutoff = M)

R We can obtain the 2d continuum theory without any
fine tuning from the lattice theory.
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lattice step 1 2d continuum theory step 2 4d N=4 SYM

—— around —— on

theory I fuzzy sphere solution T R? X fuzzy R?

=

1
4d theory (M — 0,n - co with M ~ n 2)
with
momentum cutoff A = Mn
non-commutative parameter § = Mn?

continuum limit
of the lattice theory

A — oo with 6: fixed

v' There is no problem in step 1.
v’ Step 2is OK at tree level.
v Only the problem is whether quantum corrections appear or not.

CLAIM: Any quantum correction disappears in STEP 2.
that is
We can obtain the 4d theory without any fine-tuning.
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Radiative correction

Superficial degrees of divergence of a graph Ep--#of bOSOPiC ?xternal 11“?5
3 Ep -+ # of fermionic external lines
D=4- EB = EEF

The most severe UV divergences come from Eg = 2 (A%)
(1-point function is forbidden by the Q4 symmetry.)

@ The deformation parameter M is IR origin
and is soft in 4d sense.
possible structure of the divergent terms:

Ao ro(wr(ogf)')  Ga=12)

* The leading term is canceled because of the original 16 SUSY.
* The next leading terms vanish in the continuum limit:

1

A q
MP (logﬁ) ~ MP(logN)? >0  gsince M x N2 > 0.

We obtain 4d N=4 U(k) SYM on R? X noncommutative R?
without any fine tuning !
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FINAL STEP: Smooth commutative limit

In 4d N=4 SYM, it is believed that & — 0 limit is smooth.

Matusis-Susskind-Toumbas

If we believe this conjecture, we obtain commutative
4d N=4 SYM on R* without any fine tuning!
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§ 6 Conclusion and Future Works

1. We constructed a new lattice formulation of 2d N=(8,8) SYM
theory(matrix string theory).

v' numerical approach to matrix string theory
v' application to black hole physics

2. We discuss a possible scenario to obtain 4d N=4 U(k) SYM from the 2d
lattice theory.

v We have to check the validity of the step 2 at least perturbatively.
v' AdS/CFT beyond SUGRA level !

3. We can use the same method to regularized 4d N=2 SYM.

v Many other applications to numerical analysis of
SUSY gauge theories
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Strategy

@ Lattice gauge fields are on links: 4, (x) = U,(x) = e'*» and all
other fields are on sites.

@ Make all the lattice fields and coupling constants dimensionless

by
3
(scalars)'@ = g(scalars)®®Mt,  (fermions)!@t = aZ(fermions)cont
1
02— qgzogels Jo = ago4, M, = aM

@ change the Q-transformation consistently.

@ The action is obtained through the Q-exact form of the
continuum action.
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