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The main topic of this talk

We study the wall-crossing of one non-compact D4-brane with 
arbitrary numbers of D2/D0 on the resolved conifold.

The vacuum moduli are the Kahler moduli of the conifold.

We evaluate the partition function of D4/D2/D0 in various 
chambers in the moduli space by using the Kontsevich-Soibelman 
formula (KS-formula).

Type IIA  on  Calabi-Yau
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The compact 2-cycle is embeded in the 
4-cycle wrapped by the D4-brane

The compact 2-cycle is outside of the 
4-cycle wapped by the D4-brane

y = 0The point           is geometrically singular but the spectrum has no 
singularity if we tune the B-field for the compact 2-cycle.
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This is consistent with the fact that
decreases by one through the flop transition.

χ(C4)



 We have discussed the wall-crossing phenomena of D4/D2/D0 bound states 
on the resolved conifold.

 We considered one non-compact D4-brane and various numbers of D2/D0 
on it.

 We identified all walls of marginal stability.

 By moving the Kahler moduli,  we can consider the flop transition of the 
conifold through which the topology of the conifold is changed.

 We evaluate the partition function in all chambers by using the Kontsevich-
Soibelman wall-crossing formula.

 The result is completely consistent with the known facts about the field theory 
on D4-branes and the flop transition.

Summary



That‘s all for my presentation.

Thank you very much.


