Wall-Crossing of D4/D2/DO on the Conifold

( arXiv: 1007.2731 [hep-th] )

Takahiro Nishinaka
( Osaka U.)

(In collaboration with Satoshi Yamaguchi )




Introduction
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Recently, Kontsevich and Soibelman have Q(Q; t1)
proposed a wall-crossing formula that
tells us how the degeneracy changes at
the walls of marginal stability.
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The main topic of this talk

Type IIA _on Calabi-Yau

We study the wall-crossing of one non-compact D4 -brane with
arbitrary numbers of D2/DO on the resolved conifold.

The vacuum moduli are the Kahler moduli of the conifold.

We evaluate the partition function of D4/D2/DO in various
chambers in the moduli space by using the Kontsevich-Soibelman
formula (KS-formula).
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Two limits y — oo correspond to large 2-cycle limits.
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D4 -brane and flop

We put one D4 -brane on a non-compact 4-cycle z3 = 0

(1) In the case of y > 0 (2) In the case of y <0
The compact 2-cycle : z3 = z4 = 0 The compact 2-cycle : z1 = z2 = 0

flop transition

The compact 2-cycle is embeded in the  The compact 2-cycle is outside of the
4 -cycle wrapped by the D4 -brane 4 -cycle wapped by the D4 -brane

The point Y = 0 is geometrically singular but the spectrum has no
singularity if we tune the B-field for the compact 2-cycle.
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Walls of marginal stability

For a decay channel Q — Q1+ Q2 , the walls are defined by
arg[Z(Q)] = arg[Z(Q.1)] = arg[Z(Q2)]

The relevant walls are

D4 + kD2 4+ [DQ =3y {

central charges

D4 + (kF1)D2 + (I — n)DO
(£1)D2 + nDO

1 .
Z(D4 + kD2 + 1DO0) ~ —§A2627"P Z((£1)D2 4+ nD0) = £z +n
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| :
Z(D4 + kD2 + 1DO0) ~ —5A2ezw Z((£1)D2 + nD0) = £z +n

Walls of marginal stability are the subspace in the moduli space where these
two central charges are aligned, namely,

1
o = > arg[Fz —n)

These walls are labeled by (£1,n). So we denote them W,

wit owyt o owyt owgt |E
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We will do this by using the Kontsevich-Soibelman’s
wall-crossing formula.
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The product A depends on the moduli T in two ways, the degeneracy Q(Q;t)

and the order in the product depend on t .

KS-formula says that “nevertheless, the product A is independent of t !

We can read off the change in Q2(Qgps;t) from the invariance of A .
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Suppose that we move the moduli from Imz = oo to Im z = —oo as above.
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When the moduli is in the chamber between W' and W', ,
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(2) For Imz < 0, there are the walls of {Wg, Wi, ..., Wi'}.
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Suppose that we move the moduli from Imz = oo to Im z = —oo as above.
(1) For Imz > 0, there are the walls of {WZ',---, Wy ', Wi '},

When the moduli is in the chamber between W' and W', ,

= |
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(2) For Imz < 0, there are the walls of {Wg, Wi, ..., Wi'}.

When the moduli is in the chamber between ij' Yand WL,
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In particular, we obtain

(e e}

Z—oo(u’v) — Z—l‘oo(u” ’U) X 1:[l ( — u'v —1) H ]_ -— u"’fv)

where Z4o(u,v) denotes the partition function in the limit Im z = Foo.

These two limits correspond to the large P! limit in left and right hand side of
the following picture:

flop transition

Moveover, these two l[imits coinside with the attractor moduli of the MSW black holes,
where BPS microstates are counted in the field theory on D4-brane.

Actually, Z4oo(u,v) was already evaluated in a literature: (4 ,una4ic-0oguri-Saulina-vafa '04]

Zivoo(u,v) = f(u)(1 —v) [] (1 — u")( — wTv)(1 — u"v )
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independent of the chemical
potential for D2-branes !!

This is consistent with the fact that x(C4)
decreases by one through the flop transition.

f(u) ~ H(l ’") x(Cw)

o) = F@)(1 - ) [[ (1 - )1 = wro)1 = wo




Summary
= We have discussed the wall-crossing phenomena of D4/D2/DO bound states
on the resolved conifold.

= We considered one non-compact D4 -brane and various numbers of D2/DO
on It.

= We identified all walls of marginal stability.

= By moving the Kahler moduli, we can consider the flop transition of the
conifold through which the topology of the conifold is changed.

= We evaluate the partition function in all chambers by using the Kontsevich-
Soibelman wall-crossing formula.

" The result is completely consistent with the known facts about the field theory
on D4 -branes and the flop transition.




That's all for my presentation.

Thank you very much.



