Quarter BPS classified by Brauer algebra

Yusuke Kimura (Univ. of Oviedo)

arXiv:1002.2424 (JHEP1005(2010)103)

The problem of AdS/CFT

Map between string states and gauge invariant operators

$$\langle O_{\alpha}(x)^{\dagger} O_{\beta}(y) \rangle = \frac{c(1/N)\delta_{\alpha\beta}}{(x-y)^{2\Delta_{\alpha}(g,1/N)}}$$
 4D $\mathcal{N}=4$ SYM (CFT)

Scaling dimension of local operator = Energy (in global time) of string state

$$\Delta(\lambda, N) = E(R/l_s, g_s)$$

$$4\pi\lambda/N = g_s$$

$$\sqrt{\lambda} = R^2/\alpha'$$

The operator with the definite scaling dimension is a linear combination of the naive operators [operator mixing].

$$\hat{D}\tilde{O}_{\alpha} = \Delta_{\beta\alpha}\tilde{O}_{\beta} \qquad \left\langle \tilde{O}_{\alpha}(x)^{\dagger}\tilde{O}_{\beta}(y) \right\rangle = \frac{1}{(x-y)^{2\Delta_{0}}} \left(S_{\alpha\beta} + T_{\alpha\beta} \log |\Lambda x| \right)$$

Definite scaling dimension = Eigenstate of the dilataton operator.

Simplification at large *N* (planar theory)

Only single-traces (i.e. only the flavour structure should be taken care of.)

$$tr(XYYYYXX) \leftrightarrow \left|\downarrow\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\right\rangle$$

Dilatation operator = Hamiltonian of integrable system

$$D_{planar}^{(1-loop)} = \frac{\lambda}{8\pi^2} \sum_{i} \left(1 - P_{i,i+1}\right)$$

Diagonalisation of the hamiltonian of integrable system solves the mixing problem.

$$\Delta(\lambda, N) = E(R/l_s, g_s)$$

What to do if N is not big enough?

Operator mixing in the non-planar theory

holomorphic gauge inv. ops. built from two complex matrices, X, Y.

(This sector is closed in all order perturbation theory.)

$$D_{non-planar}^{(1-loop)} = -2tr\left(\left[X,Y\right]\left[\partial_{X},\partial_{Y}\right]\right) \qquad X = \Phi_{1} + i\Phi_{2}$$

$$Y = \Phi_{3} + i\Phi_{4}$$

$$Z = \Phi_{5} + i\Phi_{6}$$

--Example ----

$$O_{1} = tr(XXYY) \qquad O'_{1} = O_{1} - O_{2} \qquad O'_{3} = O_{2} - NO_{4} \qquad DO'_{1} = 12NO'_{1}$$

$$O_{2} = tr(XYXY) \qquad O'_{2} = O_{1} + \frac{N}{2}O_{4} \qquad O'_{4} = O_{3} + 2O_{4} \qquad DO'_{a} = 0 \qquad (a = 2, 3, 4)$$

$$O_{3} = tr(XX)tr(YY) \qquad O_{4} = tr(XY)tr(XY)$$

multi-trace

We will need a good method to organise gauge invariant operators of single traces and multi-traces.

Recall some important facts of the 1/2 BPS primary.

$$O_R(X) = tr_n \left(p_R X^{\otimes n} \right)$$
 Schur polynomial

$$p_{R} = \frac{d_{R}}{n!} \sum_{\sigma \in S_{n}} \chi_{R}(\sigma) \sigma$$

$$X_{j_1}^{i_1}X_{j_2}^{i_2}\cdots X_{j_n}^{i_n}$$

The upper indices are transformed as the product of the fundamental rep. of GL(N).

$$\left\langle O_R(X)^{\dagger} O_S(X) \right\rangle \propto \delta_{RS}$$

[Corley, Jevicki, Ramgoolam 01]

$$\left\langle X_{j}^{i}\left[x\right]X_{l}^{\dagger k}\left[y\right]\right\rangle_{0} = \delta_{l}^{i}\delta_{j}^{k}\frac{1}{\left(x-y\right)^{2}}$$

Multi-trace

_____ Single-trace

Representation basis

The trace structure can be conveniently encoded in the Young diagram.

Finite N constraint (\Rightarrow cut-off for angular momentum)

$$c_1(R) \leq N$$

$$tr(X^{3}) = \frac{3}{2}trXtr(X^{2}) - \frac{1}{2}(trX)^{3} \qquad (N = 2)$$

$$tr_3(p_{[1,1,1]}X^{\otimes 3}) = 0$$

Orthogonal (complete) at classical level

Representation basis seems to be a useful basis to organise gauge inv. operators when N is not large enough.

In this talk, I will study the mixing problem using a representation basis.

Construction of a representation basis for the *X-Y* sector

$$tr_{m.n}\left(\underbrace{P^{\gamma}X^{\otimes m}\otimes Y^{T\otimes n}}\right)$$
Projector associated with an irreducible rep. γ of $GL(N)$

The irreducible representation of GL(N):

$$\gamma = (\gamma_+, \gamma_-, k),$$

$$0 \le k \le \min(m, n), \quad \gamma_+ \mapsto (m - k), \quad \gamma_- \mapsto (n - k)$$

Roughly speaking, this *k* represents the mixing between *X* and *Y*.

(3,2)	γ_+	γ
k = 0	[3]	[2]
	[2, 1]	[2]
	[1, 1, 1]	[2]
	[3]	[1, 1]
	[2, 1]	[1, 1]
	[1, 1, 1]	[1, 1]
k = 1	[2]	[1]
	[1, 1]	[1]
k=2	[1]	Ø

See the example of the simplest case

$$N \otimes \overline{N} = (N^2 - 1) \oplus 1$$

$$X_{j_{1}}^{i_{1}}\left(Y^{T}\right)_{l_{1}}^{k_{1}} = X_{j_{1}}^{i_{1}}\left(Y^{T}\right)_{l_{1}}^{k_{1}} - \frac{1}{N}\delta^{i_{1}k_{1}}X_{j_{1}}^{m}\left(Y^{T}\right)_{l_{1}}^{m} + \frac{1}{N}\delta^{i_{1}k_{1}}X_{j_{1}}^{m}\left(Y^{T}\right)_{l_{1}}^{m}$$

$$O^{k=0} = trXtrY - \frac{1}{N}tr(XY)$$

$$k=0$$

$$k=1$$

In general, the k=0 have the following structure:

$$O_{R}\left(X\right)O_{S}\left(Y\right)+O\left(1/N\right)\cdots$$

$$O_{R}(X)=tr_{m}\left(p_{R}\cdot X^{\otimes m}\right), \quad O_{S}(Y)=tr_{n}\left(p_{S}\cdot Y^{\otimes n}\right)$$

Finite *N* constraint (stringy exclusion principle)

[YK-Ramgoolam 0709.2158]

$$tr_{m.n}\left(P^{\gamma}X^{\otimes m}\otimes Y^{T\otimes n}\right)$$

$$c_{1}(\gamma_{+})+c_{1}(\gamma_{-})\leq N$$

$$r_{+}\mapsto(m-k), \quad \gamma_{-}\mapsto(n-k)$$

$$tr_{m.n}\left(P^{\gamma(k=0,R,S)}X^{\otimes m}\otimes Y^{T\otimes n}\right)=tr_{m}\left(p_{R}X^{\otimes m}\right)tr_{n}\left(p_{S}Y^{\otimes m}\right)+\cdots$$

$$\gamma_{+}=R\mapsto m, \quad \gamma_{-}=S\mapsto n$$

$$r_{+}=R\mapsto m, \quad \gamma_{-}=S\mapsto n$$

This is stronger than the naively expected one : $c_1(R) \le N$, $c_1(S) \le N$

$$tr(X^{2}Y) = trXtrXY - \frac{1}{2}(trX)^{2}trY + tr(X^{2})trY \quad (N = 2)$$
$$tr_{2,1}(P_{[1,1][1]}X^{\otimes 2} \otimes Y^{T}) = 0$$

This would give a cut-off for the angular momentum of the composite system.

The one-loop mixing problem : to look for eigenstates of H.

$$\hat{H} \equiv tr([X,Y][\partial_X,\partial_Y])$$

Our goal will be to understand the mixing pattern in terms of Young diagrams.

It is not so easy in general, but we can find some eigenstates easily *based on the new language*.

Easy to find that the k=0 ops are annihilated by H:

$$(\partial_{X}\partial_{Y})_{pq}X_{j}^{i}Y_{l}^{Tk} = \underline{\delta_{ik}}\delta_{pj}\delta_{ql} \qquad CX_{j}^{i}Y_{l}^{Tk} = \underline{\delta_{ik}}X_{j}^{s}Y_{l}^{Ts}$$

$$(\partial_{Y}\partial_{X})_{pq}X_{j}^{i}Y_{k}^{Tk} = \underline{\delta_{jl}}\delta_{pk}\delta_{qi} \qquad X_{j}^{i}Y_{l}^{Tk}\tilde{C} = \underline{\delta_{jl}}X_{s}^{i}Y_{s}^{Tk}$$

$$\hat{H} \cdot tr_{m,n} \left(P^{\gamma(k=0)} X^{\otimes m} \otimes Y^{T \otimes n} \right) = 0 \qquad \qquad C \cdot P^{\gamma(k=0)} = 0$$

The other eigenstates

$$\begin{split} \hat{H} \cdot t r_{m,n} \left(P^{\gamma} X^{\otimes m} \otimes Y^{T \otimes n} \right) \\ &= \sum_{r,s} t r_{m,n} \left(\left[P^{\gamma}, C_{r,s} \right] X^{\otimes r-1} \otimes [X,Y] \otimes X^{\otimes m-r} \otimes Y^{T \otimes s-1} \otimes 1 \otimes Y^{T \otimes n-s} \right) \\ &= 0 \end{split}$$

$$C_{r,s}P^{\gamma} = P^{\gamma}C_{r,s}$$
 (Schur's lemma)

This is valid for any m, n, N.

$$\gamma = (\gamma_+, \gamma_-, k),$$

$$0 \le k \le \min(m, n), \quad \gamma_+ \mapsto (m - k), \quad \gamma_- \mapsto (n - k)$$

3Xs 2Ys

$$tr_{m.n}\left(P^{\gamma}X^{\otimes m}\otimes Y^{T\otimes n}\right)$$

The number of the operators is not enough to provide a complete set. A complete basis is given by

$$O_{A,ij}^{\gamma}(X,Y) \equiv tr_{m,n} \left(Q_{A,ij}^{\gamma} X^{\otimes m} \otimes (Y^T)^{\otimes n} \right) \qquad P^{\gamma} = \sum_{A,i} Q_{A,ii}^{\gamma}$$

$$\gamma_{+} \mapsto (m-k), \quad \gamma_{-} \mapsto (n-k) \quad R \mapsto m, \quad S \mapsto n \qquad M_{\gamma \to A} = \sum_{\delta \mapsto k} g\left(\gamma_{+}, \delta; R\right) g\left(\gamma_{-}, \delta; S\right)$$

$$A = (R,S)$$

$$\left\langle O_{A_1,i_1j_1}^{\gamma_1}(X,Y)^\dagger O_{A_2,i_2j_2}^{\gamma_2}(X,Y)
ight
angle_0 \propto \delta^{\gamma_1\gamma_2} \delta_{{}_{A_1A_2}} \delta_{{}_{i_1i_2}} \delta_{{}_{j_1j_2}}$$

[Orthogonality]

When k=0, i,j=1 and $\mathcal{Y}=A=(R,S)$.

$$Q_{A,ij}^{\gamma(k=0)} = P^{\gamma(k=0,\gamma_+,\gamma_-)} = P_{RS}$$

On the mixing pattern

An X and a Y are always combined after the action of the dilatation operator.

This means the k=0 operators can not appear as the image of the dilatation operator.

$$\hat{H} \cdot O^{k=0} = 0$$

$$\hat{H} \cdot O^{k\neq 0} = \sum_{k'\neq 0} O^{k'}$$

In this sense, the k=0 operators are not mixed with the other sectors $(k \neq 0)$.

$$\left\langle O^{\gamma(k=0)}(X,Y)^{\dagger}O_{A_{2},i_{2}j_{2}}^{\gamma_{2}(k\neq0)}(X,Y)\right\rangle_{1}=0$$

$$\left\langle O^{\gamma_1(k=0)}(X,Y)^{\dagger}O^{\gamma_2(k=0)}(X,Y)\right\rangle_1 \propto \delta^{\gamma_1\gamma_2}$$

Summary

Proposed to use *the representation basis* at finite *N*

Young diagrams

multi-trace structure, flavour structure

Finite *N* constraint (stringy exclusion principle)

Orthogonal at classical level

➤ Will be useful to solve the mixing problem

The operator labelled by an irreducible rep of GL(N) is anihilated by D.

$$\hat{H} \cdot tr_{m.n} \left(P^{\gamma} X^{\otimes m} \otimes Y^{T \otimes n} \right) = 0$$

Looks like we moved to a proper language, with the help of *Brauer algebra*.

Examples of the basis

1 *X* 1 *Y*

$$O^{\gamma(k=0)} = trXtrY - \frac{1}{N}tr(XY) \qquad O^{\gamma(k=1)} = \frac{1}{N}tr(XY)$$

(1,1)	γ_{+}	γ_{-}
k = 0	[1]	[1]
k = 1	Ø	Ø

2 Xs 1 Y

$$O^{\gamma(k=0,[2],[1])} = \frac{1}{2} \left(\left(trX \right)^2 + tr\left(X \right)^2 \right) trY - \frac{1}{N+1} \left(trXtr\left(XY \right) + tr\left(X^2Y \right) \right)$$

$$O^{\gamma(k=0,[1,1],[1])} = \frac{1}{2} \left(\left(trX \right)^2 - tr(X)^2 \right) trY - \frac{1}{N+1} \left(trXtr(XY) - tr(X^2Y) \right)$$

$$O^{\gamma(k=1,[1],[0])} = \frac{2}{N^2 - 1} \left(NtrXtr(XY) - tr(X^2Y) \right)$$

(2,1)	γ_+	γ
k = 0	[2]	[1]
	[1, 1]	[1]
k=1	[1]	Ø