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Abstract
The heterotic covariant lattice (bosonic supercurrent) formalism is revisited and a classification of right-mover c = 9
lattice SCFTs that potentially lead to chiral four-dimensional models is performed. All these SCFTs are related to
certain (asymmetric) orbifold constructions, and 19 SCFTs lead to N = 1 spacetime supersymmetry. Modular invariance
implies that the corresponding left-mover lattice CFTs can be studied using the theory of lattice genera. Then, using the
Minkowski-Siegel mass formula, lower bounds on the number of left-mover CFTs are calculated.
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Introduction
Heterotic string theory could eventually lead to a unified description of particle physics.
However, the moduli space of four-dimensional heterotic strings is huge. At special symme-
try enhanced points in the moduli space, a model can be described by rational (S)CFTs.
The classification of RCFTs is an open problem, even if one considers only those rele-
vant for chiral models. There are different well known constructions, e.g. Gepner models,
asymmetric orbifolds, free fermionic and free bosonic constructions, and they have some
overlaps.
This work considers a certain type of free bosonic construction: the covariant lattice theo-
ries. Making heavy use of computing power, a classification of right-mover lattice SCFTs
that is relevant for chiral models is performed. The result is that there are 80 SCFTs with
N = 0 and 19 with N = 1.
Further, modular invariance requires certain c = 22 left-mover lattice CFTs. Making use
of the theory of lattice genera, a lower bound on the number of these CFTs can be given.
Again with heavy use of computing power, a classification of some genera was performed.

The Covariant Lattice Formalism
Let us consider heterotic string theory in four space-time dimensions. Anomaly cancellation
requires an internal CFT with central charges (cint, c̃int) = (22, 9):

c(X0) + . . . + c(X3)︸ ︷︷ ︸
4

+ cint︸︷︷︸
22

+ c(bc)︸︷︷︸
−26

= 0

c̃(X0) + . . . + c̃(X3)︸ ︷︷ ︸
4

+ c̃(ψ0) + . . . + c̃(ψ3)︸ ︷︷ ︸
2

+ c̃int︸︷︷︸
9

+ c̃(bc)︸︷︷︸
−26

+ c̃(βγ)︸ ︷︷ ︸
11

= 0

Assume a special case: internal CFT is made of free bosons with periodic boundary
conditions. =⇒ lattice CFT with even lattice Γint

22,9 [1]

Bosonic string map [2]:

ψµ − βγ SCFT −→ D
space-time
5 root lattice .

Modular invariance: even and self-dual lattice (”covariant lattice”)

Γ22,14 ⊃ Γint
22,9 ⊕D

space-time
5 .

Supersymmetry: c̃int = 9 CFT must realize the N = 1 super-Virasoro algebra:

T (z)T (w) ∼ c̃int/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

(z − w)
(1)

T (z)G(w) ∼
3
2G(w)

(z − w)2
+
∂G(w)

(z − w)
(2)

G(z)G(w) ∼ 2c̃int/3

(z − w)3
+

2T (w)

(z − w)
. (3)

Equation (1): Energy-momentum tensor of 9 chiral bosons X i(z):

T (z) = −1

2
: ∂X(z) · ∂X(z) : .

Equation (2): G(z) is a primary field of conformal weight 3/2:

G(z) = :
∑
s2=3

A(s)eis·X(z)ε(s, p̂) +
∑
r2=1

iB(r) · ∂X(z)eir·X(z)ε(r, p̂) : .

(r ·B(r) = 0). The vectors r and s generate an odd integral lattice Ξ.

Constraint vectors: For any vector weight v = (±1, 0, 0, 0, 0) of D
space-time
5 :

(0, r,v) and (0, s,v) ∈ Γ22,14

Chirality: Existence of r ∈ Ξ of norm 1 =⇒ D
space-time
5 ⊂ D

space-time
5+n =⇒ non-chiral

Hermiticity: G(z)† = (z∗)−3G(1/z∗) =⇒ A(s)∗ = A(−s).

Then, the GG-OPE (3) gives a system of quadratic equations:∑
s2=3

|A(s)|2sisj = 2δij (4)∑
s2=t2=3
s+t=u

A(s)A(t)ε(s, t) = 0 for all u2 = 4 (5)

∑
s2=t2=3
s+t=u

A(s)A(t)ε(s, t) (si − ti) = 0 for all u2 = 2 (6)

From (4) =⇒ dim Ξ = 9 =⇒ the constraint vectors span a lattice (Γ14)R.
=⇒ The left-mover and right-mover CFTs are rational.

Γ22,14 ⊃ (Γ22)L ⊕ (Γ14)R .

Classification Problem
Problem of classifying chiral covariant lattice theories can be broken down as follows:
1. Enumerate all possible (Γ14)R. Such a (Γ14)R is constructed from an odd integral lattice

Ξ of rank 9 using the (even) constraint vectors.

2. Given a specific (Γ14)R, enumerate the possible (Γ22)L allowing modular invariance.

3. Consider possibly inequivalent embeddings of (Γ22)L ⊕ (Γ14)R in a covariant lattice.

Regarding 1.

A positive definite odd integral lattice Ξ is admissible if

1. Chirality. It is spanned by vectors s with s2 = 3 and contains no vectors r with r2 = 1.

2. Supersymmetry. There exists a solution A(s) to equations (4-6)

It is sufficient to classify lattices that satisfy both of the following:

1. Elementarity. Ξ is admissible and does not contain an admissible sublattice Ξsub ⊂ Ξ
of the same dimension.

2. Primitivity. Ξ is not isomorphic to an orthogonal sum Ξ1 ⊕ . . .⊕ Ξk, k > 1.

Any other admissible Ξ can be built from these building blocks.
Methods. All chiral lattices Ξ are enumerated by induction over dim Ξ, up to dim Ξ = 9.
The algorithm makes use of ideas from [3]. Equation (4), as a linear equation in the
|A(s)|2 is solved with standard methods. Equations (5-6) are attacked by calculating
Gröbner bases and fixing some symmetries.
Results. In dim Ξ ≤ 9 there are in total 26 primitive elementary lattices (Fig. 1). With
some combinatorics one constructs in total 32 elementary lattices in dim Ξ = 9. To these
correspond 32 lattices (Γ14)R (Fig. 2).
Lattice inclusion digraph: For these (Γ14)R, calculate all (even) overlattices

(Γ14)
′
R ⊃ (Γ14)R

=⇒ create directional graph. It contains 414 nodes and splits into 9 connected compo-
nents. Out of these 414 nodes, 99 fulfill the chirality condition and 19 lead to N = 1
spacetime supersymmetry (Fig. 3). Subgraph with supersymmetric nodes in Fig. 5.

Regarding 2.

The genus: Given two integral lattices Λ1 and Λ2 with Gram matrices G1 andG2. They
are said to lie in the same genus if for all primes p there exist p-adic integral matrices Up,
such that

UpG1U
T
p = G2 .

and if they have the same signature. A genus contains only finitely many lattices.
Discriminant forms: Alternative characterization due to Nikulin [4]: Even lattices
Λ1 and Λ2 lie in the same genus if they have the same signature and their discriminant
forms are isomorphic:

(Λ∗1/Λ1, (·)2 mod 2)
φ∼= (Λ∗2/Λ2, (·)2 mod 2)

(the isomorphy already implies that the signature p1 − q1 = p2 − q2 = 0 mod 8.)
Self-duality & glue: Given two even lattices L and R, when does there exist a self-
dual lattice S ⊃ L ⊕ R, such that L and R are the maximal sublattices of S in their
R-span?

•Answer: L andR must have isomorphic discriminant forms (sufficient and necessary).

•Glue: [l]× φ([l]) ⊂ S for [l] ∈ L∗/L and φ : L∗/L 7→ R∗/R isomorphism

•Given a specific R, all lattices L of a given signature that can be paired with R to a
self-dual lattice form a genus.

•The bottom line: There are only finitely many lattices (Γ22)L that can be paired with
a given (Γ14)R and they form a genus.

The Smith-Minkowski-Siegel mass formula (e.g. [5]): For a (positive definite)
genus G the following identity holds:∑

Λ′∈G

1

Aut(Λ′)
= m(Λ) , Λ ∈ G .

Here, m(Λ) is called the mass of G and it can be computed from a single Λ ∈ G. The
l.h.s. however, depends on all lattices in the genus. The mass formula can be used e.g.
as follows:

1. Compute lower bounds on |G|: Aut(Λ) ≥ 2. =⇒ |G| ≥ 2m(Λ) for any Λ ∈ G.
However, this bound is very crude in most cases.

2. Check enumeration of lattices in G by computing automorphism groups.

Enumeration methods: Kneser’s neighborhood method [6], lattice engineering [1].
Results: Some genera were enumerated. For other genera, lower bounds were calculated.
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– Results & Comments –– Results & Comments –

Comments
1. Asymmetric orbifolds. Some of of the lattices (Γ14)R

are related to asymmetric orbifolds as described in [7].

Γ22,14 = Narain Lattice⊕ E8
s.-t. twist RM−→

shift LM
Γ′22,14

These are converted to shift-orbifolds by twist-shift cor-
respondence. All lattices (Γ14)R in the inclusion graph
can be seen to arise from shift-orbifolds.

2. Model building. Some models were constructed explic-
itly as asymmetric Z3 orbifolds in [8]. An enumeration
now shows that there are 2030 models constructed from
Narain lattices with E6 by the Z3 construction. In turn,
the lower bound for models constructed from Narain
lattices with A3

2 by Z3 is calculated as ≈ 6.9 ·103. How-
ever, the expected value is several orders of magnitude
higher.

3. Classification of left-mover lattices. In most cases,
the genera are to large to be enumerated completely.
Instead, one could resort to randomized methods and
just build a large number of models (and search for
realistic ones).
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Tables

dim Ξ CP CSP CSEP Naming of CSEP Lattices

1 1 1 1 Ξ(1)
2 2 0 0 -
3 7 1 1 Ξ(3)
4 28 0 0 -
5 136 1 1 Ξ(5)
6 911 6 3 Ξ(6A),Ξ(6B),Ξ(6C)
7 8665 2 2 Ξ(7A),Ξ(7B)
8 131316 7 4 Ξ(8A), . . . ,Ξ(8D)
9 3345309 36 14 Ξ(9A), . . . ,Ξ(9N )

Fig. 1: Lattices Ξ as classified by an inductive algorithm.

C: chirality, S: supersymmetry, E: elementarity, P: primitivity.

Component Genus GR Lattice (Γ14)R

|GL| Bound Divisors Ξ ∆⊥

C1

3.1 · 1017 3762 19 -

1.3 · 109 2441121 1181
A A2

1
4.2 · 1014 3164 1181

D -

3.4 · 1012 31182 91
D A1

1.0 · 1014 2161122 91
J -

2.9 · 1011 3261181 91
K -

C2

5.8 · 1017 62122 1271
B -

3.8 · 1017 26122 113151 -

2.1 · 1015 42122 1181
B -

1.8 · 1015 2246 33 -

1.2 · 1012 2444 3161
A -

2.1 · 1011 2482 91
C A2

1
5.2 · 109 2482 91

E -

4.4 · 109 2244 91
F -

4.2 · 1011 43161 91
G -

3.6 · 1014 22202 91
L -

1.7 · 1015 224282 91
M -

C3 4.1 · 1013 71142 91
N -

C4

6.1 · 1018 2141242 1181
C -

8.4 · 1017 214382 3161
B -

1.9 · 107 244181 91
A A2

1
91
B A2

1
5.1 · 1013 234182 91

H -

3.0 · 1014 4183 91
I -

C5

1.2 · 1018 2165 1451 -

8.2 · 1021 2241123 1332 -

6.0 · 1017 2361122 1361
A -

C6 6.5 · 1022 151302 1361
C -

C7 2.6 · 1020 21101202 3161
C -

C8 5.2 · 1022 21121242 1361
B -

C9
2.7 · 1023 3262122 1631 -

5.6 · 1011 2662 1271
A -

Fig. 2: Lattices (Γ14)R generated from the 32 elementary lattices Ξ. A lower

bound on the number of models is given.

Component Genus GR Lattice (Γ14)R

|GL| Divisors ∆⊥ ∆S

C1 31 31 E6 E8
- D13

C2 68 22
D6 E8

A2
1 D12

- D14

C3 153 71 A6 E8

C4 326 2141
A1D5 E8
A1A3 D10
A1 D13

C5 382 2161
A2D4 E8

A3
1 D10

A2 D12

C6 1163 151 A2A4 E8

C7 4043 21101 A2
1A4 E8

A4 D10

C8 9346 21121 A1A2A3 E8
A1A2 D11

C9 19832 62

A2
1A

2
2 E8

A2
1 D10

A2
2 D10

- D12

Fig. 3: Tops of the graph components. The corresponding left-mover lattices in

GL were also classified.

Component Genus GR Lattice (Γ14)R

Divisors |GL| Nr. ∆⊥ ZN Twist Orbifold

C1

33 2030 A4
2 E6/Z3

3162 > 1.5 · 103 A4
1 E6/Z

I
6, E6/Z

II
6

35 > 6.9 · 103 A2 A3
2/Z3

3391 > 2.7 · 105 -

31122 > 1.5 · 109 - E6/Z
I
12, A1A5/Z

II
6

37 > 4.1 · 108 -

C2

26 − A3

2242 > 3 A4
1

2242 > 6 A6
1 D6/Z4

2442 > 1.3 · 105 A2
1 A2

1D4/Z4

2442 > 1.3 · 104 -

2282 > 4.8 · 106 A1 A2
3/Z4, D6/Z

I
8

2282 > 8.0 · 105 -

44 > 8.0 · 105 -

2244 > 1.7 · 109 -

C3 73 > 4.0 · 107 - A6/Z7

C4
224181 > 4.4 · 103 A2

1
214182 > 2.3 · 109 - A1D5/Z

II
8

C5 2163 > 5.2 · 107 - A2D4�ZII
6

Fig. 4: Right-mover lattices with N = 1.

Lattice Inclusion Graphs for N ≥ 1
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Fig. 5: Graph showing the right-mover lattices (Γ14)R. Ellipses correspond to N = 1, boxes to N ≥ 2


