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Abstract

The heterotic covariant lattice (bosonic supercurrent) formalism is revisited and a classification of right-mover ¢ = 9

lattice SCFTs that potentially lead to chiral four-dimensional models is performed. All these SCFTs are related to
certain (asymmetric) orbifold constructions, and 19 SCFTs lead to AN/ = 1 spacetime supersymmetry. Modular invariance
implies that the corresponding left-mover lattice CEF'T's can be studied using the theory of lattice genera. Then, using the

Minkowski-Siegel mass formula, lower bounds on the number of lett-mover CF'T's are calculated.
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Introduction

Heterotic string theory could eventually lead to a unified description of particle physics.
However, the moduli space of four-dimensional heterotic strings is huge. At special symme-
try enhanced points in the moduli space, a model can be described by rational (S)CFTs.
The classification of RCFEFTs is an open problem, even if one considers only those rele-
vant for chiral models. There are different well known constructions, e.g. Gepner models,

asymmetric orbifolds, free fermionic and free bosonic constructions, and they have some
overlaps.

This work considers a certain type of free bosonic construction: the covariant lattice theo-
ries. Making heavy use of computing power, a classification of right-mover lattice SCF'T's
that is relevant for chiral models is performed. The result is that there are 80 SCFT's with
N =0 and 19 with N = 1.

Further, modular invariance requires certain ¢ = 22 left-mover lattice CEF'Ts. Making use
of the theory of lattice genera, a lower bound on the number of these CF'T's can be given.
Again with heavy use of computing power, a classification of some genera was performed.
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The Covariant Lattice Formalism

Let us consider heterotic string theory in four space-time dimensions. Anomaly cancellation
requires an internal CF'T with central charges (ciy, Gint) = (22, 9):

Bosonic string map [2]:

Yt — By SCEFT — E;pace_time root lattice.
Modular invariance: even and self-dual lattice ("covariant lattice”)
int — space-time

F22’14 D F22’9 @ D5

Supersymmetry: ¢, = 9 CFT must realize the NV = 1 super-Virasoro algebra:

N Cnt/2  2T(w) 0T (w)
TGIT(w) ~ M W
T(:)Gw) ~ e 2 2
G(2)Gw) ~ (jéjﬁ{ﬂ £ (QZT_@% | 3
Equation (1): Energy-momentum tensor of 9 chiral bosons X*(2):
1

T(z) = —5 0X(z)-0X(z): .
Equation (2): G(z) is a primary field of conformal weight 3/2:
G(z)=: Y Als)e"*Pe(s,p) + > iB(r)- 0X(2)e"*Pe(r,p) : .

$2=3 ri=]

(r - B(r) =0). The vectors r and s generate an odd integral lattice =. |
Constraint vectors: For any vector weight v = (4+1,0,0,0,0) of Egpace_tlme:

(07 r, V) and (07 S, V) S F22,14

— space-time — space-time

Chirality: Existence of r € = of norm 1 = D- C D5, — non-chiral
Hermiticity: G(2)' = (2*)3G(1/2%) = A(s)* = A(—s).

Then, the GG-OPE (3) gives a system of quadratic equations:
Z |A(s)]*s's? = 26"
3

Z A(s)A(t)e(s,t) = 0 for all u* = 4
3

§i=t*=
s+t=u

> A(s)A(t)e(s, t) (s' — t') =0 for all u* = 2

§i=t*=
s+t=u

From (4) = dim= = 9 = the constraint vectors span a lattice (I'14)R.
— The left-mover and right-mover CF'Ts are rational.
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Classification Problem

Problem of classifying chiral covariant lattice theories can be broken down as follows:
1. Enumerate all possible (I';4)g. Such a (I'y4)g is constructed from an odd integral lattice
= of rank 9 using the (even) constraint vectors.

2. Given a specific (I'4)r, enumerate the possible (I'5,);, allowing modular invariance.

3. Consider possibly inequivalent embeddings of (I')1, & (I'14)Rr in a covariant lattice.

Regarding 1.

A positive definite odd integral lattice = is admissible it

1. Chirality. It is spanned by vectors s with s> = 3 and contains no vectors r with r* = 1.

2. Supersymmetry. There exists a solution A(s) to equations (4-6)
It is suflicient to classify lattices that satisfy both of the following:

1. Elementarity. = is admissible and does not contain an admissible sublattice =g, C =
of the same dimension.

2. Primitivity. = is not isomorphic to an orthogonal sum =, & ... D=, k > 1.

Any other admissible = can be built from these building blocks.

Methods. All chiral lattices = are enumerated by induction over dim =, up to dim= = 9.
The algorithm makes use of ideas from [3]. Equation (4), as a linear equation in the
|A(s)]? is solved with standard methods. Equations (5-6) are attacked by calculating
Grobner bases and fixing some symmetries.

Results. In dim = < 9 there are in total 26 primitive elementary lattices (Fig. 1). With
some combinatorics one constructs in total 32 elementary lattices in dim= = 9. To these
correspond 32 lattices (I'4)r (Fig. 2).

Lattice inclusion digraph: For these (I'y4)g, calculate all (even) overlattices

Tk O Tk
—> create directional graph. It contains 414 nodes and splits into 9 connected compo-

nents. Out of these 414 nodes, 99 fulfill the chirality condition and 19 lead to N = 1
spacetime supersymmetry (Fig. 3). Subgraph with supersymmetric nodes in Fig. 5.

Regarding 2.

The genus: Given two integral lattices A; and Ay with Gram matrices G and G5. They
are sald to lie in the same genus if for all primes p there exist p-adic integral matrices U,
such that

U,GiU, = G,.

and if they have the same signature. A genus contains only finitely many lattices.
Discriminant forms: Alternative characterization due to Nikulin |4]: Even lattices
Ay and Ay lie in the same genus if they have the same signature and their discriminant
forms are isomorphic:

¢
(AT/A1, () mod 2) = (A3/As, (-)° mod 2)

(the isomorphy already implies that the signature p; — ¢ = p» — ¢o = 0 mod 8.)
Self-duality & glue: Given two even lattices L and R, when does there exist a self-
dual lattice S D L & R, such that L and R are the maximal sublattices of S in their
R-span?

e Answer: L and R must have isomorphic discriminant forms (sufficient and necessary).
o Glue: |l| x ¢(|l]) C Sfor |l] € L*/L and ¢ : L*/L — R*/R isomorphism

e Given a specific R, all lattices L of a given signature that can be paired with R to a
self-dual lattice form a genus.

e The bottom line: There are only finitely many lattices (I'y0);, that can be paired with
a given (I'14)r and they form a genus.

The Smith-Minkowski-Siegel mass formula (e.g. [5]): For a (positive definite)

genus G the following identity holds:
1

Aut(A’):m(A>’ ANeg.

Neg
Here, m(A) is called the mass of G and it can be computed from a single A € G. The
[.h.s. however, depends on all lattices in the genus. The mass formula can be used e.g.
as follows:

1. Compute lower bounds on |G|: Aut(A) > 2. = |G| > 2m(A) for any A € G.
However, this bound is very crude in most cases.

2. Check enumeration of lattices in G by computing automorphism groups.

Enumeration methods: Kneser’s neighborhood method |6], lattice engineering [1].
Results: Some genera were enumerated. For other genera, lower bounds were calculated.
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Comments Tables
1. Asymmetric orbifolds. Some of of the lattices (I'14)r Component  Genus Gy Lattice (I'ig)r
are related to asymmetric orbifolds as described in |7]. dhim 2 O OBlF O8I Naming of Gl Laiees IGY| Divisors A | Ag
———s.-t. twist RM 1 1 1 1 =(1) E E
I’ = Narain Lattice ® Es 1 6 8
22,14 D ST 22 14 g g (1) (1) _: 3 Cq 31 3 ] Dis
These are converted to shift-orbifolds by twist-shift cor- ) - ) _‘( ) Dy Ex
respondence. All lattices (I'14)z in the inclusion graph . 136 1 1 2(5) Co 68 22 A? D1y
can be seen to arise from shift-orbifolds. 6 911 6 3 2(64),2(65),Z(60) - Dyy
2. Model building. Some models were constructed explic- 7 Sesp 2 2 E(7A>’ E<7BJ C3 153 71 Ag Ly
. . . . . 8 131316 7 4 Z(84),...,=(8p)
itly as asymmetric Z3 orbifolds in [8]. An enumeration 0 3345300 36 14 S(94).....=(9n) O A1Ds  Eg
now shows that there are 2030 models constructed from . — . . . Cy 320 2°4 A1z Dy
. . L — . Fig. 1: Lattices = as classified by an inductive algorithm. Aq Dq5
Narain lattices with E6 by the Z3 construction. In turn, C: chirality, S: supersymmetry, E: elementarity, P: primitivity. A
the lower bound for models constructed from Narain . 289 91! AgD 4 gS
lattices with A3 by Zs3 is calculated as ~ 6.9- 10°. How- Component Genus GR Lattice (I'14)R ° A; Dig
th ted value i | ord f itud Vi =
ever, the expected value is several orders of magnitude Gy | Bound Divisors = A 2 163 1l A B
hlghef. 31 - 1017 3762 19 B ;
' ATA E
3. Classification of left-mover lattices. In most cases, 1.3- 10‘?4 211141121 118;4 A Cr 4043 210! Ai ! Dﬁo
the genera are to large to be enumerated completely:. Cy 42-10 36 I"8p -
I q ld domized methods and 3.4-10% 3182 9L A4 C 0346 oljol  A1A2d3 By
nstead, one could resort to randomized methods an R PR 9{? ] 8 AAs Dy
JUSt. bglld a large number of models (and search for 29.10l1 326118l 9i( ) 242
realistic ones). T T S . g3 @2 A’ Dy
38-1007 20122 113l : A3 D1
2.1-1015 42122 1lgl, - : D12
1.8- 101 2240 39 - Fig. 3: Tops of the graph components. The corresponding left-mover lattices in
References 12.1012 2441 3lgl Gy, were also classified.
: C 101l 4q2 1 2
1] W. Lerche, B.E.-W. Nilsson and A.N. Schellekens, . ?; 189 3422 g? A
Nucl. Phys. B294 (1987) 136; W. Lerche and D. Liist, N 4: 9 ozt of Component Genus G Lattice (I'14)R
Phys Lett B187 (1987) 457 W LerCh67 D LU_St7 AN 42 ) 1011 43161 9{' _ Divisors ‘QL‘ Nr. AJ_ ZN Twist Orbifold
Schellekens, Nucl.Phys. B287 (1987) 477, W. Lerche, 3.6-1014 92902 9? _ 23 2030 AL Eg)Zs
A.N. Schellekens and N.P. Warner, Phys. Rept. 177 1.7-10%  224%82 9. - 3162 >15.103 A} Eg/zl By 2zl
(1989) Cs 41-101 71142 9}\7 _ @ 32 1 > 0.9 - 10? Ao A%/Zg
2] F. Englert, H. Nicolai and A.N. Schellekens, Nucl. 6.1.1018  92lglog2 1181? i 31?22 i ig 189 Eo/Z),. Ay A/l
Phys. B 274 (1986) 315; A. Casher, F. Englert, H. Nicolai 8.4-10t7 214982 3leL - 37 - 41-108 - > °
and A. Taormina, Phys. Lett. B 162 (1985) 121. Cy 10.107 9448l 9%1 Ai % )
. — 3
3] W. Plesken and M. Pohst, Mathematics of Computa- 11013 93412 3{3 j41 0242 3 Al
tion, vol 45, No. 171 (1985), pp. 209-221; Mathematics 20.104 4183 9? ) 2242 > 6 AV Dg/Zy
of Computation, Vol. 60, No. 202 (1993), pp. 817-825 S 08 olg . ‘. ;if; i 13 . 182 A} A[Dy4/Z,
4] V.V. Nikulin, 1980 Math. USSR Izv. 14 103 Cr 892.1021 9241193 1332 909 | 6 ) 5 I
~ 17 2 1,10 3.1 278 > 4.8 10 Ay Ag/z47D6/Z8
5| J.H. Conway and N.J.A. Sloane, Proc. Royal Soc. Lon- 6.0 - 10 2°6°127 1°6, - 2282~ 80-10° _
don, A419 (1988) pp. 259286 Co 6.5-10% 15130 196} - 44 >8.0-10° -
2,44 109 )
6] M. Kneser, Archiv der Mathematik 15. X. 1957, Vol- Cc;  2.6-10%  2l10'20% 36} - 2 > 1019
ulne 8, [ssue 4, 241-250 C8 59. 1022 21121242 13613 B C3 73 > 4.0 - 107 B AG/Z7
7] A.N. Schellekens, and N.P. Warner, Nucl.Phys. B308 28 o900 6zl 24418l > 4.4.10° Az
(1988) 397 ) 56.1011 9662 127, - 274787 >2.5-10 - 1D5/Z3
. . 13 7 1
[8] FB, T. Kobayashl, and S. KUW&kH’lO, JHEP 1401 Fig. 2: Lattices (I'14)r generated from the 32 elementary lattices =. A lower Cs 26 > 0.2+ 10 _ A2D4/Z6

(2014) 013 (arXiv:1311.4687)

bound on the number of models is given.

Lattice Inclusion Graphs for N > 1

Fig. 4: Right-mover lattices with N = 1.
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Fig. 5: Graph showing the right-mover lattices (I'14)g. Ellipses correspond to N = 1, boxes to N > 2
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