# A CLASSIFICATION OF BOSONIC SUPERCURRENTS

Florian Beye Nagoya University

## Abstract

The heterotic covariant lattice (bosonic supercurrent) formalism is revisited and a classification of right-mover c = 9 lattice SCFTs that potentially lead to chiral four-dimensional models is performed. All these SCFTs are related to certain (asymmetric) orbifold constructions, and 19 SCFTs lead to  $\mathcal{N} = 1$  spacetime supersymmetry. Modular invariance implies that the corresponding left-mover lattice CFTs can be studied using the theory of lattice genera. Then, using the Minkowski-Siegel mass formula, lower bounds on the number of left-mover CFTs are calculated.

Keywords: Heterotic string, covariant lattice, rational (S)CFT, lattice genera.

## Introduction

Heterotic string theory could eventually lead to a unified description of particle physics. However, the moduli space of four-dimensional heterotic strings is huge. At special symmetry enhanced points in the moduli space, a model can be described by rational (S)CFTs. The classification of RCFTs is an open problem, even if one considers only those relevant for chiral models. There are different well known constructions, e.g. Gepner models, asymmetric orbifolds, free fermionic and free bosonic constructions, and they have some overlaps.

## **Classification Problem**

Problem of classifying chiral covariant lattice theories can be broken down as follows: 1. Enumerate all possible  $(\Gamma_{14})_R$ . Such a  $(\Gamma_{14})_R$  is constructed from an odd integral lattice  $\Xi$  of rank 9 using the (even) constraint vectors.

This work considers a certain type of free bosonic construction: the covariant lattice theories. Making heavy use of computing power, a classification of right-mover lattice SCFTs that is relevant for chiral models is performed. The result is that there are 80 SCFTs with  $\mathcal{N} = 0$  and 19 with  $\mathcal{N} = 1$ .

Further, modular invariance requires certain c = 22 left-mover lattice CFTs. Making use of the theory of lattice genera, a lower bound on the number of these CFTs can be given. Again with heavy use of computing power, a classification of some genera was performed.

# The Covariant Lattice Formalism

Let us consider heterotic string theory in four space-time dimensions. Anomaly cancellation requires an internal CFT with central charges  $(c_{int}, \tilde{c}_{int}) = (22, 9)$ :



2. Given a specific  $(\Gamma_{14})_R$ , enumerate the possible  $(\Gamma_{22})_L$  allowing modular invariance. 3. Consider possibly inequivalent embeddings of  $(\Gamma_{22})_L \oplus \overline{(\Gamma_{14})_R}$  in a covariant lattice.

#### Regarding 1.

A positive definite odd integral lattice  $\Xi$  is *admissible* if

1. Chirality. It is spanned by vectors s with  $s^2 = 3$  and contains no vectors r with  $r^2 = 1$ .

2. Supersymmetry. There exists a solution A(s) to equations (4-6)

It is sufficient to classify lattices that satisfy both of the following:

1. *Elementarity*.  $\Xi$  is admissible and does not contain an admissible sublattice  $\Xi_{sub} \subset \Xi$  of the same dimension.

2. *Primitivity*.  $\Xi$  is not isomorphic to an orthogonal sum  $\Xi_1 \oplus \ldots \oplus \Xi_k$ , k > 1.

Any other admissible  $\Xi$  can be built from these building blocks.

<u>Methods.</u> All *chiral* lattices  $\Xi$  are enumerated by induction over dim  $\Xi$ , up to dim  $\Xi = 9$ . The algorithm makes use of ideas from [3]. Equation (4), as a linear equation in the  $|A(s)|^2$  is solved with standard methods. Equations (5-6) are attacked by calculating Gröbner bases and fixing some symmetries.

<u>Results.</u> In dim  $\Xi \leq 9$  there are in total 26 primitive elementary lattices (Fig. 1). With some combinatorics one constructs in total 32 elementary lattices in dim  $\Xi = 9$ . To these correspond 32 lattices ( $\Gamma_{14}$ )<sub>R</sub> (Fig. 2).

**Lattice inclusion digraph:** For these  $(\Gamma_{14})_R$ , calculate all (even) overlattices

 $(\Gamma_{14})'_{\mathrm{R}} \supset (\Gamma_{14})_{\mathrm{R}}$ 

Assume a special case: internal CFT is made of free bosons with periodic boundary conditions.  $\implies$  lattice CFT with even lattice  $\Gamma_{22,9}^{\text{int}}$  [1]

Bosonic string map [2]:

$$\psi^{\mu} - \beta \gamma \text{ SCFT} \longrightarrow \overline{D}_5^{\text{space-time}}$$
 root lattice.

Modular invariance: even and self-dual lattice ("covariant lattice")

$$\Gamma_{22,14} \supset \Gamma_{22,9}^{\text{int}} \oplus \overline{D}_5^{\text{space-time}}.$$

**Supersymmetry:**  $\tilde{c}_{int} = 9$  CFT must realize the N = 1 super-Virasoro algebra:

$$T(z)T(w) \sim \frac{\tilde{c}_{\rm int}/2}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{\partial T(w)}{(z-w)}$$
(1)  

$$T(z)G(w) \sim \frac{\frac{3}{2}G(w)}{(z-w)^2} + \frac{\partial G(w)}{(z-w)}$$
(2)  

$$G(z)G(w) \sim \frac{2\tilde{c}_{\rm int}/3}{(z-w)^3} + \frac{2T(w)}{(z-w)}.$$
(3)

Equation (1): Energy-momentum tensor of 9 chiral bosons  $X^{i}(z)$ :

$$T(z) = -\frac{1}{2} : \partial X(z) \cdot \partial X(z) : .$$

Equation (2): G(z) is a primary field of conformal weight 3/2:

$$\begin{split} G(z) &=: \sum_{s^2=3} A(s) e^{is \cdot X(z)} \varepsilon(s, \hat{p}) + \sum_{r^2=1} iB(r) \cdot \partial X(z) e^{ir \cdot X(z)} \varepsilon(r, \hat{p}) : . \\ (r \cdot B(r) &= 0). \text{ The vectors } r \text{ and } s \text{ generate an odd integral lattice } \Xi. \\ \textbf{Constraint vectors: For any vector weight } \mathbf{v} &= (\pm 1, 0, 0, 0, 0) \text{ of } \overline{D}_5^{\text{space-time}}: \end{split}$$

 $\Rightarrow$  create directional graph. It contains 414 nodes and splits into 9 connected components. Out of these 414 nodes, 99 fulfill the *chirality* condition and 19 lead to  $\mathcal{N} = 1$  spacetime supersymmetry (Fig. 3). Subgraph with supersymmetric nodes in Fig. 5.

#### Regarding 2.

**The genus:** Given two integral lattices  $\Lambda_1$  and  $\Lambda_2$  with Gram matrices  $G_1$  and  $G_2$ . They are said to lie in the same genus if for all primes p there exist p-adic integral matrices  $U_p$ , such that

$$U_p G_1 U_p^T = G_2 \,.$$

and if they have the same signature. A genus contains only finitely many lattices. **Discriminant forms:** Alternative characterization due to Nikulin [4]: Even lattices  $\Lambda_1$  and  $\Lambda_2$  lie in the same genus if they have the same signature and their discriminant forms are isomorphic:

 $(\Lambda_1^*/\Lambda_1, (\cdot)^2 \mod 2) \stackrel{\phi}{\cong} (\Lambda_2^*/\Lambda_2, (\cdot)^2 \mod 2)$ 

(the isomorphy already implies that the signature  $p_1 - q_1 = p_2 - q_2 = 0 \mod 8$ .) **Self-duality & glue:** Given two even lattices L and R, when does there exist a selfdual lattice  $S \supset L \oplus \overline{R}$ , such that L and R are the *maximal* sublattices of S in their  $\mathbb{R}$ -span?

Answer: L and R must have isomorphic discriminant forms (sufficient and necessary).
Glue: [l] × φ([l]) ⊂ S for [l] ∈ L\*/L and φ : L\*/L → R\*/R isomorphism

• Given a specific R, all lattices L of a given signature that can be paired with R to a self-dual lattice form a genus.

 $(0, r, \mathbf{v}) \text{ and } (0, s, \mathbf{v}) \in \Gamma_{22,14}$  **Chirality:** Existence of  $r \in \Xi$  of norm  $1 \Longrightarrow \overline{D}_5^{\text{space-time}} \subset \overline{D}_{5+n}^{\text{space-time}} \Longrightarrow$  non-chiral **Hermiticity:**  $G(z)^{\dagger} = (z^*)^{-3}G(1/z^*) \Longrightarrow A(s)^* = A(-s).$ 

Then, the GG-OPE (3) gives a system of quadratic equations:

$$\sum_{\substack{s^2=3\\s^2=3}} |A(s)|^2 s^i s^j = 2\delta^{ij}$$

$$\sum_{\substack{s^2=3\\+t=u\\+t=u}} A(s)A(t)\varepsilon(s,t) = 0 \text{ for all } u^2 = 4$$
(5)

(6)

$$\sum_{\substack{a=t^2=3\\s+t=u}} A(s)A(t)\varepsilon(s,t) (s^i - t^i) = 0 \text{ for all } u^2 = 2$$

From (4)  $\implies$  dim  $\Xi = 9 \implies$  the constraint vectors span a lattice  $\overline{(\Gamma_{14})_R}$ .  $\implies$  The left-mover and right-mover CFTs are rational.

 $\Gamma_{22,14} \supset (\Gamma_{22})_{\mathrm{L}} \oplus \overline{(\Gamma_{14})_{\mathrm{R}}}.$ 

• The bottom line: There are only finitely many lattices  $(\Gamma_{22})_L$  that can be paired with a given  $(\Gamma_{14})_R$  and they form a genus.

The Smith-Minkowski-Siegel mass formula (e.g. [5]): For a (positive definite) genus  $\mathcal{G}$  the following identity holds:

$$\sum_{\Lambda' \in \mathcal{G}} \frac{1}{\operatorname{Aut}(\Lambda')} = m(\Lambda) , \ \Lambda \in \mathcal{G} .$$

Here,  $m(\Lambda)$  is called the *mass* of  $\mathcal{G}$  and it can be computed from a *single*  $\Lambda \in \mathcal{G}$ . The l.h.s. however, depends on all lattices in the genus. The mass formula can be used e.g. as follows:

1. Compute lower bounds on  $|\mathcal{G}|$ : Aut $(\Lambda) \geq 2$ .  $\implies |\mathcal{G}| \geq 2m(\Lambda)$  for any  $\Lambda \in \mathcal{G}$ . However, this bound is very crude in most cases.

2. Check enumeration of lattices in  $\mathcal{G}$  by computing automorphism groups.

<u>Enumeration methods</u>: Kneser's neighborhood method [6], lattice engineering [1]. <u>Results</u>: Some genera were enumerated. For other genera, lower bounds were calculated.

# - Results & Comments -

## Comments

1. Asymmetric orbifolds. Some of the lattices  $(\Gamma_{14})_R$  are related to asymmetric orbifolds as described in [7].

 $\Gamma_{22,14} = \text{Narain Lattice} \oplus \overline{E_8}^{\text{s.-t. twist RM}} \xrightarrow[\text{shift LM}]{} \Gamma'_{22,14}$ 

These are converted to shift-orbifolds by twist-shift correspondence. All lattices  $(\Gamma_{14})_R$  in the inclusion graph can be seen to arise from shift-orbifolds.

- 2. Model building. Some models were constructed explicitly as asymmetric  $\mathbf{Z}_3$  orbifolds in [8]. An enumeration now shows that there are 2030 models constructed from Narain lattices with  $\overline{E_6}$  by the  $\mathbf{Z}_3$  construction. In turn, the lower bound for models constructed from Narain lattices with  $\overline{A_2^3}$  by  $\mathbf{Z}_3$  is calculated as  $\approx 6.9 \cdot 10^3$ . However, the expected value is several orders of magnitude higher.
- 3. Classification of left-mover lattices. In most cases, the genera are to large to be enumerated completely. Instead, one could resort to randomized methods and

### Tables

| $\dim \Xi$ | CP      | CSP | CSEP | Naming of CSEP Lattices        |
|------------|---------|-----|------|--------------------------------|
| 1          | 1       | 1   | 1    | $\Xi(1)$                       |
| 2          | 2       | 0   | 0    | _                              |
| 3          | 7       | 1   | 1    | $\Xi(3)$                       |
| 4          | 28      | 0   | 0    | -                              |
| 5          | 136     | 1   | 1    | $\Xi(5)$                       |
| 6          | 911     | 6   | 3    | $\Xi(6_A), \Xi(6_B), \Xi(6_C)$ |
| 7          | 8665    | 2   | 2    | $\Xi(7_A), \Xi(7_B)$           |
| 8          | 131316  | 7   | 4    | $\Xi(8_A),\ldots,\Xi(8_D)$     |
| 9          | 3345309 | 36  | 14   | $\Xi(9_A),\ldots,\Xi(9_N)$     |

Fig. 1: Lattices Ξ as classified by an inductive algorithm.C: chirality, S: supersymmetry, E: elementarity, P: primitivity.

| Component       | Genus                                         | Lattice $(\Gamma_{14})_{\rm R}$           |                                            |                          |
|-----------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------|
|                 | $ \mathcal{G}_{\mathrm{L}} $ Bound            | Divisors                                  | [1]                                        | $\Delta_{\perp}$         |
|                 | $3.1 \cdot 10^{17}$<br>$1.3 \cdot 10^{9}$     | $3^{7}6^{2}$<br>$2^{4}4^{1}12^{1}$        | $1^9 \\ 1^1 8^1_A$                         | $-A_1^2$                 |
| $\mathcal{C}_1$ | $4.2 \cdot 10^{14} \\ 3.4 \cdot 10^{12}$      | $3^{1}6^{4}$<br>$3^{1}18^{2}$             | $1^{18} {}^{1}_{D}$<br>$9^{1}_{D}$         | -<br>A <sub>1</sub>      |
|                 | $1.0 \cdot 10^{14}$<br>$2.9 \cdot 10^{11}$    | $2^{1}6^{1}12^{2}$<br>$3^{2}6^{1}18^{1}$  | $9^{\mathrm{T}}_{J} \\ 9^{\mathrm{I}}_{K}$ | -                        |
|                 | $5.8 \cdot 10^{17}$<br>$3.8 \cdot 10^{17}$    | $6^{2}12^{2}$<br>$2^{6}12^{2}$            | $\frac{1^27^1_B}{1^13^15^1}$               | -                        |
|                 | $2.1 \cdot 10^{15}$<br>$1.8 \cdot 10^{15}$    | $4^{2}12^{2}$<br>$2^{2}4^{6}$             | $\frac{1^{1}8^{1}_{B}}{3^{3}}$             | -                        |
| $\mathcal{C}_2$ | $1.2 \cdot 10^{12}$<br>$2.1 \cdot 10^{11}$    | $2^{4}4^{4}$<br>$2^{4}8^{2}$              | $3^{1}6^{1}_{A}$<br>$9^{1}_{C}$            | $-A_1^2$                 |
|                 | $5.2 \cdot 10^9$<br>$4.4 \cdot 10^9$          | $2^{4}8^{2}$<br>$2^{2}4^{4}$              | $9_E^{\uparrow}$<br>$9_F^{\downarrow}$     | -                        |
|                 | $4.2 \cdot 10^{11}$<br>$3.6 \cdot 10^{14}$    | $4^{3}16^{1}$<br>$2^{2}20^{2}$            | $9^{1}_{G}$<br>$9^{1}_{L}$                 | -                        |
| $\mathcal{C}_3$ | $\frac{1.7 \cdot 10^{13}}{4.1 \cdot 10^{13}}$ | $2^{2}4^{2}8^{2}$<br>$7^{1}14^{2}$        | $\frac{9^{1}_{M}}{9^{1}_{N}}$              | -                        |
|                 | $6.1 \cdot 10^{18}$<br>$8.4 \cdot 10^{17}$    | $2^{1}4^{1}24^{2}$<br>$2^{1}4^{3}8^{2}$   | $\frac{1^{1}8^{1}_{C}}{3^{1}6^{1}_{D}}$    |                          |
| $\mathcal{C}_4$ | $1.9 \cdot 10^{7}$                            | $2^{4}4^{1}8^{1}$                         | $9^{1}_{A}$<br>$9^{1}_{B}$                 | $A_{1}^{2} \\ A_{1}^{2}$ |
|                 | $5.1 \cdot 10^{13}$<br>$3.0 \cdot 10^{14}$    | $2^{3}4^{1}8^{2}$<br>$4^{1}8^{3}$         | $9^{I}_{H}$<br>$9^{I}_{I}$                 | -<br>-                   |
| 0               | $1.2 \cdot 10^{18}$                           | $2^{1}6^{5}$                              | $1^{4}5^{1}$                               | -                        |
| $\mathcal{L}_5$ | $8.2 \cdot 10^{21}$<br>$6.0 \cdot 10^{17}$    | $2^{-4^{-}12^{-}3}$<br>$2^{3}6^{1}12^{2}$ | $1^{3}3^{2}$<br>$1^{3}6^{1}_{A}$           | -                        |
| $\mathcal{C}_6$ | $6.5 \cdot 10^{22}$                           | $15^{1}30^{2}$                            | $1^{3}6^{1}_{C}$                           | -                        |
| $\mathcal{C}_7$ | $2.6 \cdot 10^{20}$                           | $2^{1}10^{1}20^{2}$                       | $3^{1}6^{1}_{C}$                           | -                        |
| $\mathcal{C}_8$ | $5.2 \cdot 10^{22}$                           | $2^{1}12^{1}24^{2}$                       | $1^{3}6^{1}_{B}$                           | _                        |

|                                            | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gen                                                                                                                                                                                                                                                                                               | ius $\mathcal{G}_{	ext{R}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lattice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\Gamma_{14})_{\rm R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \mathcal{G}^{\mathrm{L}} $                                                                                                                                                                                                                                                                      | Divisors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta_{\perp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta_{\rm S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                          | $\mathcal{C}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                | $3^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>E</i> <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} E_8\\ D_{13}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _                                          | $\mathcal{C}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68                                                                                                                                                                                                                                                                                                | $2^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D_6 \\ A_1^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_8 \\ D_{12} \\ D_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                                          | $\mathcal{C}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153                                                                                                                                                                                                                                                                                               | $7^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                          | $\mathcal{C}_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 326                                                                                                                                                                                                                                                                                               | $2^{1}4^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} A_1 D_5 \\ A_1 A_3 \\ A_1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_8 \\ D_{10} \\ D_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                                          | $\mathcal{C}_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 382                                                                                                                                                                                                                                                                                               | $2^{1}6^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A_2 D_4 \\ A_1^3 \\ A_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $E_8 \\ D_{10} \\ D_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                                          | $\mathcal{C}_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1163                                                                                                                                                                                                                                                                                              | $15^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_2A_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | $\mathcal{C}_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4043                                                                                                                                                                                                                                                                                              | $2^{1}10^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} A_1^2 A_4 \\ A_4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_8 \\ D_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                            | $\mathcal{C}_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9346                                                                                                                                                                                                                                                                                              | $2^{1}12^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} A_1 A_2 \\ A_1 A_2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cc} A_3 & E_8 \\ & D_{11} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $A_1^2 A_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | $\mathcal{C}_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19832                                                                                                                                                                                                                                                                                             | 6 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $A_1^2 = A_2^2 = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $D_{10} \\ D_{10} \\ D_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g. 3: Tops o<br>Compone                    | $\mathcal{C}_9$<br>of the graph contained on the graph contained on the graph contained on the second structure of the second structure                                                                                                                                                                                                                                                             | 19832<br>mponent<br>$\mathcal{G}_{L}$ were                                                                                                                                                                                                                                                        | 6 <sup>2</sup><br>s. The corr<br>also classif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_1^2$<br>$A_2^2$<br>-<br>respondin-<br>ied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $D_{10}$<br>$D_{10}$<br>$D_{12}$<br>The provess of the second s                                                                                                                                                                                                                               |
| g. 3: Tops o<br>Compone                    | $\mathcal{C}_9$<br>of the graph content of the graph content                                                                                                                                                                                                                                                             | 19832<br>mponent<br>$\mathcal{G}_{L}$ were<br>tus $\mathcal{G}_{R}$<br>$ \mathcal{G}^{L} $                                                                                                                                                                                                        | 6 <sup>2</sup><br>ts. The corr<br>also classif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $A_{1}^{2}$ $A_{2}^{2}$ $-$ responding ied. Latt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D_{10}$<br>$D_{10}$<br>$D_{12}$<br>The provess of the second state of                                                                                                                                                                                                                                |
| g. 3: Tops o                               | $\mathcal{C}_9$<br>of the graph commutation of the grap                                                                                                                                                                                                                                                             | 19832<br>mponent<br>$\mathcal{G}_{L}$ were<br>us $\mathcal{G}_{R}$<br>$ \mathcal{G}^{L} $<br>2030                                                                                                                                                                                                 | 6 <sup>2</sup><br>s. The corr<br>also classif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_{1}^{2}$ $A_{2}^{2}$ $-$ responding $A_{2}^{2}$ $-$ responding $A_{2}^{2}$ $Latt$ $\Delta_{\perp} \mathbf{Z}$ $A_{2}^{4} \mathbf{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $D_{10}$ $D_{10}$ $D_{12}$ $D$                                                                                                                                                                                                                                    |
| g. 3: Tops o<br>Compone<br>C1              | $\mathcal{C}_9$<br>of the graph conditions<br>of the graph conditi | $19832$ mponent $\mathcal{G}_{L}$ were $ \mathcal{G}^{L} $ $2030$ $> 1.5 \cdot 2$ $> 6.9 \cdot 2$                                                                                                                                                                                                 | $6^2$<br>s. The correction of th | $A_{1}^{2}$ $A_{2}^{2}$ $-$ respondinged. $Latt$ $\Delta_{\perp} \mathbf{Z}$ $A_{1}^{4} E$ $A_{1}^{4} E$ $A_{2}^{4} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $D_{10}$ $D_{12}$ $D$                                                                                                                                                                                                                                    |
| g. 3: Tops o<br>Compone<br>$\mathcal{C}_1$ | $\mathcal{C}_9$<br>of the graph conditions<br>of the graph conditi | 19832<br>mponent<br>$\mathcal{G}_{L}$ were<br>$ \mathcal{G}^{L} $<br>2030<br>$> 1.5 \cdot$<br>$> 6.9 \cdot$<br>$> 2.7 \cdot$<br>$> 1.5 \cdot$<br>$> 1.5 \cdot$<br>$> 4.1 \cdot$                                                                                                                   | $6^{2}$<br>also classif<br>$10^{3}$<br>$10^{3}$<br>$10^{5}$<br>$10^{9}$<br>$10^{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A_{1}^{2}$ $A_{2}^{2}$ $A_{2}^{2}$ $-$ responding<br>ied. $Latt$ $\Delta_{\perp} \mathbf{Z}$ $A_{2}^{4} \mathbf{E}$ $A_{1}^{4} \mathbf{E}$ $A_{2}^{4} \mathbf{E}$ $A_{2}^{4} \mathbf{E}$ $A_{2}^{4} \mathbf{E}$ $A_{2}^{4} \mathbf{E}$ $-$ $-$ $-$ $E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $D_{10} \\ D_{12} \\ D_{14} \\ D$ |
| g. 3: Tops of $\mathcal{C}_1$              | $C_9$<br>of the graph conditions<br>of the graph conditions        | 19832<br>mponent<br>$G_L$ were<br>$us G_R$<br>$ G^L $<br>2030<br>> 1.5<br>> 6.9<br>> 2.7<br>> 1.5<br>> 4.1<br>-<br>> 3<br>> 6<br>> 1.3                                                                                                                                                            | $6^{2}$<br>as. The correct of also classif<br>$10^{3}$<br>$10^{3}$<br>$10^{5}$<br>$10^{9}$<br>$10^{8}$<br>$10^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $A_{1}^{2}$ $A_{2}^{2}$ $A_{2}^{2}$ $-$ $Constrained Constrained $ | $D_{10}$<br>$D_{10}$<br>$D_{12}$<br>and an analysis of the second state                                                                                                                                                                                                                               |
| g. 3: Tops o<br>Compone<br>$\mathcal{C}_1$ | $C_9$<br>of the graph conditions<br>of the graph conditions        | 19832<br>mponent<br>$G_{L}$ were<br>$us \ G_{R}$<br>$ \mathcal{G}^{L} $<br>2030<br>> 1.5 + 3<br>> 6.9 + 3<br>> 2.7 + 3<br>> 1.5 + 3<br>> 4.1 + 3<br>> 4.1 + 3<br>> 4.1 + 3<br>> 4.1 + 3<br>> 1.3 + 3<br>> 4.8 + 3<br>> 8.0 + 3                                                                    | $6^{2}$<br>as. The correction of the correction o  | $A_{1}^{2}$ $A_{2}^{2}$ $-$ $-$ $-$ $A_{2}^{4}$ $A_{1}^{4}$ $A_{1$ | $D_{10} \\ D_{12} \\ D$ |
| g. 3: Tops of $\mathcal{C}_1$              | $ \begin{array}{c} \mathcal{C}_{9} \\ \hline \text{of the graph contractions} \\ \hline \text{nt} & \text{Gen} \\ \hline \text{Divisors} \\ \hline 3^{3} \\ 3^{1}6^{2} \\ 3^{5} \\ 3^{3}9^{1} \\ 3^{1}12^{2} \\ 3^{7} \\ \hline 2^{6} \\ 2^{2}4^{2} \\ 3^{7} \\ \hline 2^{6} \\ 2^{2}4^{2} \\ 2^{4}4^{2} \\ 2^{4}4^{2} \\ 2^{4}4^{2} \\ 2^{2}8^{2} \\ 4^{4} \\ 2^{2}4^{4} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $19832 \\ mponent \\ \mathcal{G}_{L} were \\ us \ \mathcal{G}_{R} \\  \mathcal{G}^{L}  \\ 2030 \\ > 1.5 \\ 2030 \\ > 1.5 \\ 2030 \\ > 1.5 \\ 3 \\ 2030 \\ > 1.5 \\ 4.1 \\ 3 \\ 2030 \\ 2.7 \\ 3 \\ 2.7 \\ 3 \\ 2.7 \\ 3 \\ 2.7 \\ 3 \\ 3 \\ 2.7 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $ | $6^{2}$<br>as. The correction of the correction o  | $A_{1}^{2}$ $A_{2}^{2}$ $A_{2}^{2}$ $-$ $-$ $A_{2}^{4}$ $A_{1}^{4}$ $A_{1}^{4$ | $D_{10} \\ D_{12} \\ D$ |

just build a large number of models (and search for realistic ones).

### References

[1] W. Lerche, B.E.W. Nilsson and A.N. Schellekens, Nucl. Phys. B294 (1987) 136; W. Lerche and D. Lüst, Phys. Lett. B187 (1987) 45; W. Lerche, D. Lüst, A.N. Schellekens, Nucl.Phys. B287 (1987) 477; W. Lerche, A.N. Schellekens and N.P. Warner, Phys. Rept. 177 (1989)

[2] F. Englert, H. Nicolai and A.N. Schellekens, Nucl.Phys. B 274 (1986) 315; A. Casher, F. Englert, H. Nicolai and A. Taormina, Phys. Lett. B 162 (1985) 121.

[3] W. Plesken and M. Pohst, Mathematics of Computation, vol 45, No. 171 (1985), pp. 209-221; Mathematics of Computation, Vol. 60, No. 202 (1993), pp. 817-825
[4] V.V. Nikulin, 1980 Math. USSR Izv. 14 103
[5] I.H. Computation N.I.A. Shappa Proc. Paul Sec. Lep.

[5] J.H. Conway and N.J.A. Sloane, Proc. Royal Soc. London, A419 (1988) pp. 259–286

[6] M. Kneser, Archiv der Mathematik 15. X. 1957, Volume 8, Issue 4, 241-250



[8] F.B., T. Kobayashi, and S. Kuwakino, JHEP 1401 (2014) 013 (arXiv:1311.4687)



Fig. 2: Lattices  $(\Gamma_{14})_R$  generated from the 32 *elementary* lattices  $\Xi$ . A lower bound on the number of models is given.



# Lattice Inclusion Graphs for $\mathcal{N} \geq 1$





Fig. 5: Graph showing the right-mover lattices  $(\Gamma_{14})_R$ . Ellipses correspond to  $\mathcal{N} = 1$ , boxes to  $\mathcal{N} \geq 2$ 

