A Classification of Bosonic Supercurrents

Florian Beye
Nagoya University

Abstract

The heterotic covariant lattice (bosonic supercurrent) formalism is revisited and a classification of right-mover $c=9$ lattice SCFTs that potentially lead to chiral four-dimensional models is performed. All these SCFTs are related to certain (asymmetric) orbifold constructions, and 19 SCFTs lead to $\mathcal{N}=1$ spacetime supersymmetry. Modular invariance implies that the corresponding left-mover lattice CFTs can be studied using the theory of lattice genera. Then, using the Minkowski-Siegel mass formula, lower bounds on the number of left-mover CFTs are calculated.

Keywords: Heterotic string, covariant lattice, rational (S)CFT, lattice genera.

Introduction

Heterotic string theory could eventually lead to a unified description of particle physics. However, the moduli space of four-dimensional heterotic strings is huge. At special symmetry enhanced points in the moduli space, a model can be described by rational (S)CFTs. The classification of RCFTs is an open problem, even if one considers only those relevant for chiral models. There are different well known constructions, e.g. Gepner models, asymmetric orbifolds, free fermionic and free bosonic constructions, and they have some overlaps.
This work considers a certain type of free bosonic construction: the covariant lattice theories. Making heavy use of computing power, a classification of right-mover lattice SCFTs that is relevant for chiral models is performed. The result is that there are 80 SCFTs with $\mathcal{N}=0$ and 19 with $\mathcal{N}=1$.
Further, modular invariance requires certain $c=22$ left-mover lattice CFTs. Making use of the theory of lattice genera, a lower bound on the number of these CFTs can be given. Again with heavy use of computing power, a classification of some genera was performed.

The Covariant Lattice Formalism

Let us consider heterotic string theory in four space-time dimensions. Anomaly cancellation requires an internal CFT with central charges $\left(c_{\text {int }}, \tilde{c}_{\text {int }}\right)=(22,9)$:

$$
\begin{array}{r}
\underbrace{c\left(X^{0}\right)+\ldots+c\left(X^{3}\right)}_{4}+\underbrace{c_{\text {int }}}_{22}+\underbrace{c(b c)}_{-26}=0 \\
\underbrace{\tilde{c}\left(X^{0}\right)+\ldots+\tilde{c}\left(X^{3}\right)}_{2}+\underbrace{\tilde{c}\left(\psi^{0}\right)+\ldots+\tilde{c}\left(\psi^{3}\right)}_{9}+\underbrace{\tilde{c}_{\text {int }}}_{9}+\underbrace{\tilde{c}(b c)}_{-26}+\underbrace{\tilde{c}(\beta \gamma)}_{11}=0
\end{array}
$$

Assume a special case: internal CFT is made of free bosons with periodic boundary conditions. \Longrightarrow lattice CFT with even lattice $\Gamma_{22,9}^{\mathrm{int}}[1]$

Bosonic string map [2]:

$$
\psi^{\mu}-\beta \gamma \mathrm{SCFT} \longrightarrow \bar{D}_{5}^{\text {space-time }} \text { root lattice } .
$$

Modular invariance: even and self-dual lattice ("covariant lattice")

$$
\Gamma_{22,14} \supset \Gamma_{22,9}^{\mathrm{int}} \oplus \bar{D}_{5}^{\text {space-time }}
$$

Supersymmetry: $\tilde{c}_{\text {int }}=9$ CFT must realize the $N=1$ super-Virasoro algebra:

$$
\begin{align*}
& T(z) T(w) \sim \frac{\tilde{c}_{\text {int }} / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{(z-w)} \tag{1}\\
& T(z) G(w) \sim \frac{\frac{3}{2} G(w)}{(z-w)^{2}}+\frac{\partial G(w)}{(z-w)} \tag{2}\\
& G(z) G(w) \sim \frac{2 \tilde{c}_{\text {int }} / 3}{(z-w)^{3}}+\frac{2 T(w)}{(z-w)} \tag{3}
\end{align*}
$$

Equation (1): Energy-momentum tensor of 9 chiral bosons $X^{i}(z)$:

$$
T(z)=-\frac{1}{2}: \partial X(z) \cdot \partial X(z):
$$

Equation (2): $G(z)$ is a primary field of conformal weight $3 / 2$:

$$
G(z)=: \sum_{s^{2}=3} A(s) e^{i s \cdot X(z)} \varepsilon(s, \hat{p})+\sum_{r^{2}=1} i B(r) \cdot \partial X(z) e^{i r \cdot X(z)} \varepsilon(r, \hat{p}):
$$

$(r \cdot B(r)=0)$. The vectors r and s generate an odd integral lattice Ξ.
Constraint vectors: For any vector weight $\mathbf{v}=(\underline{ \pm 1,0,0,0,0})$ of $\bar{D}_{5}^{\text {spacetime }}$:

$$
(0, r, \mathbf{v}) \text { and }(0, s, \mathbf{v}) \in \Gamma_{22,14}
$$

Chirality: Existence of $r \in \Xi$ of norm $1 \Longrightarrow \bar{D}_{5}^{\text {space-time }} \subset \bar{D}_{5+n}^{\text {space-time }} \Longrightarrow$ non-chiral
Hermiticity: $G(z)^{\dagger}=\left(z^{*}\right)^{-3} G\left(1 / z^{*}\right) \Longrightarrow A(s)^{*}=A(-s)$.
Then, the $G G$-OPE (3) gives a system of quadratic equations:

$$
\begin{align*}
\sum_{s^{2}=3}|A(s)|^{2} s^{i} s^{j} & =2 \delta^{i j} \\
\sum_{\substack{s^{2}=t^{2}=3 \\
s+t=u}} A(s) A(t) \varepsilon(s, t) & =0 \text { for all } u^{2}=4 \\
\sum_{\substack{s^{2}=t^{2}=3 \\
s+t=u}} A(s) A(t) \varepsilon(s, t)\left(s^{i}-t^{i}\right) & =0 \text { for all } u^{2}=2 \tag{6}
\end{align*}
$$

From $(4) \Longrightarrow \operatorname{dim} \Xi=9 \Longrightarrow$ the constraint vectors span a lattice $\overline{\left(\Gamma_{14}\right)_{\mathrm{R}}}$.
\Longrightarrow The left-mover and right-mover CFTs are rational.
$\Gamma_{22,14} \supset\left(\Gamma_{22}\right)_{\mathrm{L}} \oplus \overline{\left(\Gamma_{14}\right)_{\mathrm{R}}}$.

Classification Problem

Problem of classifying chiral covariant lattice theories can be broken down as follows:

1. Enumerate all possible $\left(\Gamma_{14}\right)_{\mathrm{R}}$. Such a $\left(\Gamma_{14}\right)_{\mathrm{R}}$ is constructed from an odd integral lattice Ξ of rank 9 using the (even) constraint vectors.
2. Given a specific $\left(\Gamma_{14}\right)_{\mathrm{R}}$, enumerate the possible $\left(\Gamma_{22}\right)_{\mathrm{L}}$ allowing modular invariance. 3. Consider possibly inequivalent embeddings of $\left(\Gamma_{22}\right)_{\mathrm{L}} \oplus \overline{\left(\Gamma_{14}\right)_{\mathrm{R}}}$ in a covariant lattice.
Regarding 1 .
A positive definite odd integral lattice Ξ is admissible if
3. Chirality. It is spanned by vectors s with $s^{2}=3$ and contains no vectors r with $r^{2}=1$.
4. Supersymmetry. There exists a solution $A(s)$ to equations (4-6)
It is sufficient to classify lattices that satisfy both of the following:
5. Elementarity. Ξ is admissible and does not contain an admissible sublattice $\Xi_{\text {sub }} \subset \Xi$
of the same dimension.
6. Primitivity. Ξ is not isomorphic to an orthogonal sum $\Xi_{1} \oplus \ldots \oplus \Xi_{k}, k>1$.

Any other admissible Ξ can be built from these building blocks.
Methods. All chiral lattices Ξ are enumerated by induction over $\operatorname{dim} \Xi$, up to $\operatorname{dim} \Xi=9$. The algorithm makes use of ideas from [3]. Equation (4), as a linear equation in the $|A(s)|^{2}$ is solved with standard methods. Equations (5-6) are attacked by calculating Gröbner bases and fixing some symmetries.
Results. In $\operatorname{dim} \Xi \leq 9$ there are in total 26 primitive elementary lattices (Fig. 1). With some combinatorics one constructs in total 32 elementary lattices in $\operatorname{dim} \Xi=9$. To these correspond 32 lattices $\left(\Gamma_{14}\right)_{\mathrm{R}}$ (Fig. 2).
Lattice inclusion digraph: For these $\left(\Gamma_{14}\right)_{\mathrm{R}}$, calculate all (even) overlattices

$$
\left(\Gamma_{14}\right)_{\mathrm{R}}^{\prime} \supset\left(\Gamma_{14}\right)_{\mathrm{R}}
$$

\Longrightarrow create directional graph. It contains 414 nodes and splits into 9 connected components. Out of these 414 nodes, 99 fulfill the chirality condition and 19 lead to $\mathcal{N}=1$ spacetime supersymmetry (Fig. 3). Subgraph with supersymmetric nodes in Fig. 5.

Regarding 2.

The genus: Given two integral lattices Λ_{1} and Λ_{2} with Gram matrices G_{1} and G_{2}. They are said to lie in the same genus if for all primes p there exist p-adic integral matrices U_{p}, such that

$$
U_{p} G_{1} U_{p}^{T}=G_{2}
$$

and if they have the same signature. A genus contains only finitely many lattices. Discriminant forms: Alternative characterization due to Nikulin [4]: Even lattices Λ_{1} and Λ_{2} lie in the same genus if they have the same signature and their discriminant forms are isomorphic:
$\left(\Lambda_{1}^{*} / \Lambda_{1},(\cdot)^{2} \bmod 2\right) \stackrel{\phi}{\cong}\left(\Lambda_{2}^{*} / \Lambda_{2},(\cdot)^{2} \bmod 2\right)$
(the isomorphy already implies that the signature $p_{1}-q_{1}=p_{2}-q_{2}=0 \bmod 8$.)
Self-duality \& glue: Given two even lattices L and R, when does there exist a selfdual lattice $S \supset L \oplus \bar{R}$, such that L and R are the maximal sublattices of S in their \mathbb{R}-span?

- Answer: L and R must have isomorphic discriminant forms (sufficient and necessary).
- Glue: $[l] \times \phi([l]) \subset S$ for $[l] \in L^{*} / L$ and $\phi: L^{*} / L \mapsto R^{*} / R$ isomorphism
- Given a specific R, all lattices L of a given signature that can be paired with R to a self-dual lattice form a genus.
- The bottom line: There are only finitely many lattices $\left(\Gamma_{22}\right)_{\mathrm{L}}$ that can be paired with a given $\left(\Gamma_{14}\right)_{\mathrm{R}}$ and they form a genus.
The Smith-Minkowski-Siegel mass formula (e.g. [5]): For a (positive definite) genus \mathcal{G} the following identity holds:

$$
\sum_{\Lambda^{\prime} \in \mathcal{G}} \frac{1}{\operatorname{Aut}\left(\Lambda^{\prime}\right)}=m(\Lambda), \Lambda \in \mathcal{G}
$$

Here, $m(\Lambda)$ is called the mass of \mathcal{G} and it can be computed from a single $\Lambda \in \mathcal{G}$. The l.h.s. however, depends on all lattices in the genus. The mass formula can be used e.g. as follows:

1. Compute lower bounds on $|\mathcal{G}|: \operatorname{Aut}(\Lambda) \geq 2 . \Longrightarrow|\mathcal{G}| \geq 2 m(\Lambda)$ for any $\Lambda \in \mathcal{G}$. However, this bound is very crude in most cases.
2. Check enumeration of lattices in \mathcal{G} by computing automorphism groups.

Enumeration methods: Kneser's neighborhood method [6], lattice engineering [1]. Results: Some genera were enumerated. For other genera, lower bounds were calculated.

Comments

1. Asymmetric orbifolds. Some of of the lattices $\left(\Gamma_{14}\right)_{R}$ are related to asymmetric orbifolds as described in [7].

$$
\Gamma_{22,14}=\text { Narain Lattice } \oplus{\overline{E_{8}} \xrightarrow{\text { s.t.t twist RM }} \underset{\text { shift LM }}{ }}_{\Gamma_{22,14}^{\prime}}^{\prime}
$$

These are converted to shift-orbifolds by twist-shift correspondence. All lattices $\left(\Gamma_{14}\right)_{R}$ in the inclusion graph can be seen to arise from shift-orbifolds.
2. Model building. Some models were constructed explicitly as asymmetric \mathbf{Z}_{3} orbifolds in [8]. An enumeration now shows that there are 2030 models constructed from Narain lattices with $\overline{E_{6}}$ by the \mathbf{Z}_{3} construction. In turn, the lower bound for models constructed from Narain lattices with $\overline{A_{2}^{3}}$ by \mathbf{Z}_{3} is calculated as $\approx 6.9 \cdot 10^{3}$. However, the expected value is several orders of magnitude higher.
3. Classification of left-mover lattices. In most cases, the genera are to large to be enumerated completely. Instead, one could resort to randomized methods and just build a large number of models (and search for realistic ones).

References

[1] W. Lerche, B.E.W. Nilsson and A.N. Schellekens, Nucl. Phys. B294 (1987) 136; W. Lerche and D. Luist, Phys. Lett. B187 (1987) 45; W. Lerche, D. Lüst, A.N Schellekens, Nucl.Phys. B287 (1987) 477; W. Lerche, A.N. Schellekens and N.P. Warner, Phys. Rept. 177 (1989)
[2] F. Englert, H. Nicolai and A.N. Schellekens, Nucl. Phys. B 274 (1986) 315; A. Casher, F. Englert, H. Nicolai and A. Taormina, Phys. Lett. B 162 (1985) 121.
[3] W. Plesken and M. Pohst, Mathematics of Computation, vol 45, No. 171 (1985), pp. 209-221; Mathematics of Computation, Vol. 60, No. 202 (1993), pp. 817-825 [4] V.V. Nikulin, 1980 Math. USSR Izv. 14103
[5] J.H. Conway and N.J.A. Sloane, Proc. Royal Soc. London, A419 (1988) pp. 259-286
[6] M. Kneser, Archiv der Mathematik 15. X. 1957, Volume 8, Issue 4, 241-250
[7] A.N. Schellekens, and N.P. Warner, Nucl.Phys. B308 (1988) 397
[8] F.B., T. Kobayashi, and S. Kuwakino, JHEP 1401 (2014) 013 (arXiv:1311.4687)

Tables

Component	Genus \mathcal{G}_{R}	Lattice ($\left.\Gamma_{14}\right)_{\text {R }}$	
	$\left\|\mathcal{G}^{\mathrm{L}}\right\|$ Divisors	Δ_{\perp}	Δ_{S}
\mathcal{C}_{1}	313^{1}	E_{6}	$\begin{aligned} & E_{8} \\ & D_{13} \end{aligned}$
\mathcal{C}_{2}	682^{2}	$\begin{aligned} & \hline D_{6} \\ & A_{1}^{2} \end{aligned}$	$\begin{aligned} & E_{8} \\ & D_{12} \\ & D_{14} \end{aligned}$
\mathcal{C}_{3}	1537^{1}	A_{6}	E_{8}
\mathcal{C}_{4}	$3262^{1} 4^{1}$	$\begin{aligned} & A_{1} D_{5} \\ & A_{1} A_{3} \\ & A_{1} \end{aligned}$	$\begin{aligned} & E_{8} \\ & D_{10} \\ & D_{13} \end{aligned}$
\mathcal{C}_{5}	$3822^{1} 6^{1}$	$\begin{aligned} & \hline A_{2} D_{4} \\ & A_{1}^{3} \\ & A_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E_{8} \\ & D_{10} \\ & D_{12} \end{aligned}$
\mathcal{C}_{6}	116315^{1}	$A_{2} A_{4}$	E_{8}
\mathcal{C}_{7}	$40432^{1} 10^{1}$	$\begin{aligned} & A_{1}^{2} A_{4} \\ & A_{4} \end{aligned}$	$\begin{aligned} & E_{8} \\ & D_{10} \end{aligned}$
\mathcal{C}_{8}	$93462^{1} 12^{1}$	$\begin{aligned} & A_{1} A_{2} A_{3} \\ & A_{1} A_{2} \end{aligned}$	$\begin{aligned} & E_{8} \\ & D_{11} \end{aligned}$
\mathcal{C}_{9}	198326^{2}	$\begin{aligned} & A_{1}^{2} A_{2}^{2} \\ & A_{1}^{2} \\ & A_{2}^{2} \end{aligned}$	$\begin{aligned} & \hline E_{8} \\ & D_{10} \\ & D_{10} \\ & D_{12} \end{aligned}$

Fig. 3: Tops of the graph components. The corresponding left-mover lattices in \mathcal{G}_{L} were also classified.

Component	Genus \mathcal{G}_{R}		Lattice $\left(\Gamma_{14}\right)$ R	
	Divisors		Nr. Δ_{\perp}	Z_{N} Twist Orbifold
\mathcal{C}_{1}	3^{3}	2030	A_{2}^{4}	E_{6} / \mathbf{Z}_{3}
	$3^{1} 6^{2}$	$>1.5 \cdot 10^{3}$	A_{1}^{4}	$E_{6} / \mathbf{Z}_{6}^{\mathrm{I}}, E_{6} / \mathbf{Z}_{6}^{\text {II }}$
	3^{5}	$>6.9 \cdot 10^{3}$	A_{2}	$A_{2}^{3} / \mathbf{Z}_{3}$
	$3^{3} 9^{1}$	$>2.7 \cdot 10^{5}$		
	$3^{1} 12^{2}$	$>1.5 \cdot 10^{9}$		$E_{6} / \mathbf{Z}_{12}^{\mathrm{I}}, A_{1} A_{5} / \mathbf{Z}_{6}^{\mathrm{II}}$
	3^{7}	$>4.1 \cdot 10^{8}$	-	
\mathcal{C}_{2}	2^{6}	-	A_{3}	
	$2^{2} 4^{2}$	>3	A_{1}^{4}	
	$2^{2} 4^{2}$	>6	A_{1}^{6}	D_{6} / \mathbf{Z}_{4}
	$2^{4} 4^{2}$	$>1.3 \cdot 10^{5}$	A_{1}^{2}	$A_{1}^{2} D_{4} / \mathbf{Z}_{4}$
	$2^{4} 4^{2}$	$>1.3 \cdot 10^{4}$	-	
	$2^{2} 8^{2}$	$>4.8 \cdot 10^{6}$		$A_{3}^{2} / \mathbf{Z}_{4}, D_{6} / \mathbf{Z}_{8}^{\text {I }}$
	$2^{2} 8^{2}$	$>8.0 \cdot 10^{5}$	-	
	4^{4}	$>8.0 \cdot 10^{5}$	-	
	$2^{2} 4^{4}$	$>1.7 \cdot 10^{9}$	-	
\mathcal{C}_{3}	7^{3}	$>4.0 \cdot 10^{7}$	-	A_{6} / Z_{7}
\mathcal{C}_{4}	$2^{2} 4^{1} 8^{1}$	$>4.4 \cdot 10^{3}$	A_{1}^{2}	
	$2^{1} 4^{1} 8^{2}$	$>2.3 \cdot 10^{9}$		$A_{1} D_{5} / \mathbf{Z}_{8}^{\text {II }}$
\mathcal{C}_{5}	$2^{1} 6^{3}$	$>5.2 \cdot 10^{7}$		$A_{2} D_{4} / \mathbf{Z}_{6}^{\text {II }}$
Fig. 4: Right-mover lattices with $\mathcal{N}=1$.				

Lattice Inclusion Graphs for $\mathcal{N} \geq 1$

