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Outline

• General background of Entanglement Entropy (EE).

• Holographic Entanglement Entropy (HEE).

• HE temperature in higher derivative gravities.

• HE temperature in nonconformal cases.

• Summary.
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Basics of Entanglement Entropy
• General diagnostic: divide quantum system into two parts and use entropy

as measure of correlations between subsystems

• In QFT, typically introduce a (smooth) boundary or entangling surface Σ
which divides the space into two separate regions.

• Integrate out degrees of freedom in outside region. Remaining dof are
described by a density matrix ρA.

• Calculate von Neumann entropy: SEE = −Tr(ρA log ρA).

• Properties:

..1 For pure state SA = SB, otherwise SA ̸= SB.

..2 Strong subadditivity: SA+B+C + SB ≤ SA+B + SB+C.

..3 Subadditivity: SA+B ≤ SA + SB.
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Replica to calculate EE in QFT

• One can follow replica approach to calculate VEE.

• Firstly, one should introduce the Renyi entropy as following

Sn
A = − log trAρ

n
A

n − 1
.

Where the ρn
A = Pe−

∫ 2πn
0 dτHb,n(τ).

• It is easy to see that the entanglement entropy and the Renyi entropy are
related by.

SA = lim
n→1

Sn
A

• The relation provides a practical way to compute EE in field theory.

• Normally, it is difficult to calculate EE even in free field theory.
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Holographic Entanglement Entropy

The holographic entanglement entropy of a subsystem A on the boundary is
given by the area of the (t = const) bulk minimal surface γA

SA =
Area(γA)

4G
, ∂γA = ∂A
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Extensive ways to check HEE
• leading contribution yields area law SEE ∼ Area

cut offd−2

• recover known results for d=2 CFT (Holzhey, Larsen and Wilczek;
Calabrese and Cardy) : SEE = c

3 log( C
πδ

sin(πl
C )).

• SA = SĀ in a pure state, where the A and Ā share the same entangled
surface.

• strong sub-additivity (Headrick and Takayanagi): SA+B ≤ SA + SB

• for even d, connection of universal/logarithmic contribution in SEE to
central charges of boundary CFT, eg, in d = 4

• New proof given by (Lewkowycz and Maldacena)
• Generalization of Euclidean path integral calc’s for SBH , extended to

"periodic" bulk solutions without Killing vector. Where breaking the U(1)
Isometry time direction.

• For AdS/CFT, just translates replica trick for boundary CFT to bulk and
then

• at n=1, linearized gravity eom demand: induced curvature vanishing. The
Euclidean time circle shrinks to zero on an extremal surface in bulk.
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Motivation: ‘First Law’

• First law of thermodynamics: TdS = dE. Just start from this formula.

• In a general quantum system, can we find the analogous relation between
the EE (information) and energy of A:

TentdSA = dEA ?

• The first study in field theory in (F. C. Alcaraz, M. I. Berganza, G. Sierra,
PRL 106, 201601)

• First holographic studied in (Jyotirmoy Bhattacharya, Masahiro Nozaki,
Tadashi Takayanagi, Tomonori Ugajin, PRL 110, 091602)
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General Perturbed Background

• For a given asymptotically AdSd+1 metric as the ground state

ds2
(0) =

R2

z2

(
1

f (z)
dz2 − f (z)dt2 + d⃗x2

d−1

)
consider linear perturbations in the Fefferman-Graham gauge

ds2
(1) =

R2

z2 [hµν(z, t, x⃗)dxµdxν ]

• In terms of HEE formula, the variation of the area A may arise from two
sources:

..1 δxa(ζα), i.e. the variation of the shape of the surface.

..2 δgab, the variation of the bulk geometry.
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Variation of A(γA)

• More explicitly

δA =

∫
dd−1ζ

1
2

√
hhαβδ

(
∂xa

∂ζα
∂xb

∂ζβ
gab

)
= δxA + δgA

which has two contributions

δxA =

∫
dd−1ζ

1
2

√
hhαβ2

∂δxa

∂ζα
∂xb

∂ζβ
gab

δgA =

∫
dd−1ζ

1
2

√
hhαβ ∂xa

∂ζα
∂xb

∂ζβ
δgab

So, the minimal surface condition as a constraint is trivial at the linear
order; one can simply use

δgS =
1

4G

∫
dd−1ζ

1
2

√
h(0)h(0)αβh(1)

αβ

• If we generalize to high derivative gravity, the functional for minimal
surface will be modified due to high derivative gravities’ appear. We will
see in the coming examples.
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HEE temperature in higher derivative gravities
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HEE for 4-dimensional CFT
• The 5-dimensional Lovelock gravity can be realized by adding the

Gauss-Bonnet term to pure Einstein gravity theory [David Lovelock,J.
Math. Phys. 12 (1971)498].

I =
1

2ℓp
3

∫
d5x

√
−g

[
R +

12
L2 +

λ5L2

2
L4

]
, (1)

with

L4 = RµνρσRµνρσ − 4RµνRµν + R2, (2)

and λ5 denote the coupling of Gauss-Bonnet gravity and L stands for the
Radius of AdS background.

• Vacuum state

ds2 =
L̃2

z2 (−dt2 + dz2 + dx2
1 + dx2

2 + dx2
3) (3)

L̃ is the effective AdS radius in Gauss-Bonnet gravity and is defined by
L̃2= L2

f∞
with

f∞ =
1 −

√
1 − 4λ5

2λ5
. (4)
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• The low excited state

ds2
BB =

L2

z2

[
− f (z)dt2 + dx2

1 + dx2
2 + dx2

3 +
dz2

f (z)

]
,

f (z) =
1

2λ5

(
1 −

√
1 − 4λ5

(
1 − z4

z4
h

))
,

where zh is the horizon of the black brane.

ds2 =
L̃2

z2 (−f (z)dt2 +
dz2

g(z)
+ dx2

1 + dx2
2 + dx2

3), (5)

where f (z) ≃ g(z) = 1−mz4. Where m corresponds to thermal excitation.

• The holographic EE should be modified as following form

SA =
2π
ℓ3

p

∫
M

d3x
√

h
[
1 + λ5L2R

]
+

4π
ℓ3

p

∫
∂M

d2x
√

hλ5L2K, (6)

where the integral is evaluated on the bulk surface M, whose boundary is
A, R is the Ricci scalar for the intrinsic geometry of M, and K is the trace
of the extrinsic curvature of the boundary of M, h is the determinant of the
induced metric on M. The second term in the first integral is presented due
to higher derivative gravity in the background.
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• The variation of entanglement entropy in subsystem with a round ball
configuration.

∆SA =
8π2L̃3

ℓ3
p

mR4
0

∫ π
2

ϵ/R0

dx(
1
2

sin x cos4 x − λ5
L2

L̃2
sin x cos4 x)

=
8π2L̃3

ℓ3
p

(
1
10

− 1
5
λ5f∞)mR4

0. (7)

The a and c are equal at the limit λ5 → 0.

c = π2 L̃3

l3
p
(1 − 2λ5f∞) , a = π2 L̃3

l3
p
(1 − 6λ5f∞) . (8)

Where a and c are different types of central charges in dual field theory.
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• In terms of standard Dictionary (S. de Haro, S. N. Solodukhin and K.
Skenderis (’00), K. Skenderis (’02)), the energy momentum tensor (energy
density of subsystem) can be

Ttt =
3mL̃3(1 − 2λ5f∞)

2ℓ3
p

(9)

• The entanglement temperature for roll ball

1
Tent

=
∆S
∆E

=
2π
5

R0. (10)

[Wu-zhong Guo, SH, Jun Tao, JHEP 1308 (2013) 050]

• Similarly, the variation of entanglement entropy in subsystem with stripe
configuration

∆SA =
2mL̃3πl2

0z2
∗

(1 + 2λf∞)ℓ3
p

∫ 1

ϵ/z∗

duu
√

1 − u6

=
mL̃3√πl2

0l2

20(1 + 2λf∞)3ℓ3
p

Γ( 1
3 )Γ(

1
6 )

2

Γ( 2
3 )

2Γ( 5
6 )

≃ a
2π2

m
√
πl2

0l2

10
Γ( 1

3 )Γ(
1
6 )

2

Γ( 2
3 )

2Γ( 5
6 )
, (11)
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• The energy

∆E =
2πm(1 − 2f∞λ5)L̃3R3

0

ℓ3
p

. (12)

• The entanglement temperature for strip

1
Tent

=
∆S
∆E

=
a
c

√
π

30
Γ( 1

3 )Γ(
1
6 )

2

Γ( 2
3 )

2Γ( 5
6 )

l. (13)

• Entanglement temperature can also studied in D=6 CFT with dual
7-dimensional Lovelock gravity with same way. The result is similar as
what I have shown here.
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HEE temperature in non-conformal cases
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Potential reconstruction

• The action in string frame [SH, Danning Li, Jun-Bao Wu, JHEP 1310
(2013) 142]

S5D =
1

16πG5

∫
d5x
√

−gSe−2ϕ
(

RS + 4∂µϕ∂
µϕ

− VS(ϕ)−
Z(ϕ)
4g2

g
e

−4ϕ
3 FµνFµν

)
, (14)

where the action (14) is written in string frame, Fµν = ∂µAν − ∂νAµ is
the Maxwell field.

• The background ansatz in Einstein frame

ds2
E =

L2e2Ae

z2

(
−f (z)dt2 +

dz2

f (z)
+ dxidxi

)
,

=
L2e2As− 4ϕ

3

z2

(
−f (z)dt2 +

dz2

f (z)
+ dxidxi

)
, (15)

with Ae = As − 2ϕ/3.
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• The general background solution

ϕ(z) =

∫ z

0

e2As(x)
(

3
2

∫ x
0 y2e−2As(y)As(y)′2 dy + ϕ1

)
x2 dx (16)

+
3As(z)

2
+ ϕ0, (17)

A0(z) = A00 + A01

(∫ z

0

ye
2ϕ(y)

3 −As(y)

Z(ϕ(y))
dy

)
, (18)

f (z) =

∫ z

0
x3e2ϕ(x)−3As(x)

A01
2
(∫ x

0
ye

2ϕ(y)
3 −As(y)

Z(ϕ(y)) dy
)

g2
gL2 + f1

 dx (19)

+f0, (20)

VE(z) =
e−2As(z)+ 4ϕ(z)

3 z2f (z)
L2 2

(
− e−2As(z)+ 4ϕ(z)

3 Z(ϕ(z))z2A′
0(z)

2

4g2
gL2f (z)

−
2
(
3 + 3z2As(z)′2 + 4zϕ′(z) + z2ϕ′(z)2 − 2zAs(z)′ (3 + 2zϕ′(z))

)
z2

− f ′(z) (−3 + 3zAs(z)′ − 2zϕ′(z))
2zf (z)

)
, (21)

where the ϕ0,A00,A01, f0, f1 are all integration constants and can be
determined by suitable UV and IR boundary conditions.
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The first zero temperature
background

• We have already figured out systematical algorithm to obtain general
gravity solutions with dilaton potential like ϕ2, ϕ3, ϕ4, ϕ6, ... in EDM
system (SH, Danning Li, work in progress).

• The first analytical zero temperature solution

Aet1(z) = log

(
z

z0 sinh( z
z0
)

)
,

ft1(z) = 1,

ϕt1(z) =
3z
2z0

,

VEt1(ϕ) = −
12 + 9 sinh2

(
2ϕt1

3

)
L2 . (22)

To simplify following analysis, we have set p1 = 3
2z0

. We have checked
that this solution is N = 1 BPS solution in paper [SH, Ya-Peng Hu,
Jian-Hui Zhang,JHEP 1112 (2011) 078].
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• We just only show the two new nontrivial gravity solutions here. The
series expansion of the first black hole solution

ϕb1(z) = p1z + p3z3 +
((405f41p1 + 612p2

1p3)z5)

3240

+
(8100f41p13 + 229635f41p3 + 10944p4

1p3 + 133164p1p2
3)z

7

612360
+O(z7)

fb1(z) = 1 − f41z4 − 4
27

f41p2
1z6 +

−13f41p4
1

1215
− f41p1p3

5
)z8

+
(−10935f 2

41p2
1 − 328f41p6

1 − 37908f41p3
1p3 − 78732f41p2

3)z
10

688905
+O(z10)

Aeb1(z) = −(2/27)p2
1z2 + (

(4p4
1)

3645
− (2p1p3)

15
)z4

+
(−54675f41p2

1 − 128p6
1 − 67068p3

1p3 − 393660p2
3)z

6)

4133430

+
((−50625f41p4

1 + 64p8
1 − 3444525f41p1p3 − 74952p5

1p3 − 2943216p2
1p2

3)z
8

62001450
+ O(z8). (23)
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The second zero temperature
background

• The second analytical zero temperature solution

Aet2(z) = − log
(

1 +
z
z0

)
, (24)

ft2(z) = 1, (25)

ϕt2(z) = 3
√

2 sinh−1
(√

z
z0

)
,

VEt2(ϕt2) = −12
L2 −

42 sinh4
(

ϕt2
3
√

2

)
L2 −

42 sinh2
(

ϕt2
3
√

2

)
L2 . (26)

Which is so called the second zero temperature solution.
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• The series expansion of the second black hole solution

ϕb2(z) = p 1
2

√
z − 1

108
p3

1
2
z3/2 +

p5
1
2
z5/2

4320
+

(
653184p 7

2
− 5p7

1
2

)
z7/2

653184

+
z9/2

(
18895680f42p 1

2
+ 515p9

1
2
+ 171

2

(
653184p 7

2
− 5p7

1
2

)
p2

1
2

)
302330880

+
z11/2

(
69284160f42p3

1
2
+ 1135p11

1
2
+ 517

2

(
653184p 7

2
− 5p7

1
2

)
p4

1
2

)
13302558720

+ O(z
11
2 ),

fb2(z) = 1 − f42z4 − 1
15

2f42p2
1
2
z5 − 1

162
f42p4

1
2
z6 −

f42p6
1
2
z7

10206

+ z8

−
f42p8

1
2

1119744
−

f42

(
653184p 7

2
− 5p7

1
2

)
p 1

2

5598720


+

z9
(
−35f42p10

1
2
− 7f42

(
653184p 7

2
− 5p7

1
2

)
p3

1
2
− 839808f 2

42p2
1
2

)
151165440

+ O(z10), (27)
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•

Aeb2(z) = − 1
18

p2
1
2
z +

1
648

p4
1
2
z2 −

p6
1
2
z3

17496
+

p8
1
2

559872
z4

−
p 1

2

(
653184p 7

2
− 5p7

1
2

)
8398080

z4

+
z5
(
−2519424f42p2

1
2
− 109p10

1
2
− 9

(
653184p 7

2
− 5p7

1
2

)
p3

1
2

)
604661760

+
z6
(
−37791360f42p4

1
2
+ 325p12

1
2
− 159

(
653184p 7

2
− 5p7

1
2

)
p5

1
2

)
228562145280

+ O(z6). (28)
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Construct boundary energy
momentum tensor

• The total action

Iren = S5D + SGH + Scount

=
1

16πG5

∫
M

d5x
√

−gE

(
R − 4

3
∂µϕ∂

µϕ− VE(ϕ)−
Z(ϕ)
4g2

g
FµνFµν

)
− 1

16πG5

∫
∂M

d4x
√
−γ
[
2K − 6

L
+

8λ2ϕ
2

3L
+

64λ4ϕ
4

9L2 +
512λ6ϕ

6

81L3

]
,

(29)

with λ2, λ4, λ6 are coefficients of count terms ϕ2, ϕ4, ϕ6 introduced here.

• In terms of on-shell action, we can confirm that the black hole solutions is
thermal excitation of zero temperature solutions in these two groups of
solutions.
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Boundary energy momentum
tensor

• Boundary terms introduced in first group of solution [SH, Danning Li,
Jun-Bao Wu, JHEP 1310 (2013) 142]

λ2 =
1
4
, λ4 = 0,= λ6 = 0. (30)

The energy momentum tensor of the first solution

Ttt =
L3

16πG5
(

3
2

f41 − p1(
2p3

1

81
+

2
3

p3)). (31)

• Boundary terms introduced in second group of solution

λ2 =
1
8
, λ4 =

L
1152

, λ6 =
L2

414720
. (32)

The energy momentum tensor of the second solution

Ttt =
L3

16πG5

3f42

2
−

p8
1
2

5511240
−

p 1
2
p 7

2

2

 . (33)
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Entanglement temperature in these
two solutions

• Entanglement temperature in first group of solution

1
Tent

=
∆Sfst

∆Efst

=
(0.350546f41 − 0.409903p1p3)

LsΓ( 1
6 )

2

π2Γ( 2
3 )

2

( 3
2 f41 − 2

3 p1p3)
. (34)

One can find that the Tent ∼ [E] through dimensional analysis with
[f41] = [E4], [p1] = [E1], [p3] = [E3], [Ls] = [E−1].

• Entanglement temperature in second group of solution

1
Tent

=
∆Ssnd

∆Esnd

=
(0.350546f42 − 0.23911p 7

2
p 1

2
)(

3f42
2 −

p 1
2

p 7
2

2

) LsΓ(
1
6 )

2

π2Γ( 2
3 )

2
(35)
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• In the first group of solutions, the parameter p3 is related to condensation
of the dimension 3 operator O3 which holographically dual to scalar ϕb1 at
special temperature. In this case, the temperature is determined by the f41

with fixing non-vanishing source p1.

• In the second group of solutions, 1
653184

(
653184p 7

2
− 5p7

1
2

)
corresponds

to condensation of operator O 7
2

with dimension 7
2 living on the boundary.

Where the condensation is induced by the source p 1
2
.

• One should note that there should be two ways quantize ϕb1,b2 by
imposing Dirichlet or Neumann conditions at the aAdS boundary, which
are often called standard and alternative quantization respectively, and lead
to two different QFTs.

• Non-conformal entanglement temperatures do not only depend on
geometric data of the subsystem but also data of boundary gauge theory.
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Summary and future direction
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Summary and Future Plans

• From two kinds of gravity theories, we confirm that there is first law like
theorem about HEE in low excitation states.

• HE temperature is also helpful to understand Covariant Entropy bound.

• HEE in higher spin theory, definition and thermal dynamical properties in
higher dimensional cases.

• Using localization technique to study the SUSY version of S modified EE.

• ...
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Thanks for your attention!
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