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Outline

4-dimensional CFT

® General background of Entanglement Entropy (EE).
e Holographic Entanglement Entropy (HEE).
e HE temperature in higher derivative gravities.

e HE temperature in nonconformal cases.

® Summary.
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Replica to calculate EE in QFT

One can follow replica approach to calculate VEE.
Firstly, one should introduce the Renyi entropy as following

_logtrapy

S}‘l:
A n—1

Where the p}y = Pe™ Jo™" Ay (7).
It is easy to see that the entanglement entropy and the Renyi entropy are
related by.
S4 = lim SX
n—1
The relation provides a practical way to compute EE in field theory.

Normally, it is difficult to calculate EE even in free field theory.
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Holographic Entanglement Entropy

. (Ryu & Takayanadi "06)
Holographic Entanglement Entropy:

AdS boundary
boundary
conformalfield
theory

gravitational

AdS bqu potentlal/redshlﬂ
v

The holographic entanglement entropy of a subsystem A on the boundary is
given by the area of the (t = const) bulk minimal surface y4
Area(a)

SA: T, 8’YA28A



Extensive ways to check HEE
Area

cut offd—2

® recover known results for d=2 CFT (Holzhey, Larsen and Wilczek;
Calabrese and Cardy) : Sgr = £ log( 5 sin(%)).

e S, = S; in a pure state, where the A and A share the same entangled

Introduction of . . . .
general back ® leading contribution yields area law Sgr ~
ground

HEE for surface.

4-dimensional CFT

® strong sub-additivity (Headrick and Takayanagi): Sa4+s < Sa + Sp

e for even d, connection of universal/logarithmic contribution in Sgg to
central charges of boundary CFT, eg, ind = 4

® New proof given by (Lewkowycz and Maldacena)

® Generalization of Euclidean path integral calc’s for Spy, extended to
"periodic" bulk solutions without Killing vector. Where breaking the U(1)
Isometry time direction.

e For AdS/CFT, just translates replica trick for boundary CFT to bulk and
then

AT =21 — 2mn —> log Z(n) =log Tt [p"] = —I4rau(n)
—> §=-nd,logZ(n) —nlog Z(1)] ‘”:l

® at n=1, linearized gravity eom demand: induced curvature vanishing. The
Euclidean time circle shrinks to zero on an extremal surface in bulk.
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Motivation: ‘First Law’

First law of thermodynamics: 7dS = dE. Just start from this formula.
In a general quantum system, can we find the analogous relation between
the EE (information) and energy of A:

TenidSa = dE4 7
The first study in field theory in (F. C. Alcaraz, M. 1. Berganza, G. Sierra,
PRL 106, 201601)

First holographic studied in (Jyotirmoy Bhattacharya, Masahiro Nozaki,
Tadashi Takayanagi, Tomonori Ugajin, PRL 110, 091602)
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General Perturbed Background

e For a given asymptotically AdS,; metric as the ground state
R (1 5 2 2
dstoy = = ( =~dz’ — f(z)d’* + d¥;_
(0) 2 (f(Z) f(2) d—1
consider linear perturbations in the Fefferman-Graham gauge
2

ds%l) = % [ (z, 1, X)dx* dx”]

® In terms of HEE formula, the variation of the area A may arise from two
sources:

@ 0x“(¢%), i.e. the variation of the shape of the surface.
® Jg.p, the variation of the bulk geometry.



Variation of A(74)

Introduction of
general back ..
ground ® More explicitly

_ [ gL gess (0% 02 N _
6A_/d CZ\/Eh 5(8<aagﬁg0b = 0,A + 5,A

+-dimensional CFT which has two contributions

_ d—1 1 ap 35)‘(137)61’
dfo/d <2\/Eh 28<a 3c3 %

_ d—1 1 af ox“ C?x
§gA7/d C5 Vi ¢ 9¢8 8

So, the minimal surface condition as a constraint is trivial at the linear
order; one can simply use

08 = 410 ' ‘g VRO ROF ()

e If we generalize to high derivative gravity, the functional for minimal
surface will be modified due to high derivative gravities’ appear. We will
see in the coming examples.
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HEE for 4-dimensional CFT

® The 5-dimensional Lovelock gravity can be realized by adding the
Gauss-Bonnet term to pure Einstein gravity theory [David Lovelock,J.

HE
HE temperaure Math. Phys. 12 (1971)498].
derivative
gravities 1 / 5 |: 12 )\5L2
DHEE I= d.x\/_g R+ —=+ Ly ) (1)
Ammf:.:sional CFT 2£p 3 L2 2
with
Ls = R poR*P° — 4R, R* + R, 2

and As denote the coupling of Gauss-Bonnet gravity and L stands for the
Radius of AdS background.

® Vacuum state

2

ds* = = (—di* +dZ* + dxi + dx3 + dx3) 3)
L is the effective AdS radius in Gauss-Bonnet gravity and is defined by
L= /% with

1—T—4X

s “

Jo =



® The low excited state

L’ dz?
dsy z—[— zdtz-l-dxz—l-dxz—i—dxz—i——},
B = 2 (@) 1 2 3 @
HE temperature 1 Z4
in high f(z 1- 1—4)\51——>,
i @ =55 (=3
gravities
P where z;, is the horizon of the black brane.
2 42
ds® = Z—z(ff(z)dz2 + —g(zz) + dx% + dx% + dx%), 5)

where f(z) ~ g(z) = 1 — mz*. Where m corresponds to thermal excitation.

® The holographic EE should be modified as following form

Sy = 2;/d Vi [14+ AsL’R] +‘Zr/ PV, (6)

where the integral is evaluated on the bulk surface M, whose boundary is
A, R is the Ricci scalar for the intrinsic geometry of M, and I is the trace
of the extrinsic curvature of the boundary of M, & is the determinant of the
induced metric on M. The second term in the first integral is presented due
to higher derivative gravity in the background.



® The variation of entanglement entropy in subsystem with a round ball

LE12 (e configuration.
in higher
derivative =3 s 2
gravities 8L 4 2 1 . 4
HEE for ASy = =— MRy dx(= sinxcos” x — )\s~ sinx cos® x)
4-dimensional CFT e 7 €/Ro 2
8772L3
== )\;f mR;. @)
I (10 o)

The a and ¢ are equal at the limit As — 0.

73 73

c:7r1;—3(1—2)\5fo<,)7 a:7r1;—3(1—6)\5foo). (8)

Where a and c are different types of central charges in dual field theory.



® In terms of standard Dictionary (S. de Haro, S. N. Solodukhin and K.
Skenderis ("00), K. Skenderis (’02)), the energy momentum tensor (energy
density of subsystem) can be

~3mL (1 — 2)Msf0)

HE temperature Ttt - 3 (9)
in higher ZZﬁ
derivative
e e The entanglement temperature for roll ball
4-dimensional CFT
1 AS  2m
_ 20 M (10)
Tew AE 5

[Wu-zhong Guo, SH, Jun Tao, JHEP 1308 (2013) 050]

e Similarly, the variation of entanglement entropy in subsystem with stripe
configuration

322 1
ASy = M/ duur/1 — ub

(1+ 2Xoo )3
mL* /P T(3)P(5)
20(1 42X )26 T(3)°T(2)
a my/mhP F(%)F(é)
a2 10 T(2)er(d)

2
’

an




® The energy

HE temperature

in higher
deri\{a.ti\fe 2 (1 _ 2f A )L R
S AE = TS T e SR R0, (12)
4-dimensional CFT g
® The entanglement temperature for strip
L _AS_ayRIONGY, )
Tew  AE ¢ 30 T(2)20(3) F(g)

e Entanglement temperature can also studied in D=6 CFT with dual
7-dimensional Lovelock gravity with same way. The result is similar as
what I have shown here.
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Potential reconstruction

® The action in string frame [SH, Danning Li, Jun-Bao Wu, JHEP 1310
(2013) 142]

Ssp = : /dsx\/—gse*w(zesﬂama%

A-di H‘:‘v\m Al CFT 167TG5
Vo(6) = G Fun™), (14)
Non-conformal gravity where the action (14) is written in string frame, F,,, = 0,4, — 0, A, is

background

the Maxwell field.

® The background ansatz in Einstein frame

[2o%e
dsp = =% (—f(z)dt2+

72

2 . .
—dz + dx'dx') ,
49

f(@)
B 22— , dZ i
= 272 (—f(Z)dl +%+dxdx> ) (15)

with A, = A, — 2¢/3.



® The general background solution

BETNE) (% JE e OA(y) dy + ¢,)
o0 = |
0

S d (I¢
3A,(z .
+ 2(2) + ¢07 (1 ‘
( ) . yez¢3()') —As(y) y
Ald) = Aw+A / Yo a4y, (
’ PERL T Ze0)
2¢(y) —Ay(y)
. Aot ( J L 23(4) d)’>
2 )
flz) = / PP — +h a1
Non-conformal gravity 0 8 gL
+fo, (2
o ()4 42Q) o ()4 42 ,
R SR ik Py G s 4 )
L2 4g:L?f (2)
2 (34 3274:(2)"” + 429" (2) + 2/ (2)* — 22A,(2)’ (3 + 22¢/(2))
ZZ
(@) (=343, —2Z¢/(Z))) @
27f(2) '

where the ¢o, Ao, Ao1, fo,fi are all integration constants and can be
determined by suitable UV and IR boundary conditions.
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The first zero temperature
background

® We have already figured out systematical algorithm to obtain general
gravity solutions with dilaton potential like ¢2, ¢°, ¢*, ¢°, ... in EDM
system (SH, Danning Li, work in progress).

® The first analytical zero temperature solution

z
A, = 1 _ |,
n(2) o8 (ZO smh(%))

fa(@) = 1,
3z
Pu(z) = 2%’
12+ 9sinh® (241
Ven(¢) = - (22)
To simplify following analysis, we have set p; = % We have checked

that this solution is N = 1 BPS solution in paper [SH, Ya-Peng Hu,
Jian-Hui Zhang, JHEP 1112 (2011) 078].



® We just only show the two new nontrivial gravity solutions here. The
series expansion of the first black hole solution

B1(z)

HEE for
4-dimensional CFT

S (2)

Non-conformal gravity
background

Acpi (Z)

((405fup1 + 612p2p3)2°)

plz-Hvsz3 + 3240

(8100fup1° + 229635f11p3 + 10944ptps + 133164p,p3)7’
612360

+0(")

4 . 56 —13fupi  fupips, s
1 —fuz — — -
Jfuz 27f4|p1z + 215 5 )z

(—10935f5ipi — 328fnp} — 37908fupips — 78732fnp3)z"

688905
—|—0(z'0)
4
g + (S0 Coipa)).
(—54675f1p? — 128p° — 67068p3ps — 393660p%)2°)
4133430
((—50625fu1p* + 64p° — 3444525f,1p1ps — T4952p ps — 2943
62001450

O(ZS).



The second zero temperature
background

i ® The second analytical zero temperature solution

4-dimensional CFT

Awp(z) = —log<l—|—§)7 (24)
kl:lol{confo:]mal gravity ﬁz (Z ) = 1 5 (25)
dn(x) = Nisinh*‘( f)
0

12 42 sinh* ( di}) 42 sinh® (:{’/22

I L L - 0

VErZ (d)zz)

Which is so called the second zero temperature solution.
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® The series expansion of the second black hole solution

P2 (2)

fin(2)

n (653184p1 - Spl) 77
PV p31 27 + + Soe
108 4320 653184
272 (18895680fpy + 5159, + ‘It (653184p; — 5p7 ) p} )
3 3 2 2
302330880
2172 (69284160f0p), + 1135p}) + 37 (653184p3 — 5p} ) p'
3 7 2 2
13302558720
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0(z7),

6 7

_ 1 s . Jferiz

| — find* — —2 - _
ozl = 3Hariz 162f42p < 7 10206

feply  fi (653184p3 = 5p7 ) p)
1119744 5598720
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1, 1 plz Py,
Au(@) = —{gPiet ggPie ~ a6 T 550872°
Py (653184;77 —Spl) )

8398080
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Construct boundary energy
momentum tensor

® The total action

I ren

SSD + SGH + Scoum

1 s (e 4 p, _Z(9) v
e /M /=g (R §0u00°0 —Vi(9) = G5 FuF

1 6 8Mag? 64Nt 5122600
- /—~ 12K — =
167Gs aMd4x 7[ T3 T T Rin ]

(29)

with A2, A4, Ae are coefficients of count terms ¢, ¢*, ¢° introduced here.

e In terms of on-shell action, we can confirm that the black hole solutions is

thermal excitation of zero temperature solutions in these two groups of

solutions.



Boundary energy momentum
tensor

® Boundary terms introduced in first group of solution [SH, Danning Li,
Jun-Bao Wu, JHEP 1310 (2013) 142]

timensionl 1 A2 = i, A =0,=X=0. (30)

The energy momentum tensor of the first solution

3
Non-conformal gravity L
background it (
167TG 2

20 2
f41 Pl(ﬁ +3p3))- (€1))

® Boundary terms introduced in second group of solution

1 L L’
A =g M = 115302 =m0 (32

The energy momentum tensor of the second solution

_ v @_L_% (33)
©16mGs | 2 5511240 2 ’
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Entanglement temperature in these
two solutions

e Entanglement temperature in first group of solution

1 _ ASpy
Tem B AEfst
L,T
B (0.350546f41 — 0.409903p1p3) 21‘(( >)2 .
B (fn — 2pips) .
One can find that the .., ~ [E] through dimensional analysis with
[fu] = [EY], ] = [E'], [ps] = [E°), [L) = [E™").
e Entanglement temperature in second group of solution
1 _ ASsnd
Tent B AEsrwi
(0.350546f1, — 0.23911p1py) L, F(l)
. 272 6 (35)
2
3

<3fi _ M ) w2 (
2 2
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Entanglement
temeperature in
Non-conformal gravity
background

In the first group of solutions, the parameter pj3 is related to condensation
of the dimension 3 operator O3 which holographically dual to scalar ¢ at
special temperature. In this case, the temperature is determined by the fa;
with fixing non-vanishing source p.

In the second group of solutions, 652184 <653184p7 - 5p7l> corresponds

to condensation of operator O with dimension 2 5 living on the boundary.
Where the condensation is induced by the source p; .
2

One should note that there should be two ways quantize ¢ 2 by
imposing Dirichlet or Neumann conditions at the aAdS boundary, which
are often called standard and alternative quantization respectively, and lead
to two different QFTs.

Non-conformal entanglement temperatures do not only depend on
geometric data of the subsystem but also data of boundary gauge theory.
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Summary and Future Plans

From two kinds of gravity theories, we confirm that there is first law like
theorem about HEE in low excitation states.

HE temperature is also helpful to understand Covariant Entropy bound.

HEE in higher spin theory, definition and thermal dynamical properties in
higher dimensional cases.

Using localization technique to study the SUSY version of S modified EE.



Thanks for your attention!
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