Higher spin AdS₃ holography and superstring theory

Yasuaki Hikida (Rikkyo University)

Based on collaborations with T. Creutzig (U. of Alberta) & P. Rønne (U. of Luxembourg) JHEP11(2013)038; arXiv:1406.1521; in progress

July 26th (2014)@YITP workshop "Strings and Fields"

Motivation

- Gauge theory of higher spin fields
 - Natural extension of electromagnetism (s=1) and gravity (s=2)
 - A toy model for the tensionless limit of superstring theory
 - Vasiliev theory is famous as a non-trivial theory
- Applications to AdS/CFT
 - More tractable AdS/CFT correspondence can be constructed than using superstring theory
 - Examples
 - 4d Vasiliev theory \Leftrightarrow 3d O(N) vector model [Klebanov-Polyakov '02]
 - 3d Vasiliev theory \Leftrightarrow 2d large N minimal model [Gaberdiel-Gopakumar '10]

HS ⇔ String

- Past trials
 - HS from String
 - Vasiliev theory as a truncation of the tensionless limit of string theory?
 - Superstring theory includes a lot of massive HS states
 - Sting from HS
 - String theory as a broken phase of HS theory? [Gross '88]
 - HS symmetry is restored at the high energy limit of string theory
- Developments via AdS/CFT
 - ABJ triality [Chang-Minwalla-Sharma-Yin '12]
 - 4d extended Vasiliev \Leftrightarrow 3d ABJ theory \Leftrightarrow Superstrings on AdS₄ x CP³
 - AdS₃ version [Gaberdiel-Gopakumar, CHR '13-'14]
 - 3d extended Vasiliev ⇔ 2d coset model ⇔ Superstrings on AdS₃ x M₇

Plan of the talk

- ✓ Introduction
- ABJ triality
- AdS₃ version
- Conclusion

ABJ triality

AdS_4/CFT_3

- Original HS/CFT duality
 - 3d U(N) vector model ⇔ 4d Vasiliev theory
- ABJ triality
 - CFT side: Coupled with $U(N)_k \times U(M)_{-k}$ Chern-Simons gauge field (ABJ theory)
 - HS side: 4d extended Vasiliev theory with U(M) Chan-Paton factor
 - String side: Also dual to superstrings on AdS₄ x CP³

[Chang-Minwalla-Sharma-Yin '12]

ABJ triality

- Without CP factor
 - U(N) vector model includes free fields $\phi_i \,\,(i=1,2,\ldots,N)$
 - U(N) invariant currents from CFT ⇔ HS gauge fields

$$J_{\mu_1\dots\mu_s} = \bar{\phi}_i \partial_{(\mu_1} \cdots \partial_{\mu_s)} \phi^i \qquad \qquad \varphi_{\mu_1\dots\mu_s}$$

• With U(M) CP factor

- $(\alpha = 1, 2, \dots, M)$
- ABJ theory includes (N x M) matrix valued bi-fundamentals $A^{lpha}_i, B^{\jmath}_{eta}$
- Relation to superstring theory
 - Operator dual to string: $tr[ABAB \cdots AB]$
 - Need CP factor & U(M) invariance

AdS₃ version

AdS_3/CFT_2

[CHR '13] (c.f. [Gaberdiel-Gopakumar '13] for M=2)

- Gaberdiel-Gopakumar proposal '10
 - − 3d Vasiliev theory ⇔ 2d large N minimal model
- Extension
 - HS side: 3d Vasiliev theory with U(M) CP factor
 - CFT side: 2d Grassmannian-like model at 't Hooft limit

$$\frac{\mathrm{su}(N+M)_k \oplus \mathrm{so}(2NM)_1}{\mathrm{su}(N)_{k+M} \oplus \mathrm{u}(1)} \quad \left(N, k \to \infty, \ M, \lambda = \frac{N}{N+k+M} : \mathrm{finite}\right)$$

- Evidence
 - M=1 case reduces to the known duality without CP factor
 - The theory consists of bi-fundamentals at the free limit (k>>N)
 - Match of 1-loop partition functions [CHR, Candu-Vollenweider '13]

Dual superstring theories

- With Wolf space model (*M*=2) [Gaberdiel-Gopakumar '13]
 - GOOD: Large N=4 SUSY (or small N=4 for k>>N)
 - Dual superstring theory is known
 - Comparison with known results for small N=4 [Gaberdiel-Gopakumar '14]
 - BAD: Only consider M=2
 - Corresponds to subsector with String Bit = Higher Spin Particle
- With Grassmannian model [CHR '13]
 - GOOD: Possible to deal with generic M>2
 - Supposed to be dual to the whole string theory
 - BAD: N=2 SUSY is not enough to determine dual superstring theory
 - SUSY is enhanced to N=3 at k=N+M [CHR '14]

N=3 holography

[CHR '14, in progress] (c.f. [Beccaria-Candu-Gaberdiel-Groher '13] for n=0)

- Triality with N=3 SUSY
 - CFT side: 2d N=3 critical level model

 $\frac{\operatorname{su}(N+M)_{N+M} \oplus \operatorname{so}(2NM)_1}{\operatorname{su}(N)_{N+2M} \oplus \operatorname{su}(M)_{M+2N} \oplus \operatorname{u}(1)} (\oplus \operatorname{su}(M)_{M+2N}), \quad M = 2^{n-1}$

- HS side: 3d Vasiliev theory with N=2n+1 extended SUSY
- String side: AdS₃ x SU(3)/U(1) (or SO(5)/SO(3)) [Argurio-Giveon-Shomer '00]
- Evidence
 - HS/CFT duality: well understood
 - Match of one-loop partition functions and symmetry at low spins
 - String/CFT duality: less understood
 - N=3 SUSY, BPS spectrum, marginal deformations

Conclusion

Conclusion

- AdS₃ version of ABJ triality
 - 3d Vasiliev theory ⇔ 2d coset model ⇔ Superstrings on AdS₃ x M₇
 - HS fields with U(M) CP factor + N=3 extended SUSY
 - HS/CFT duality has strong supports
- Future directions
 - More study on the String/CFT duality
 - Marginal deformations should break HS symmetry
 - What does *M* means in dual string theory?
 - Construct corresponding brane configuration
 - More study on the String/HS duality
 - Higgs mechanism of higher spin gauge theory