#### Dissipative Models and Nonequilibrium Statistical Approach

#### Shoichi Ichinose

ichinose@u-shizuoka-ken.ac.jp Laboratory of Physics, SFNS, University of Shizuoka

Kyoto Workshop on "Strings and Fields" YITP 2014 ,7/22-26, Kyoto, Japan

#### Sec 1. Introduction: <u>a.</u>Boltzmann eq.

## $\frac{1}{h} \{ f_n(x+h \ u_{n-1}(x), \ v) - f_{n-1}(x,v) \} = \Omega_n$ Boltzmann Equation, 1872

#### 2nd Law of Thermodynamics

Dynamical Origin: Einstein Theory (Geometry of "dynamics") ?

- **u**(**x**, 't'): Velocity distribution of Fluid Matter
- Size of fluid-particles: L Atomic  $(10^{-10}m) \ll L \le$  Optical Microscope  $(10^{-6})m$
- Temporal development of Distribution Function f('t', x, v): probability of particle having velocity v at space x and time 't'

#### Sec 1. Introduction: <u>b.</u>Energy with Dissipation

Notion of Energy is obscure when Dissipation occurs. Consider the movement of a particle under the influence of the friction force.

The emergent heat (energy) during the period  $[t_1, t_2]$  can **not** be written as.

$$\int_{x_1}^{x_2} F_{\text{friction}} dx = [E\{x(t), \dot{x}(t)\}]_{t_1}^{t_2} = E|_{t_2} - E|_{t_1},$$
$$x_1 = x(t_1), x_2 = x(t_2)$$
(1)

where x(t): Orbit (path) of Particle.

# Sec 1. Introduction: <u>c.</u>Discrete Morse Flow Theory(DMFT)

- Time should be re-considered, when dissipation occurs.
   → Step-Wise approach to time-development.
- Connection between step n and step n-1 is determined by the minimal energy principle.
- Time is "emergent" from the principle.
- Direction of flow (arrow of time) is built in from the beginning.

New approach to Statistical Fluctuation Discrete Morse Flow Method(Kikuchi, '91) Holography (AdS/CFT, '98) Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model a. Model Figure



Figure: The spring-block model, (4).

Kyoto Workshop on "Strings and Fields" YI / 39 Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model <u>b.</u>Energy Functional

$$K_{n}(x) = V(x) - hnk\bar{V}x + \frac{\eta}{2h}(x - x_{n-1})^{2} + \frac{m}{2h^{2}}(x - 2x_{n-1} + x_{n-2})^{2} + K_{n}^{0}, V(x) = \frac{kx^{2}}{2} + k\bar{\ell}x, \qquad (2)$$

Kyoto Workshop on "Strings and Fields" YI / 39

Shoichi Ichinose (Univ. of Shizuoka) Dissipative Models and Nonequilibrium Stati

#### Sec 2. Spring-Block Model c. Variat. Principle

Energy Minimal Principle

$$\frac{\delta K_n(x)}{\delta x}\bigg|_{x=x_n}=0$$

$$\frac{k}{m}(x_{n}+\bar{\ell}-nh\bar{V})+\frac{1}{h^{2}}(x_{n}-2x_{n-1}+x_{n-2})+\frac{\eta}{m}\frac{1}{h}(x_{n}-x_{n-1})=0, \ \omega\equiv\sqrt{\frac{k}{m}}, \ \eta'\equiv\frac{\eta}{m},$$
(3)

٠

where  $n = 2, 3, 4, \cdots$ .

#### Sec 2. Spring-Block Model <u>d.</u>Continuous Limit

$$m\ddot{x} = k(\bar{V}t - x - \bar{\ell}) - \eta \dot{x} \quad . \tag{4}$$

This is the spring-block model. See Fig.1. The graph of movement  $(x_n, eq.(3))$  is shown in Fig.2. Fig.3 shows the energy change as the step flows.

Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model e.Model



Figure: Spring-Block Model, Movement,  $h=0.0001, \sqrt{k/m}=10.0, \eta/m=1.0, \bar{V}=1.0, \bar{\ell}=1.0, \text{ total step no} = 20000. The step-wise solution (3) correctly reproduces the analytic solution:$  $<math display="block">x(t) = e^{-\eta' t/2} \bar{V} \{ (\eta'^2/2\omega^2 - 1)(\sin \Omega t)/\Omega + (\eta'/\omega^2) \cos \Omega t \} - \bar{\ell} + \bar{V}(t - \eta'/\omega^2), \Omega = (1/2)\sqrt{4\omega^2 - \eta'^2} = 9.99, 0 \le t \le 2$ Shochi Ichinose (Univ. of Shizuka) Dissipative Models and Nonequilibrium Static (12)

#### Sec 2. Spring-Block Model f.Energy Change



Figure: Spring-Block Model, Energy Change,  $h=0.0001, \sqrt{k/m}=10.0, \eta/m=1.0, \bar{V}=1.0, \bar{\ell}=1.0, total step no =20000.$ 

#### Sec 2. Spring-Block Model : g.Bulk Metric

$$\Delta s_n^2 \equiv 2h^2 (K_n(x_n) - K_n^0)$$
  
= 2 dt<sup>2</sup> V<sub>1</sub>(X<sub>n</sub>) + ( $\Delta X_n$ )<sup>2</sup> + ( $\Delta P_n$ )<sup>2</sup>,  
V<sub>1</sub>(X<sub>n</sub>)  $\equiv V(\frac{X_n}{\sqrt{\eta h}}) - nk \sqrt{\frac{h}{\eta}} \bar{V} X_n, dt \equiv h,$  (5)

where 
$$X_n \equiv \sqrt{\eta h} x_n$$
,  $P_n/\sqrt{m} \equiv hv_n = (x_n - x_{n-1})$ ,.

Kyoto Workshop on "Strings and Fields" YIT

#### Sec 2. Spring-Block Model : <u>h.</u>Ensemble 1a

The first choice of the metric in the 3D (t,X,P) is the Dirac-type one:

$$(ds^{2})_{D} \equiv 2V_{1}(X)dt^{2} + dX^{2} + dP^{2}$$
  
- on-path  $(X = y(t), P = w(t)) \rightarrow$   
 $(2V_{1}(y) + \dot{y}^{2} + \dot{w}^{2})dt^{2},$  (6)

where  $\{(y(t), w(t))| 0 \le t \le \beta\}$  is a path (line) in the 3D space. See Fig.4.

Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model i.Path in 3D



Figure: The path  $\{(y(t), w(t), t) | 0 \le t \le \beta\}$  of line in 3D bulk space (X,P,t).

Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model : j.1st Geometry

$$L_{D} = \int_{0}^{\beta} ds|_{on-path} = \int_{0}^{\beta} \sqrt{2V_{1}(y) + \dot{y}^{2} + \dot{w}^{2}} dt$$
  
=  $h \sum_{n=0}^{\beta/h} \sqrt{2V_{1}(y_{n}) + \dot{y}_{n}^{2} + \dot{w}_{n}^{2}}, \ d\mu = e^{-\frac{1}{\alpha}L_{D}} \prod_{t} \mathcal{D}y\mathcal{D}w,$   
 $e^{-\beta F} = \int \prod_{n} dy_{n} dw_{n} e^{-\frac{1}{\alpha}L_{D}},$  (7)

where the free energy F is defined.

#### Sec 2. Spring-Block Model : <u>k.</u>Ensemble 1b

The second choice of the metric is the standard type:

$$(ds^{2})_{S} \equiv \frac{1}{dt^{2}} [(ds^{2})_{D}]^{2} - \text{on-path} \rightarrow$$
  
 $(2V_{1}(y) + \dot{y}^{2} + \dot{w}^{2})^{2} dt^{2}.$  (8)

Kyoto Workshop on "Strings and Fields" YI

39

1

#### Sec 2. Spring-Block Model : <u>I.</u>2nd Geometry

$$L_{S} = \int_{0}^{\beta} ds|_{on-path} = \int_{0}^{\beta} (2V_{1}(y) + \dot{y}^{2} + \dot{w}^{2})dt = h \sum_{n=0}^{\beta/h} (2V_{1}(y_{n}) + \dot{y}_{n}^{2} + \dot{w}_{n}^{2}),$$
$$d\mu = e^{-\frac{1}{\alpha}L_{S}} \mathcal{D}y \mathcal{D}w, \ e^{-\beta F} = \int \prod_{n} dy_{n} dw_{n} e^{-\frac{1}{\alpha}L_{S}} = (\text{const}) \int \prod_{n=0}^{\beta/h} dy_{n} e^{-\frac{h}{\alpha}(2V_{1}(y_{n}) + \dot{y}_{n}^{2})}.$$
(9)

#### Sec 2. Spring-Block Model : <u>m.</u>Minimal Path

The minimal path of (9), by changing  $y_n \rightarrow y$ ,  $nh \rightarrow t$  and using the variation  $y \rightarrow y + \delta y$ , we obtain

$$-\eta h\ddot{x} = k(\bar{V}t - x - \bar{\ell}), \quad x = \frac{y}{\sqrt{\eta h}} \quad . \tag{10}$$

比較 
$$m\ddot{x}=k(ar{V}t-x-ar{\ell}),$$
 (4) with  $\eta=0$  . (11)

Kyoto Workshop on "Strings and Fields" YI

#### Sec 2. Spring-Block Model : <u>n.</u>Comp. w. (4)

- 1) the viscous term disappeared;
- 2) the mass parameter *m* is replaced by  $\eta h$ ;

3) the sign in front of the acceleration-term (inertial-term) is different.

By changing to the Euclidean time  $\tau = it$ , the above equation reduces to the harmonic oscillator when we take  $\bar{V} = 0$ ,  $\bar{\ell} = 0$ .

#### Sec 2. Spring-Block Model : <u>o.</u>Ensemble 2

$$(ds^{2})_{D} \equiv 2V_{1}(X)dt^{2} + dX^{2} + dP^{2} \equiv e_{1}G_{IJ}(\tilde{X})d\tilde{X}^{I}d\tilde{X}^{J},$$

$$I, J = 0, 1, 2; \quad (\tilde{X}^{0}, \tilde{X}^{1}, \tilde{X}^{2}) \equiv (t/d_{0}, X/d_{1}, P/d_{2})$$

$$e_{1} = m\bar{\ell}^{2}, \quad d_{0} = \sqrt{\frac{k}{m}}, d_{1} = d_{2} = \sqrt{m}\bar{\ell},$$

$$(G_{IJ}) = \begin{pmatrix} 2d_{0}^{2}V_{1}(d_{1}\tilde{X}^{1}) & 0 & 0\\ 0 & d_{1}^{2} & 0\\ 0 & 0 & d_{2}^{2}, \end{pmatrix}$$
(12)

where we have introduced the *dimensionless* coordinates  $\tilde{X}^{I}$ .

Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model : p.Surface in 3D

$$\frac{X^2}{d_1^2} + \frac{P^2}{d_2^2} = \frac{r(t)^2}{d_1^2}, \quad 0 \le t \le \beta,$$
(13)

39

where the radius parameter r is chosen to have the dimension of  $\sqrt{ML}$ . See Fig.5.

Sec 2. Spring-Block Model

#### Sec 2. Spring-Block Model : q.Surface in 3D



Figure: The two dimensional surface, (13), in 3D bulk space (X,P,t).

#### Sec 2. Spring-Block Model : <u>s.</u>3rd Geometry

$$(ds^{2})_{D}\Big|_{\text{on-path}} = 2V_{1}(X)dt^{2} + dX^{2} + dP^{2}\Big|_{\text{on-path}}$$
$$= e_{1}\sum_{i,j=1}^{2}g_{ij}(\tilde{X})d\tilde{X}^{i}d\tilde{X}^{j} \quad , \quad e_{1} = m\bar{\ell}^{2} \quad ,$$
$$(g_{ij}) = \begin{pmatrix} 1 + \frac{e_{1}}{d_{1}d_{2}}\frac{2V_{1}}{r^{2}r^{2}}X^{2} & \frac{e_{1}}{d_{1}d_{2}}\frac{2V_{1}}{r^{2}r^{2}}XP\\ \frac{e_{1}}{d_{1}d_{2}}\frac{2V_{1}}{r^{2}r^{2}}PX & 1 + \frac{e_{1}}{d_{2}^{2}}\frac{2V_{1}}{r^{2}r^{2}}P^{2} \end{pmatrix}, \quad (14)$$

Kyoto Workshop on "Strings and Fields" YI / 39

#### Sec 2. Spring-Block Model : <u>t.</u>3rd Distribution

The third partition function  $e^{-\beta F}$  is given by

$$A = \int \sqrt{\det g_{ij}} d^2 \tilde{X} = \frac{1}{d_1 d_2} \int \sqrt{1 + \frac{2V_1}{\dot{r}^2}} dX dP,$$
$$e^{-\beta F} = \int_0^\infty d\rho \int r(0) = \rho \prod_t \mathcal{D}X(t) \mathcal{D}P(t) e^{-\frac{1}{\alpha}A}, \qquad (15)$$
$$r(\beta) = \rho$$

where  $\alpha$  is the (dimensionless) "string" constant and here is a model parameter.

Sec 3. Burridge-Knopoff Model

#### Sec 3. Burridge-Knopoff Model <u>a.</u>Model Figure



Figure: Burridge-Knopoff Model (17)

Kyoto Workshop on "Strings and Fields" YI / 39

#### Sec 3. Burridge-Knopoff Model <u>b.</u>Energy Function

*n*-th energy function to define Burridge-Knopoff (BK) model in the step(n) flow method.

$$I_{n}(x) = -xF(\dot{x}_{n-1}) + G(\dot{x}_{n-1})\frac{1}{a}(x - x_{n-1})(\dot{x}_{n-1} - \dot{x}_{n-2}) + \frac{m}{2}(\frac{dx}{dt})^{2} - \frac{k}{2}(x - Vt)^{2} + \frac{K}{2a^{2}}(x - 2x_{n-1} + x_{n-2})^{2} + I_{n}^{0}, \quad (16)$$

where  $\dot{x}_n = dx_n(t)/dt$ . *t* is the time variable.

Kyoto Workshop on "Strings and Fields" YI

# Sec 3. Burridge-Knopoff Model <u>c.</u>Model Parameters

 $I_n^0$ : a constant term, not depend on x(t). The system: N particles (blocks) distributing over the (1-dim) space  $\{y\}$ . y is periodic:  $y \rightarrow y + 2L$ . The particles are moving around the equilibrium points  $\{P_n \mid n = 1, 2, \cdots, n-1, N\}$  where  $P_N \equiv P_0$ . The point  $P_n$  is located at  $y = y_n \equiv na$  (Na = 2L) where a is the 'lattice-spacing'.

N(=2L/a) is a huge number and the present system constitutes the statistical ensemble.

The n-th particle's position at t,  $x_n(t)$  (deviation from the equilibrium point  $P_n$ ) is determined by the energy minimal principle  $\delta I_n(x)|_{x=x_n} = 0$  with the pre-known movement of the (n-1)-th particle,  $x_{n-1}(t)$ , and that of the (n-2)-th,  $x_{n-2}(t)$ .

#### Sec 3. Burridge-Knopoff Model d. Recurs. Relation

$$-m\frac{d^{2}x_{n}}{dt^{2}} - F(\dot{x}_{n-1}) + G(\dot{x}_{n-1}) \frac{\dot{x}_{n-1} - \dot{x}_{n-2}}{a}$$
$$-k (x_{n} - Vt) + \frac{K}{a^{2}} (x_{n} - 2x_{n-1} + x_{n-2}) = 0, \qquad (17)$$

where  $0 \le t \le \beta$ , and  $F(\dot{x}_{n-1})$  and  $G(\dot{x}_{n-1})$  are some functions of  $\dot{x}_{n-1}$ .

Kyoto Workshop on "Strings and Fields" YIT

### Sec 3. Burridge-Knopoff Model <u>e.</u>Conti. Space Limit

In the continuous space limit, the step flow equation (17) reduces to

$$-m\frac{\partial^2 x}{\partial t^2} - F(\dot{x}) + G(\dot{x})\frac{\partial^2 x}{\partial y \partial t} - k(x - Vt) + K\frac{\partial^2 x}{\partial y^2} = 0,$$
$$x = x(t, y) \quad , \quad \dot{x} = \frac{\partial x(t, y)}{\partial t} \quad . \tag{18}$$

Kyoto Workshop on "Strings and Fields" YI

#### Sec 3. Burridge-Knopoff Model f.Metric'

$$\Delta s_n^2 \equiv 2a^2(I_n(x_n) - I_n^0) =$$

$$\{-2x_n F(\dot{x}_{n-1}) + m\dot{x}_n^2 - k(x_n - Vt)^2\} dy^2$$

$$-a \frac{\partial G(\dot{x}_{n-1})}{\partial t} \Delta x_n^2 + Ka^2 \Delta \tilde{v}_n^2 \quad , \quad dy \equiv a,$$

$$\Delta x_n \equiv x_n - x_{n-1}, \quad \frac{x_n - x_{n-1}}{a} \equiv \tilde{v}_n, \quad \tilde{v}_n - \tilde{v}_{n-1} = \Delta \tilde{v}_n, \quad (19)$$

where we assume  $\Delta \dot{x}_{n-1} = \Delta \dot{x}_n$ .  $\tilde{v}_n$  is the longitudinal strain.

Kyoto Workshop on "Strings and Fields" YI

#### Sec 3. Burridge-Knopoff Model g.Metric

$$\widetilde{ds}^{2} = \{-2xF(v) + mv^{2} - k(x - Vt)^{2}\}(dy^{2} - dt^{2}) + ma^{2}dv^{2} - a\frac{\partial G(v)}{\partial t}dx^{2} + Ka^{2}(\frac{\partial v}{\partial y})^{2}dt^{2} = e_{1}G_{IJ}(X)dX^{I}dX^{J}, e_{1} = Ka^{2} \text{ or } ma^{2}V^{2}, v \equiv \dot{x} = \frac{\partial x}{\partial t}, (X^{I}) = (X^{0}, X^{1}, X^{2}, X^{3}) = (t/d_{0}, y/d_{1}, x/d_{2}, v/d_{3}), d_{0} = \sqrt{\frac{m}{k}}, d_{1} = V\sqrt{\frac{m}{k}}, d_{2} = \sqrt{\frac{K}{k}}, d_{3} = \sqrt{\frac{K}{m}},$$
(20)

where we use  $d\tilde{v} = d(\partial x/\partial y) = (\partial v/\partial y)dt$ .

#### Sec 3. Burridge-Knopoff Model h.Map

The map: 2D space  $\{(t, y) | 0 \le t \le \beta, 0 \le y \le 2L\}$  —> 4D space (t, y, x, v).

$$x = \bar{x}(t, y), \ v = \bar{v}(t, y),$$
$$d\bar{x} = \frac{\partial \bar{x}}{\partial t} dt + \frac{\partial \bar{x}}{\partial y} dy, \ d\bar{v} = \frac{\partial \bar{v}}{\partial t} dt + \frac{\partial \bar{v}}{\partial y} dy.$$
(21)

This map expresses a 2D *surface* in the 4D space (Fig.7).

Kyoto Workshop on "Strings and Fields" YI

Sec 3. Burridge-Knopoff Model

#### Sec 3. Burridge-Knopoff Model i. Map figure



Figure: The two dimensional surface, (21), in 4D space (t,y,x,v).

#### Sec 3. Burridge-Knopoff Model j.Geometry

On the surface, the line element (20) reduces to

$$\begin{aligned} \widetilde{ds}^{2} &- \text{ on surface} \to e_{1}g_{ij}(X)dX^{i}dX^{j}, \quad g_{00} = \\ \frac{a^{2}}{e_{1}} \left\{ -H(\bar{x},\bar{v}) + ma^{2}(\frac{\partial\bar{v}}{\partial t})^{2} - \frac{\partial G}{\partial t}(\frac{\partial\bar{x}}{\partial t})^{2} + Ka^{2}(\frac{\partial\bar{v}}{\partial y})^{2} \right\}, \\ g_{01} &= g_{10} = \frac{a^{2}\sqrt{m}}{e_{1}^{3/2}} \left\{ ma^{2}\frac{\partial\bar{v}}{\partial t}\frac{\partial\bar{v}}{\partial y} - \frac{\partial G}{\partial t}\frac{\partial\bar{x}}{\partial t}\frac{\partial\bar{x}}{\partial y} \right\}, \\ g_{11} &= \frac{a^{2}}{e_{1}} \left\{ H(\bar{x},\bar{v}) + ma^{2}(\frac{\partial\bar{v}}{\partial y})^{2} - \frac{\partial G}{\partial t}(\frac{\partial\bar{x}}{\partial y})^{2} \right\}, \\ H(\bar{x},\bar{v}) &\equiv -2\bar{x}F(\bar{v}) + m\bar{v}^{2} - k(\bar{x} - Vt)^{2}, \end{aligned}$$

where  $\frac{\partial G}{\partial t} = \frac{dG(\bar{v})}{d\bar{v}} \frac{\partial \bar{v}}{\partial t}$  and i = 0, 1.

#### Sec 3. Burridge-Knopoff Model k. Distribution

Using the (dimensionless) surface area A, the partition function  $e^{-\beta F}$  is given by

$$A[\bar{x}(t,y),\bar{v}(t,y)] = \frac{1}{d_0 d_1} \int_0^\beta dt \int_0^{2L} dy \sqrt{\det g_{ij}},$$
$$e^{-\beta F} = \int \prod_{t,y} \mathcal{D}\bar{x}(t,y) \mathcal{D}\bar{v}(t,y) e^{-\frac{1}{\alpha}A},$$
(23)

where  $\boldsymbol{\alpha}$  is a dimensionless model parameter.

### Sec 3. Burridge-Knopoff Model <u>I.</u>Minimal Area Surface

The *minimum area surface*, which gives the main contribution to the above quantity, is given by the following equation.

$$\frac{\partial A}{\partial \bar{x}(t,y)} = 0 , \quad \frac{\partial A}{\partial \bar{v}(t,y)} = 0.$$
 (24)

#### Sec 4. Conclusion a. What has been done

Two friction (earthquake) models: the spring-block model and Burridge-Knopoff model.

How to evaluate the statistical fluctuation effect.

Based on the geometry appearing in the system dynamics.

Kyoto Workshop on "Strings and Fields"

#### Sec 4. Conclusion <u>b.</u>Multiple Scales

Multiple scales exist in both models.

SB model: 1. the natural length of the string  $\bar{\ell}$ 

2. the external velocity  $\overline{V}$ .

BK model; 1. the external velocity V

- 2. the spring constant K
- 3. the block spacing *a*.

The use of dimensionless quantities clarifies the description.

The multiple scales indicate the existence of the fruitful phases in the present statistical systems.

#### Sec 4. Conclusion c. Minimal Principle

- The dissipative systems are treated by using the *minimal principle*.
- The difficulty of the *hysteresis* effect (non-Markovian effect) [3] is avoided in the present approach. These are the advantage of the discrete Morse flow method. We do not use the ordinary time t, instead, exploit the step number n ( $t_n = nh$ ).
- Several theoretical proposals for the statistical ensembles appearing in the friction phenomena.
- Necessary to *numerically* evaluate the models with the proposed ensembles and compare the result with the real data appearing both in the natural phenomena and in the laboratory experiment.

#### 5. References

#### Sec 5. References

- N. Kikuchi, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 332, Kluwer Acad. Pub., 1991, p195-198
- 2. N. Kikuchi, Nonlin. World 131(1994)
- 3. S. Ichinose, "Velocity-Field Theory, Boltzmann's Transport Equation, Geometry and Emergent Time", arXiv: 1303.6616(hep-th), 39 pages
- S. Ichinose, JPS Conf.Proc. 1, 013103(2014), Proc. of the 12th Asia Pacific Phys. Conf., arXiv:1308.1238(hep-th)
- H. Kawamura, T. Hatano, N. Kato, S. Biswas and B.K. Chakrabarti, Rev.Mod.Phys.84(2012)839, arXiv:1112.0148
- 6. S. Ichinose, Proc. 5-th World Tribology Congress (Torino, Italy, 2013.09.8-13), arXiv:1305.5386

Kyoto Workshop on "Strings and Fields" YI