Exact Results in Supersymmetric Lattice Gauge Theories

Keio University Tatsuhiro Misumi

So Matsuura (Keio), TM \& Kazutoshi Ohta (Meiji-Gakuin) in preparation.

1. Introduction

Localization in SUSY QFT

* Path integral for Q-closed actions (operators) localizes to BPS locus
* Q-exact deformation helps know fixed points \& obtain exact results
* For now, known to work for manifolds with isometry

$$
\begin{aligned}
\left\langle\mathcal{O}_{B P S}\right\rangle & =\lim _{t \rightarrow \infty} \int[\mathcal{D} X] \mathcal{O}_{B P S} e^{-S[X]-t Q \Xi_{F}[X]} \\
& =\sum_{X_{0}} \mathcal{O}\left[X_{0}\right] e^{-S\left[X_{0}\right]} \operatorname{Sdet}\left[\frac{\delta^{2}\left(Q \Xi_{F}\left[X_{0}\right]\right)}{\delta X_{0}^{2}}\right]^{-1} \quad \begin{array}{l}
X_{0} \in \operatorname{BPS} \text { locus } \\
\text { BPS locus }: \Psi=\Psi^{\dagger}=0, \quad Q \Psi=Q \Psi^{\dagger}=0
\end{array}
\end{aligned}
$$

Notion of "Localization" is simpler in finite-dimensional integral

Equivariant localization

* Symplectic manifold (M, ω) with Hamiltonian H for circle action
* Associated Hamiltonian vector field V satisfies $d H=i_{V} \omega$
* Equivariant cohomology $d_{V}(H-\omega)=0$ with $d_{V}=d+i_{V}$

Equivariant localization	SUSY localization
d_{V}	Q
$d_{V}(H-\omega)=0$	$Q S=0$
$\int e^{-(H-\omega)+\beta(K-\Omega)}=\int e^{-(H-\omega)}$	$\int[\mathcal{D} X] e^{-S-t Q \Xi}=\int[\mathcal{D} X] e^{-S}$
$d H=0$	$\Psi=0, Q \Psi=0$

Harish-Chandra Itzykson-Zuber integral (unitary matrix model) is exactly evaluated by this. \rightarrow How about lattice gauge theory?

Localization in lattice models?

* Consider 2D lattice models with BRST SUSY on simplicial complex
* Evaluate the path integral by the localization technique
- Strategy

- Extension of 2D $\mathcal{N}=(2,2)$ lattice model to simplicial complex
- Application of localization to the system
- Potential gains
- Reduction of numerical costs in SUSY simulations
- Feedback to study in (quiver) matrix models

2. Localization in HCIZ integral

HCIZ integral as SUSY

$$
\begin{aligned}
& Z_{\mathrm{HCIZ}}=\int D U e^{-\operatorname{Tr} A U B U^{\dagger}}=\frac{\operatorname{det} e^{-a_{i} b_{j}}}{\Delta(a) \Delta(b)} \begin{array}{l}
A, B \\
U
\end{array} \\
& \begin{array}{l}
\Delta(a), \Delta(b): \text { Dandermonde of } A, B \\
H \\
H
\end{array} \\
& \operatorname{Tr} A U B U^{\dagger} \equiv \operatorname{Tr} A X_{B}
\end{aligned}
$$

* Phase space $\sim U(N) / U(1)^{N}$ with symplectic 2-form $\omega=\operatorname{Tr}\left(X_{B} \theta \wedge \theta\right)$
* Localized to $d H=0$ due to the equivariant localization $d \nu(H-\omega)=0$
* Identify MC 1-form $\theta=-i d U U^{\dagger}$ as fermion $\psi \rightarrow$ SUSY localization
- SUSY algebra $Q X_{B}=\Psi_{B}, \quad Q \Psi_{B}=\left[A, X_{B}\right] \quad\left(\Psi_{B}=i\left[\psi, U B U^{\dagger}\right]\right)$
- Q-exact term $\quad Q \Xi=Q \operatorname{Tr}\left[\Psi_{B}\left(Q \Psi_{B}\right)\right]=\operatorname{Tr}\left[A, X_{B}\right]^{2}+\operatorname{Tr} \Psi_{B}\left[A, \Psi_{B}\right]$

HCIZ integral as SUSY

- t-indep. deform. $\quad Z_{t}=\frac{1}{\Delta(b)} \int \mathcal{D} U \mathcal{D} \psi e^{-(H-\omega)-t Q \Xi} \quad\left(\omega=-\frac{1}{2} \operatorname{Tr} \psi\left[X_{B}, \psi\right]\right)$
- Fixed points

$$
\begin{aligned}
& Q \Psi_{B}=\left[A, X_{B}\right]=\left[A, U B U^{\dagger}\right]=0, \quad \Psi_{B}=0 \\
& \qquad U=\Gamma_{\sigma} \text { (permutation group) }
\end{aligned}
$$

- One-loop det. $\quad Q \Xi=\operatorname{Tr}\left[A, X_{B}\right]^{2}+\operatorname{Tr} \Psi_{B}\left[A, \Psi_{B}\right]$

$$
|\Delta(a)|^{-2}|\Delta(b)|^{-2} \quad \Delta(a)|\Delta(b)|^{2} \quad \rightarrow(-1)^{|\sigma|} \Delta(a)^{-1}
$$

$$
Z_{\mathrm{HCIZ}}=\sum_{\sigma} \frac{(-1)^{|\sigma|}}{\Delta(a) \Delta(b)} e^{-\sum_{i} a_{i} b_{\sigma(i)}}=\frac{\operatorname{det} e^{-a_{i} b_{j}}}{\Delta(a) \Delta(b)} \quad \begin{aligned}
& \text { reproduces } \\
& \text { HCIZ integral }
\end{aligned}
$$

3. Localization on the lattice

Lattice $2 \mathrm{D} \mathcal{N}=(2,2)$ SYM model

- Lattice model with scalar SUSY (Q-exact action)
- Variables in topologically-twisted form
- Site, link \& face variables
- Rest of SUSY will restore in the cont. limit
- BRST SUSY algebra

$$
\begin{aligned}
& Q U_{\mu, x}=\Lambda_{\mu, x}, \quad Q \Lambda_{\mu, x}=-i\left(\Phi_{x} U_{\mu, x}-U_{\mu, x} \Phi_{x+\mu}\right) \\
& Q \Phi_{x}=0, \\
& Q \bar{\Phi}_{x}=\eta_{x}, \quad Q \eta_{x}=-i\left[\bar{\Phi}_{x}, \Phi_{x}\right] \\
& Q Y_{\mu \nu, x}=-i\left[\chi_{\mu \nu, x}, \Phi_{x}\right], \quad Q \chi_{\mu \nu, x}=Y_{\mu \nu, x}
\end{aligned}
$$

$\rightarrow Q^{2}=\delta_{\text {gauge }}(\Phi)$
nilpotent on
gauge-invariant operator

Lattice $2 \mathrm{D} \mathcal{N}=(2,2)$ SYM model

- Lattice model with scalar SUSY (Q-exact action)
- Variables in topologically-twisted form
- Site, link \& face variables
- Rest of SUSY will restore in the cont. limit

- Q-exact action

$$
\begin{aligned}
S_{\text {sugino }} & =\frac{1}{2 g^{2}} \sum_{x} Q \operatorname{Tr}\left[\mathcal{F} \cdot \overline{Q \mathcal{F}}+2 \chi_{\mu \nu} \mu_{\mu \nu}\right] \quad \mu_{\mu \nu} \sim U_{P}-U_{P}^{\dagger} \rightarrow F_{\mu \nu} \\
& =\frac{1}{2 g^{2}} \sum_{x} Q \operatorname{Tr}\left[i \Lambda_{\mu}\left(\bar{\Phi}_{x+\mu} U_{\mu}^{\dagger}-U_{\mu}^{\dagger} \bar{\Phi}_{x}\right)+i \eta[\Phi, \bar{\Phi}]-\chi_{\mu \nu}\left(Y_{\mu \nu}-2 \mu_{\mu \nu}\right)\right] \\
& =\frac{1}{2 g^{2}} \sum_{x} \operatorname{Tr}\left[\left|U_{\mu} \Phi_{x+\mu}-\Phi_{x} U_{\mu}\right|^{2}+[\Phi, \bar{\Phi}]^{2}+\mu_{\mu \nu}^{2}+\cdots\right]
\end{aligned}
$$

Extension to generic simplicial complex

- Extension to simplicial complex by labeling sites and orienting links
- Metric \& connection are defined from the vielbein
- Topological field theory on generic Riemann surface in $a \rightarrow 0$
- Labeling sites for variables

Site variables: $\Phi_{x}, \bar{\Phi}_{x}, \eta_{x} \rightarrow \Phi_{i}, \bar{\Phi}_{i}, \eta_{i}$
Link variables: $U_{\mu, x}, \Lambda_{\mu, x} \rightarrow U_{i j}, \Lambda_{i j}$
Face variables: $\chi_{\mu \nu, x} \rightarrow \chi_{i}$

- From Vielbein to Metric $\quad U_{i j}=\exp \left[i a e_{i j}^{\mu} A_{\mu}(i)\right] \quad \Lambda_{i j}=e_{i j}^{\mu} \Lambda_{\mu}$

$$
a^{2} \sum_{i} \rightarrow \int d^{2} x \sqrt{g} \quad \sum_{j \in\langle i, \cdot\rangle \text { outgoing links }} e_{i j}^{\mu} e_{i j}^{\nu} \equiv g^{\mu \nu}(i) \rightarrow g^{\mu \nu}(x)
$$

Extension to generic simplicial complex

- Supersymmetric BRST algebra

$$
\begin{array}{ll}
Q U_{i j}=\Lambda_{i j}, & Q \Lambda_{i j}=-i\left(\Phi_{i} U_{i j}\right. \\
Q \Phi_{i}=0, & \\
Q \bar{\Phi}_{i}=\eta_{i}, & Q \eta_{i}=-i\left[\bar{\Phi}_{i}, \Phi_{i}\right] \\
Q Y_{i}=-i\left[\chi_{i}, \Phi_{i}\right], & Q \chi_{i}=Y_{i} .
\end{array}
$$

$$
Q^{2}=\delta_{\text {gauge }}(\Phi)
$$

nilpotent on gauge-invariant operator \leftrightarrows equivariant cohomology

- Q-exact action on simplicial complex

$$
\begin{aligned}
S= & \frac{1}{2 g^{2}} \sum_{i} Q \operatorname{Tr}\left[\begin{array}{c:c}
& i \Lambda_{i j}\left(U_{i j}^{\dagger} \bar{\Phi}_{i}-\bar{\Phi}_{j} U_{i j}^{\dagger}\right) \\
= & \frac{1}{2 g^{2}} \sum_{i} \operatorname{Tr}\left[\mid \Phi_{i} U_{i j}\left[\bar{\Phi}_{i}, \Phi_{i}\right]-\chi_{i}\left(Y_{i}-2 \mu_{i}\right)\right] \\
& \left.\left.\sum_{i j} \Phi_{j}\right|^{2}+\left|\left[\Phi_{i}, \bar{\Phi}_{i}\right]\right|^{2}-Y_{i}\left(Y_{i}-2 \mu_{i}\right)+\cdots\right] \\
& e_{i j}^{\mu} e_{i j}^{\nu} \lambda_{\mu}(x) \mathcal{D}_{\nu} \bar{\Phi}(x) \rightarrow g^{\mu \nu}(x) \lambda_{\mu}(x) \mathcal{D}_{\nu} \bar{\Phi}(x) \quad \text { Metric \& connection emerge }
\end{array}\right.
\end{aligned}
$$

Localization on the lattice

Calculate path integral with the Q-exact action by localization $(g \rightarrow 0)$

- Fixed points (BPS) Gauge fixing: $\Phi_{i}=\operatorname{diag}\left(\phi_{i, 1}, \phi_{i, 2}, \ldots, \phi_{i, N}\right)$

$$
\begin{aligned}
& \Lambda_{i j}=0 \\
& Q \Lambda_{i j}=-i\left(\Phi_{i} U_{i j}-U_{i j} \Phi_{j}\right)=0
\end{aligned} \quad \neg \quad \begin{array}{ll}
U_{i j}=\Gamma_{i j} & \text { Permutation group } \\
\Phi_{j}=\Gamma_{i j}^{\dagger} \Phi_{i} \Gamma_{i j} & \text { indep. of } i \text { up to permutation }
\end{array}
$$

- One-loop determinant

1-loop det. $=\prod_{i, j} \prod_{a<b} \frac{\left(\phi_{i, a}-\phi_{i, b}\right)_{c, \bar{c}}^{2} \times\left(\phi_{i, a}-\phi_{i, b}\right)_{\chi}}{\left(\phi_{i, a}-\phi_{j, b}\right)_{U_{i j}} \times\left(\phi_{i, a}-\phi_{i, b}\right)_{\bar{\Phi}}}$

$$
=\frac{\prod_{i \in V} \prod_{a<b}\left(\phi_{i, a}-\phi_{i, b}\right) \prod_{i \in F} \prod_{a<b}\left(\phi_{i, a}-\phi_{i, b}\right)}{\prod_{<i j>L L} \prod_{a \leq b}\left(\phi_{i, a}-\phi_{j, b}\right)}
$$

Contributions from site, link \& face variables

Localization on the lattice

- Partition function

$$
\begin{aligned}
& Z=\sum_{\sigma_{i j}} \int \prod_{i} \prod_{a=1}^{N} d \phi_{i, a} \prod_{a<b}\left(\phi_{i, a}-\phi_{i, b}\right)^{\chi} \\
& \text { permutation elements } \\
& \begin{array}{l}
\text { Euler characteristic } \\
\chi \equiv \operatorname{dim} V-\operatorname{dim} L \\
\text { \#sites }
\end{array} \prod_{\text {\#links }} \quad \operatorname{dim} F \\
& \text { \#faces }
\end{aligned}
$$

- The result depends only on the topology of the 2D surface
- Independent of simplicial decomposition (2D YM is topological)
- Multiple integrals remain due to flat direction of SUSY $\rightarrow e^{-S-\Phi^{2}}$

Examples of Riemann surfaces

- Disks

- Spheres

$$
\begin{aligned}
& \text { \# of } \bar{\Phi}, c, \bar{c}=4 \\
& \text { \# of } U=6 \\
& \text { \# of } \chi=4
\end{aligned} \quad \Rightarrow \prod_{a<b}\left(\phi_{a}-\phi_{b}\right)^{2}
$$

$$
\begin{aligned}
& \text { \# of } \bar{\Phi}, c, \bar{c}=4 \\
& \text { \# of } U=4 \\
& \text { \# of } \chi=1
\end{aligned}
$$

$\#$ of $\bar{\Phi}, c, \bar{c}=9$
\# of $U=12$

$$
\text { \# of } U=12
$$

\# of $\chi=4$

$$
\text { \# of } \chi=4
$$

$$
\prod_{a<b}\left(\phi_{a}-\phi_{b}\right)^{1}
$$

The path integral depends only on the topology of the 2D surface.

Examples of Q-closed operators

- Kazakov-Migdal Q-closed operator
$\mathcal{O}=\sum_{i, j} \operatorname{Tr}\left[\Phi_{i} U_{i j} \Phi_{j} U_{i j}^{\dagger}\right]+\frac{1}{2} \sum_{i} \operatorname{Tr} \Lambda_{i j}\left[\Phi_{j}, \Lambda_{i j}^{\dagger}\right] \quad$ Multi-matrix HCIZ operator
Fixed points $\Phi_{i} U_{i j} \Phi_{j} U_{i j}^{\dagger}=\Phi_{i}^{2} \Rightarrow\langle\mathcal{O}\rangle=\sum_{\sigma_{i j}} \int \prod_{i} \prod_{a=1}^{N} d \phi_{i, a} \prod_{a<b}\left(\phi_{i, a}-\phi_{i, b}\right)^{\chi} \sum_{a=1}^{N} \phi_{i, a}^{2}$
- Ward-Takahashi identity
$Q \operatorname{Tr}\left[i \Lambda_{i j} \Phi_{j} U_{i j}^{\dagger}\right]=\sum_{i, j} \operatorname{Tr}\left[\Phi_{i} U_{i j} \Phi_{j} U_{i j}^{\dagger}\right]+\frac{1}{2} \sum_{i} \operatorname{Tr} \Lambda_{i j}\left[\Phi_{j}, \Lambda_{i j}^{\dagger}\right]-\sum_{i} \Phi_{i}^{2}$
Q-exact operator
$\left\langle Q \operatorname{Tr}\left[\Lambda_{i j} \Phi_{j} U_{i j}^{\dagger}\right]\right\rangle=0 \Rightarrow\langle \rangle=\langle \rangle$ consistent to the above result

What is appropriate Q-exact deformation?
 $$
Q \Xi=Q(\mathcal{F} \cdot \overline{Q \mathcal{F}})
$$

Inappropriate Q-exact terms

- Has contribution from boundaries

$$
\int[\mathcal{D} X] Q\left(\Xi e^{-S-t Q \Xi}\right) \neq 0 \quad \rightarrow \quad \text { t-dependent integral }!
$$

- Restrict configuration space (broken sym? structure changed?)
theory structure changed $\rightarrow \quad$ fixed points can be mutilated!

$$
\begin{aligned}
& \text { cf.) Kazakov-Migdal } S=\sum_{i, j} \operatorname{Tr}\left[\Phi_{i} U_{i j} \Phi_{j} U_{i j}^{\dagger}\right]+\sum_{i} \operatorname{Tr} V\left(\Phi_{i}\right)+\frac{1}{2} \sum_{i} \operatorname{Tr} \Lambda_{i j}\left[\Phi_{j}, \Lambda_{i j}^{\dagger}\right] \quad \text { Q-closed under two different } \mathrm{Q} \\
& \text { 1. } Q U_{i j}=\Lambda_{i j}, Q \Lambda_{i j}=-i \Phi_{i} U_{i j} \Rightarrow Q \Xi=\operatorname{Tr}\left[\Phi_{i}, U_{i j} \Phi_{j} U_{i j}^{\dagger}\right]^{2}+\cdots \Rightarrow U_{i j}=\Gamma_{i j} \\
& \text { 2. } Q U_{i j}=\Lambda_{i j}, \quad Q \Lambda_{i j}=-i\left(\Phi_{i} U_{i j}-U_{i j} \Phi_{j}\right) \longrightarrow Q \Xi=\operatorname{Tr}\left|\Phi_{i}-U_{i j} \Phi_{j} U_{i j}^{\dagger}\right|^{2}+\cdots \Longrightarrow U_{i j}=\Gamma_{i j} \quad \phi_{j, a}=\phi_{i, \sigma_{i j}(a)} \\
& \vdots_{N=(2,2)} \text { BRST algebra Different results }
\end{aligned}
$$

Summary

* We reduce the SUSY lattice gauge theory to the simpler integral via the localization technique.
* We extend the lattice SUSY model to generic lattice surfaces.
* We evaluate KM operator and find useful Ward-Takahashi identities.
* We discuss that inappropriate Q-exact deformations do not give correct answer of the original integral.

Back-up slides

localization in HCIZ integral

$$
\begin{aligned}
\int \mathcal{D} \psi_{R} e^{\beta \omega} & =\int \mathcal{D} \psi_{R} e^{-\frac{\beta}{2} \operatorname{Tr} \psi_{R}\left[X_{B}, \psi_{R}\right]} & & \\
& =\int \mathcal{D} \psi_{L} e^{-\frac{\beta}{2} \operatorname{Tr} \psi_{L}\left[B, \psi_{L}\right]} & \longleftarrow & \psi_{L}=U^{\dagger} \psi_{R} U \\
& =\beta^{N(N-1) / 2} \Delta(b), & & \text { Left-invariant MC form }
\end{aligned}
$$

- One-loop determinant

$$
\begin{array}{rlrl}
K & =\operatorname{Tr}[A,[Z, B]]^{2}+\cdots, & \text { Cartan-Weyl basis } \\
\Omega & =\operatorname{Tr}\left[\psi_{R}, B_{\sigma}\right]\left[A,\left[\psi_{R}, B_{\sigma}\right]\right]+\cdots, & & \begin{array}{l}
Z=z^{i} H_{i}+z^{\alpha} E_{\alpha}, \\
K
\end{array} \\
& =2 \sum_{\alpha>0} \alpha(a)^{2} \alpha\left(b_{\sigma}\right)^{2} z^{\alpha} z^{-\alpha}+\cdots, \psi_{R}^{i} H_{i}+\psi_{R}^{\alpha} E_{\alpha}, \\
\Omega & =-2 \sum_{\alpha>0} \alpha(a) \alpha\left(b_{\sigma}\right)^{2} \psi_{R}^{\alpha} \psi_{R}^{-\alpha}+\cdots, & \begin{array}{l}
{\left[H_{i}, H_{j}\right]=0,} \\
\\
\\
\left.H_{i}, E_{\alpha}\right]=\alpha_{i} E_{\alpha}, \\
\operatorname{Tr}\left(E_{\alpha} E_{\beta}\right)=\delta_{\alpha+\beta, 0} .
\end{array} \\
& \downarrow & \downarrow &
\end{array}
$$

Q-exact action on simplicial complex

- Q-exact action on simplicial complex

$$
\begin{aligned}
& S=\frac{1}{2 g^{2}} \sum_{i} Q \operatorname{Tr} {\left[i \Lambda_{i j}\left(U_{i j}^{\dagger} \bar{\Phi}_{i}-\bar{\Phi}_{j} U_{i j}^{\dagger}\right)+i \eta_{i}\left[\bar{\Phi}_{i}, \Phi_{i}\right]-\chi_{i}\left(Y_{i}-2 \mu_{i}\right)\right] } \\
&=\frac{1}{2 g^{2}} \sum_{i} \operatorname{Tr}\left[\left|\Phi_{i} U_{i j}-U_{i j} \Phi_{j}\right|^{2}+\left|\left[\Phi_{i}, \bar{\Phi}_{i}\right]\right|^{2}-Y_{i}\left(Y_{i}-2 \mu_{i}\right)\right. \\
&-i \Lambda_{i j}\left(U_{i j}^{\dagger} \eta_{i}-\eta_{j} U_{i j}^{\dagger}\right)+i \Lambda_{i j}\left(U_{i j}^{\dagger} \Lambda_{i j} U_{i j}^{\dagger} \bar{\Phi}_{i}-\bar{\Phi}_{j} U_{i j}^{\dagger} \Lambda_{i j} U_{i j}^{\dagger}\right) \\
&\left.+i \eta_{i}\left[\Phi_{i}, \eta_{i}\right]+i \chi_{i}\left[\Phi_{i}, \chi_{i}\right]-2 \chi_{i} \frac{\delta \mu_{i}}{\delta U_{i j}} \Lambda_{i j}\right]
\end{aligned}
$$

One-loop determinant SUSY

- Action $S=t Q \operatorname{Tr}\left[g_{I J} \mathcal{F}^{I} \overline{Q \mathcal{F}^{j}}\right]$

$$
=t \operatorname{Tr}\left[\|Q \overrightarrow{\mathcal{F}}\|^{2}-\mathcal{F}^{I} Q\left(g_{I J} \overline{Q \mathcal{F}^{J}}\right)\right]
$$

$$
\begin{aligned}
& \mathcal{B}^{I}=\mathcal{B}_{0}^{I}+\frac{1}{\sqrt{t}} \tilde{\mathcal{B}}^{I}, \\
& \mathcal{F}^{I}=\mathcal{F}_{0}^{I}+\frac{1}{\sqrt{t}} \tilde{\mathcal{F}}^{I}
\end{aligned}
$$

- Action at quadratic order

$$
S=\operatorname{Tr}\left[G_{I J} \tilde{\mathcal{B}}^{I} \tilde{\mathcal{B}}^{J}-\Omega_{I J} \tilde{\mathcal{F}}^{I} \tilde{\mathcal{F}}^{J}\right]+\mathcal{O}(1 / \sqrt{t})
$$

$$
G_{I J}=\left.\frac{\delta^{2}}{\delta \mathcal{B}^{I} \delta \mathcal{B}^{3}}\|Q \overrightarrow{\mathcal{F}}\|^{2}\right|_{\overrightarrow{\mathcal{B}}=\overrightarrow{\mathcal{B}}_{0}},
$$

$$
G_{I J}\left(Q \tilde{\mathcal{B}}^{I}\right) \tilde{\mathcal{B}}^{J}=\Omega_{I J}\left(Q \tilde{\mathcal{F}}^{I}\right) \tilde{\mathcal{F}}^{J}
$$

Q-closed
$\Omega_{I J}=\left.\frac{1}{2}\left(\frac{\delta}{\delta \mathcal{F}^{I}} Q\left(g_{J K} \overline{Q \mathcal{F}^{K}}\right)-\frac{\delta}{\delta \mathcal{F}^{J}} Q\left(g_{I K} \overline{Q \mathcal{F}^{K}}\right)\right)\right|_{\overrightarrow{\mathcal{F}}=\vec{F}_{0}}$

One-loop determinant SUSY

- To look into the Hessian

$$
\begin{array}{ll}
Q \mathcal{F}^{I}=\left.Q \mathcal{F}^{I}\right|_{\overrightarrow{\mathcal{B}}=\overrightarrow{\mathcal{B}}_{0}}+\left.\frac{1}{\sqrt{t}} \frac{\delta Q \mathcal{F}^{I}}{\delta \mathcal{B}^{J}}\right|_{\vec{B}=\mathcal{B}_{0}} \tilde{\mathcal{B}}^{J}, & Q \mathcal{F}^{I}=Q \mathcal{F}_{0}^{I}+\frac{1}{\sqrt{t}} Q \tilde{\mathcal{F}}^{I}, \\
Q \mathcal{B}^{I}=Q \mathcal{B}_{\overrightarrow{\mathcal{F}}=\overrightarrow{\mathcal{F}}_{0}}+\left.\frac{1}{\sqrt{t}} \frac{\delta Q \mathcal{B}^{I}}{\delta \mathcal{F}^{J}}\right|_{\overrightarrow{\mathcal{F}}=\overrightarrow{\mathcal{F}}_{0}} \tilde{\mathcal{F}}^{J} & Q \mathcal{B}^{I}=Q \mathcal{B}_{0}^{I}+\frac{1}{\sqrt{t}} Q \tilde{\mathcal{B}}^{I} . \\
Q \tilde{\mathcal{F}}^{I}=\left.\frac{\delta Q \mathcal{F}^{I}}{\delta \mathcal{B}^{J}}\right|_{\overrightarrow{\mathcal{B}}=\overrightarrow{\mathcal{B}}_{0}} \tilde{\mathcal{B}}^{J}, \\
Q \tilde{\mathcal{B}}^{I}=\left.\frac{\delta Q \mathcal{B}^{I}}{\delta \mathcal{F}^{J}}\right|_{\overrightarrow{\mathcal{F}}=\overrightarrow{\mathcal{F}}_{0}} \tilde{\mathcal{F}}^{J}
\end{array}
$$

- Substituting them

$$
\left.G_{I J} \frac{\delta Q \mathcal{F}^{I}}{\delta \mathcal{B}^{K}}\right|_{\overrightarrow{\mathcal{B}}=\overrightarrow{\mathcal{B}}_{0}}=\left.\Omega_{I K} \frac{\delta Q \mathcal{B}^{I}}{\delta \mathcal{F}^{J}}\right|_{\overrightarrow{\mathcal{F}}=\overrightarrow{\mathcal{F}}_{0}} \square \quad \frac{\operatorname{Det} G_{I J}}{\operatorname{Det} \Omega_{I J}}=\frac{\operatorname{Det} \frac{\delta Q \mathcal{B}^{I}}{\delta \mathcal{F}^{J}}}{\operatorname{Det} \frac{\delta Q \mathcal{F}^{I}}{\delta \mathcal{B}^{J}}},
$$

