Quantum corrections for a string world sheet in AdS/CFT correspondence

Akitsugu Miwa (CST Nihon University)

1. Introduction and Motivation

- Wilson loop VEV (I_{J} : modified Bessel function) $\langle W(C)\rangle=\frac{2}{\sqrt{\lambda^{\prime}}} I_{1}\left(\sqrt{\lambda^{\prime}}\right) \sim \frac{2}{\sqrt{\lambda^{\prime}}} \frac{1}{\sqrt{2 \pi \sqrt{\lambda^{\prime}}}} \mathrm{e}^{\sqrt{\lambda^{\prime}}} \quad\left(\lambda^{\prime}=\lambda \tanh ^{2} \sigma_{0}\right)$

[Rey-Yee '98; Maldacena '98] [Drukker '06]
- Correlation function (a : radius of C, ℓ : distance) $\frac{\left\langle W(C) \mathcal{O}_{J}(\vec{x})\right\rangle}{\langle W(C)\rangle}=\frac{1}{2 N} \frac{a^{J}}{\ell^{2 J}} \sqrt{J \lambda^{\prime}} \frac{I_{J}\left(\sqrt{\lambda^{\prime}}\right)}{I_{1}\left(\sqrt{\lambda^{\prime}}\right)} \sim \frac{1}{2 N} \frac{a^{J}}{\ell^{2 J}} \sqrt{J \lambda^{\prime}}$

world sheet fluctuations \Rightarrow further agreement ?

2. 1/4BPS Wilson loop and gravity dual

- 1/4 BPS Wilson loop
[Drukker '06]
$W(C)=\frac{1}{N} \operatorname{trP} \exp \oint\left(i A_{i}(x(\tau)) \dot{x}_{i}(\tau)+|\dot{x}(\tau)| \Theta_{I}(\tau) \Phi_{I}(x(\tau))\right)$ $x_{i}(\tau)=(a \cos \tau, a \sin \tau, 0,0)$
$\Theta_{I}(\tau)=\left(\operatorname{sech} \sigma_{0} \cos \tau, \operatorname{sech} \sigma_{0} \sin \tau, \tanh \sigma_{0}, 0,0,0\right)$
- gravity dual

$\left.\mathrm{e}^{-S}\right|_{ \pm}=\mathrm{e}^{ \pm \sqrt{\lambda^{\prime}}}(\pm)$ solutions \Leftrightarrow two saddle points

3. Zero modes and broken zero modes

- zero modes for $\sigma_{0}=0$
[Drukker '06]

$\Theta_{1}=\operatorname{sech} \sigma \cos \tau$	$\Theta_{3}=\tanh \sigma \cos \alpha$	(α, β, γ)
$\Theta_{2}=\operatorname{sech} \sigma \sin \tau$	$\Theta_{4}=\tanh \sigma \sin \alpha \cos \beta$	zero
	$\Theta_{5}=\tanh \sigma \sin \alpha \sin \beta \cos \gamma$	modes
	$\Theta_{6}=\tanh \sigma \sin \alpha \sin \beta \sin \gamma$	$\left(\mathrm{S}^{3}\right)$

$$
\langle W(C)\rangle=1 \quad \Leftrightarrow \quad \int d \Omega_{3} \mathrm{e}^{-S(\alpha, \beta, \gamma)}=\int d \Omega_{3} \mathrm{e}^{0}=1
$$

- broken zero modes for $\sigma_{0} \sim 0$

No zero modes, but the broken zero modes give non-negligible contribution.

$$
\begin{array}{r}
Z=\int d \Omega_{3} \mathrm{e}^{-S(\alpha, \beta, \gamma)}=\int d \Omega_{3} \mathrm{e}^{\cos \alpha \sqrt{\lambda^{\prime}}}=\frac{2}{\sqrt{\lambda^{\prime}}} I_{1}\left(\sqrt{\lambda^{\prime}}\right) \\
\left(\sigma_{0} \ll 1, \quad \lambda \gg 1, \quad \lambda^{\prime}=\lambda \tanh ^{2} \sigma_{0}: \text { finite }\right)
\end{array}
$$

4. Explicit form of broken zero modes

- An explicit form of broken zero modes
$\Theta_{1}=f(\alpha, \sigma) \cos \tau$
$\Theta_{2}=f(\alpha, \sigma) \sin \tau$
$\Theta_{3}=f(\alpha, \sigma)\left(\cosh \sigma_{0} \sinh \sigma \cos \alpha+\sinh \sigma_{0} \cosh \sigma\right)$
$\Theta_{4}=f(\alpha, \sigma) \sinh \sigma \sin \alpha \cos \beta$
$\Theta_{5}=f(\alpha, \sigma) \sinh \sigma \sin \alpha \sin \beta \cos \gamma$
$\Theta_{6}=f(\alpha, \sigma) \sinh \sigma \sin \alpha \sin \beta \sin \gamma$
$f(\alpha, \sigma)=\left(\cosh \sigma_{0} \cosh \sigma+\sinh \sigma_{0} \sinh \sigma \cos \alpha\right)^{-1}$
- Properties
$\checkmark(\tau, \sigma, \alpha, \beta, \gamma)$ form an S^{5} coordinate system.
\checkmark Virasoro constraints satisfied.
\checkmark Boundary conditions at $\sigma=0$ satisfied.
\checkmark It reduces to the classical solution at $\alpha= \pm \pi$.
\checkmark It reduces to the zero mode at $\sigma_{0}=0$.

5. Correlation function

- local operator with R charge

$$
\mathcal{O}_{J}=\frac{(2 \pi)^{J}}{\sqrt{J \lambda^{J}}} \operatorname{tr}\left(\Phi_{3}+i \Phi_{4}\right)^{J}
$$

[Related work includes: Berenstein-Corrado-FischlerMaldacena ' 98 ; Semenoff-Young '06; Giombi-Ricci-Trancanelli '06]

- gravity dual of the correlation functions
$\left.\frac{1}{Z} \int d \Omega_{3} \frac{\delta}{\delta s_{0}^{J}(\vec{x})} \exp \left[-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma\left(g_{M N}+h_{M N}\right) \partial_{a} X^{M} \partial_{a} X^{N}\right]\right|_{s_{0}^{J}=0}$
$h_{\mu \nu}^{\mathrm{AdS}}=\left[\frac{4}{J+1} D_{(\mu} D_{\nu)}-\frac{6 J}{5} g_{\mu \nu}^{\mathrm{AdS}}\right] s^{J} \mathcal{Y}_{J}, h_{\alpha \beta}^{\mathrm{S}}=2 J g_{\alpha \beta}^{\mathrm{S}} s^{J} \mathcal{Y}_{J}$

$$
(\vec{x}, z) s^{J}(\vec{x}, z)=c \int d^{4} x^{\prime}\left[\frac{z}{z^{2}+\left(\vec{x}-\vec{x}^{\prime}\right)^{2}}\right]^{J} s_{0}^{J}\left(\vec{x}^{\prime}\right)
$$

Our
Result:
$\frac{1}{2 N} \frac{a^{J}}{\ell^{2 J}} \sqrt{J \lambda^{\prime}} \frac{I_{J}\left(\sqrt{\lambda^{\prime}}\right)}{I_{1}\left(\sqrt{\lambda^{\prime}}\right)}\left(1-\frac{J+2}{\sqrt{\lambda^{\prime}}} \frac{I_{J+1}\left(\sqrt{\lambda^{\prime}}\right)}{I_{J}\left(\sqrt{\lambda^{\prime}}\right)}\right), ~$

$$
\left(\sigma_{0} \ll 1, \quad \lambda \gg 1, \quad \lambda^{\prime}=\lambda \tanh ^{2} \sigma_{0}: \text { finite }\right)
$$

6. Discussions and future directions

- Discussions
- Our results agree with the gauge theory results in the limit $J \ll \sqrt{\lambda^{\prime}}$. Since $J^{2} / \sqrt{\lambda^{\prime}}$ is the natural parameter in the asymptotic expansion of $I_{J}\left(\sqrt{\lambda^{\prime}}\right)$, this limit still allows non-trivial situation.
- Numerical samples by Mathematica $\left(\sqrt{\lambda^{\prime}}=t=10^{4}\right)$

J	2	10	100	1000
$\frac{\mathrm{e}^{t}}{\sqrt{2 \pi t}} \frac{1}{I_{J}(t)}$	1.00019	1.005	1.6487	4.986×10^{21}
$1-\frac{J+2}{t} \frac{I_{J+1}(t)}{I_{J}(t)}$	0.9996	0.9988	0.9899	0.9093

- Since the R-charge conservation is not respected, an exact (finite $\sqrt{\lambda^{\prime}}$) agreement is not expected.
- Future directions
- Improvement by using string solutions with R-charge.
- Application to the case with higher genus .

