F-theory Family Unification: A New Geometric Mechanism for Unparallel Three Families and Large Lepton-flavor Mixings

Shun'ya Mizoguchi KEK, Theory Center

- *"F-theory Family Unification"*: S.M., JHEP 1407 (2014) 018 arXiv:1403.7066 [hep-th]
- *"Large Lepton-flavor Mixings from E8 Kodaira Singularity: Lopsided Texture via F-theory Family Unification ":* S.M. arXiv:1407.1319 [hep-th]

Jul.23, 2014 YITP Workshop Strings and Fields

http://bios.sakura.ne.jp/gf/2003/starsand.html Copyright (c) 1998-2010 by Gen-yu SASAKI Star Sand (星砂)

"Star sand" is not sand

"Star sand Iriomote" by Geomr http://en.wikipedia.org/wiki/File:Star_sand_Iriomote.jpg

Copyright (c) 1998-2010 by Gen-yu SASAKI http://bios.sakura.ne.jp/gf/2003/starsand.html

"Tests of faraminfers" (有孔虫の外殻): Some kind of shells of tiny creatures

Y Being Ender dimensional samanat you caeafirly valeatches want

Katase-higashihama beach Copyright(c) Fujisawa City Tourist Association

How can we find star sand?

Look into it carefully Find out characteristic features

Creatures

Copyright (c) 1998-2010 by Gen-yu SASAKI http://bios.sakura.ne.jp/gf/2003/DSCN3393.jp

How can we find star sand?

Look into it carefully Find out characteristic features

Creatures

Coral reefs (珊瑚礁)

Copyright (c) 1998-2010 by Gen-yu SASAKI http://bios.sakura.ne.p/gf/2003/DSCN3393.jp

Being many does not mean String Landscape you can find what you want

© Dnally | Dreamstime Stock Photos

How can we find the Standard Model?

Look into it carefully Find out characteristic features

What are characteristic features of the Standard Model?

 SU(3)xSU(2)xU(1) gauge group with a peculiar hypercharge assignment What are characteristic features of the Standard Model?

 SU(3)xSU(2)xU(1) gauge group with a peculiar hypercharge assignment
 Three UNPARALLEL generations of quarks and leptons

$m_{\rm top} \sim 100,000 \times m_{\rm up}$

http://en.wikipedia.org/wiki/Tevatron

https://www.fnal.gov/pub/science/historical-results

tuttosch

Zenith-angle dependence of the atomospheric neutrino

http://kamland.lbl.gov/Pictures/picgallery.html

http://neutrino.phys.ksu.edu/~dchooz/photos/

http://en.wikipedia.org/wiki/Sudbury_Neutrino_Observatory http://www.gridpp.ac.uk/news/?p=88

http://www.quantumdiaries.org/2011/08/15/ http://hcpl.knu.ac.kr/neutrino/neutrino.html_ycyang

PUBLIC HARD DAUGHT, TA THE HARD DAVE

NAMES AND TAXABLE TO POSSIBLE POSSIBLE REPORTED AND ADDRESS OF TAXABLE POSSIBLE POSS

Standard-model-like models?

- Most (if not all) of the previous string phenomenology models REALIZE these structures by imposing artificial requirements and/or by tuning of parameters, but never EXPLAIN them
- In particular, in most cases the three generations obtained there are on EQUAL footing, and the hierarchical structure is one arranged "by hand"

What are characteristic features of the Standard Model?

 SU(3)xSU(2)xU(1) gauge group with a peculiar hypercharge assignment
 Three UNPARALLEL generations of quarks and leptons What are characteristic features of the Standard Model?

 SU(3)xSU(2)xU(1) gauge group with a peculiar hypercharge assignment
 Three UNPARALLEL generations of quarks and leasters

Kugo-Yangida $E_7/(SU(5) imes U(1)^3)$ Family unification model

F-theory

How can we find the Standard Model?

Look into it carefully Find out characteristic features

What are characteristic features of the Standard Model?

 SU(3)xSU(2)xU(1) gauge group with a peculiar hypercharge assignment
 Three UNPARALLEL generations of guarks and leptons Kugo-Yangida $E_7/(SU(5) imes U(1)^3)$ Family unification model

F-theory

Local F-theory naturally realizes Kugo-Yanagida

New geometric mechanism EXPLAINING WHY THREE generations

Plan

- 1. Introduction
- 2. Family unification
- 3. F-theory
- 4. "F-theory family unification"
- 5. Summary

2 FAMILY UNIFICATION

Family unification

- Family unification is the idea that the quarks and leptons are the fermionic partners of the scalars of some coset supersymmetric non-linear sigma model Buchmuller,Peccei,Yanagida; Kugo,Yanagida; Irie,Yasui; Ong
- The importance of an "unparallel" family structure was first emphasized by Yanagida, and later by Bando, Kugo and others Bando,Kuramoto,Maskawa,Uehara; Itoh,Kugo,Kunitomo

Family unification

 Remarkably, the Kugo-Yanagida model automatically realizes precisely three UNPARALLEL generations of matter fields needed for the SU(5) GUT

E7

Quarks and Leptons in one generation are grouped into $\overline{5}$, **10** and **1** of SU(5)

1

dip dip dip dip dip Sip bip bip bip bip bip bip	Ver 1 Ver	SU(5)	10	10 5* 1	10 5* 1
$ \left(\begin{array}{c} \sqrt{a} \\ 0 \\ \overline{5} \\ $	L V ^c r 1	E7	J(1) ເ	J(1)	5* 5 1 U(1)

SU(5)	10	10	10
(-)		5*	5*
		1	1
	U(1)		5*
		U(1)	5 1
			U(1)

 $E7/(SU(5) \times U(1)^3)$ Kugo-Yanagida model realizes almost minimal necessary matter content for an SU(5) GUT in an amazingly economical way

Family unification in F-THEORY

- We will show that "F-THEORY" can naturally realize such a group coset structure
- To my knowledge this is the first string-theory realization of the old idea of "family unification"

Family unification in F THEORY

- We are interested in some local geometric structure that can realize precisely three "unparallel" families
- This is because if the realization of the SM were a consequence of the global details of the entire compactification space, it would be very hard, if not impossible, to find any "reason" or "explanation" for what we observe now

F7

3 F-THEORY

Four essential aspects of F-theory

1. Instead of considering a configuration of the IIB complex scalar $\tau = C_0 + ie^{-\phi}$, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa

A complex scalar τ depending only on z

http://commons.wikimedia.org/wiki/ File:WorldMap-A_non-Frame.png

A family of tori whose shapes vary from point to point

Elliptic fibration (「楕円」ファイブレーション)

The total space is represented as a fiber bundle whose fiber is a torus

トーラスの周期が楕円関数を使って 表せるから「楕円」という

Four essential aspects of F-theory

- 1. Instead of considering a configuration of the IIB complex scalar $\tau = C_0 + ie^{-\phi}$, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa
- 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular

Degenerate torus : Singular fiber

「ドーナツ」が「あんドーナツ」になる A donut becomes "a donut hole"

http://www.fromaway.com/ cooking/deep-fried-buttermilkdoughnut-holes-with-cinnamonand-sugar

The shape of a torus: the complex structure modulus τ

D7-brane where a donut hole sits

$$\tau = \frac{1}{2\pi i} \log z, \quad f(z) = -\frac{1}{12} \log z$$

Let
$$z = \epsilon e^{i\theta}$$

 $\Rightarrow \tau = \frac{1}{2\pi i} (\log \epsilon + i\theta)$
 $\Rightarrow C = \mathrm{Im}\tau = \frac{\theta}{2\pi}$

Magnetic flux:

$$\int_{0}^{2\pi} d\theta \partial_{\theta} C = \int_{0}^{2\pi} d\theta \frac{1}{2\pi}$$
$$= 1$$

Magnetically charged object

Four essential aspects of F-theory

- 1. Instead of considering a configuration of the IIB complex scalar $\tau = C_0 + ie^{-\phi}$, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa
- 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular
- Singularities of elliptic fiberations were classified according to their types investigated by Kodaira Kodaira
- The Kodaira singularities are described by joining/parting of 7-branes, which involves not only D-branes but general (p,q) branes
 DeWolfe,Hauer,Igbal,Zwiebach

Monodromy where a donut hole sits

$$\tau = C_0 + ie^{-\phi} = \frac{1}{2\pi i} \log z$$

$$z \to e^{2\pi i} z, \quad \tau \to \tau + 1$$

A,B,C: 7-branes with a different monodromy

$$K_{[p,q]} = \begin{pmatrix} 1+pq & -p^2 \\ q^2 & 1-pq \end{pmatrix}$$
$$A = K_{[1,0]} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \qquad B = K_{[1,-1]} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$
$$C = K_{[1,1]} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

 All the singularity types in Kodaira's classification are described by a coalesce of A,B and C branes DeWolfe,Hauer,Iqbal,Zwiebach(1998)

Collapsible set of 7-branes are classified: Kodaira's classification

Fiber type	Singularity type	7-branes	Brane type
In	An-1	A ⁿ	An-1
II	Ao	AC	Ho
III	Aı	A²C	H1
IV	A ₂	A ³ C	H ₂
10*	D ₄	A4BC	D ₄
ln*	Dn+4	A ⁿ⁺⁴ BC	Dn+4
*	E8	A7BC ²	E8
*	E ₇	A ⁶ BC ²	E ₇
IV*	E6	A ⁵ BC ²	E6

Four essential aspects of F-theory

- 1. Instead of considering a configuration of the IIB complex scalar $\tau = C_0 + ie^{-\phi}$, one considers a configuration of a FICTITIOUS torus whose modulus equals τ Vafa
- 2. 7-branes are located where an elliptic (=torus) fiber degenerate and becomes singular
- Singularities of elliptic fiberations were classified according to their types investigated by Kodaira Kodaira
- The Kodaira singularities are described by joining/parting of 7-branes, which involves not only D-branes but general (p,q) branes
 DeWolfe,Hauer,Igbal,Zwiebach

What happens if there are B- and C-branes?

Ordinary D-brane case

- (p,q) string can end on [p,q] branes
- Short strings between the close branes yields light "W bosons"

 (1,0) string turns into (-1,0) string ⇒ different state

 (-1,1) and (-1,-1) strings are pulled out when the string crosses over the B and C branes

What happens if there are B- and C-branes?

- When N D-branes come on top of each other, one gets U(N) gauge symmetry Witten. In this case the relevant massless "W-bosons" are supplemented by the excitations of light open strings ending on different D-branes
- Likewise, the extra massless fields needed for the gauge symmetry enhancement to an exceptional group can be thought of as coming from the string junctions connecting the coinciding 7-branes Gaberdiel,Zwiebach

Coalesced branes and singularities: SU(5)

Coalesced branes and singularities: SO(10)

Coalesced branes and singularities: E₆

Coalesced branes and singularities: E₇

SO(10)

4 "F-THEORY FAMILY UNIFICATION"

Three new contributions in: "*F-theory Family Unification*" SM, JHEP 1407(2014) 018, arXiv:1403.7066 [hep-th]

Consider a set of coalesced local 7-branes of a particular Kodaira singularity type and allow some of the branes to bend and separate from the rest, so that they meet only at an intersection point

Three new contributions in: "*F-theory Family Unification*" SM, JHEP 1407(2014) 018, arXiv:1403.7066 [hep-th]

I have shown that

1. The six-dimensional matter spectrum coincides (after an orbifold projection) with that of a supersymmetric coset sigma model whose target space is a corresponding homogeneous Kahler manifold

Table 2. Summary of matter fields in F-theory/heterotic duality in six dimensions. Only the cases for the split type with rank ≥ 2 are listed, where n is \pm (the number of instantons -12) in one of E_8 's on the heterotic side, and r specifies how they are distributed when the commutant group is a direct product [60]. In addition to the data shown in [60], the corresponding 7-brane configurations as well as the homogeneous Kähler manifolds are also displayed.

Gauge group	Neutral hypers	Charged matter	7-branes	Homogeneous Kähler manifold
E_7	2n + 21	$\frac{n+8}{2}$ 56	$A+ A^{6}BCC$	$E_8/(E_7 \times U(1))$
E_6	3n + 28	(n+6)27	$A + A^5 BCC$	$E_7/(E_6 \times U(1))$
, i i i i i i i i i i i i i i i i i i i				
		(m + 4) 16		$F_{\rm L}/(SO(10) \times U(1))$
		(n+4)10	$\mathbf{A}^{*}\mathbf{b}\mathbf{C}^{+}\mathbf{C}^{+}$	$E_6/(SO(10) \times U(1))$
SO(10)	4n + 33		-	·•
		(n+6) 10	$\mathbf{A} + \mathbf{A}^{\mathrm{b}}\mathbf{B}\mathbf{C}$	$SO(12)/(SO(10) \times U(1))$
		$(n+4)8_c$	A^4BC+C	$E_5/(SO(8) \times U(1))$
SO(8)	6n + 44	$(n+4)8_s$		$(=SO(10)/(SO(8) \times U(1)))$
		$(n+4)8_v$	A+ A*BC	$SO(10)/(SO(8) \times U(1))$
				• • • • • • • • • • • • • • • • • • •
		(4n + 16)4	$A^{3}BC+C$	$E_4/(SO(6) \times U(1))$
SU(4)	8n + 51			$(-50(3)/(50(4) \times 0(1)))$
		$(n+2){\bf 6}$	$A+A^{3}BC$	$SO(8)/(SO(6) \times U(1))$
		(4n+16)((1,2))	A^2BC+C	$E_3/(SO(4) \times U(1))$
SO(4)	10n + 54	+(2,1))		$(=SU(3)/(SU(2)\times U(1)))$
50(1)	10/0 01	n(2 , 2)	$A+A^2BC$	$SO(6)/(SO(4) \times U(1))$
(III(a)	10 . 00	(0, 10)0	A A 3	
SU(3)	12n + 66	(6n + 18)3	$\mathbf{A} + \mathbf{A}^{o}$	$SU(4)/(SU(3) \times U(1))$
		$\frac{r}{2}$ 32 + $\frac{n+4-r}{2}$ 32 '	$\mathbf{A}^{6}\mathbf{BC}\mathbf{+C}$	$E_7/(SO(12) \times U(1))$
CO(10)	0			Î
50(12)	2n + 18	(n+8) 12	$A + A^6 BC$	$SO(14)/(SO(12) \times U(1))$
		(, .)		
		r ao		$ \underbrace{ \begin{array}{c} \bullet \\ \hline \end{array} } \\ F_{1} \left(\left(CU \left(C \right) \right) \right) \\ \hline \end{array} \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \end{array} \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \end{array} \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \end{array} \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \end{array} \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(CU \left(C \right) \right) \right) \\ \hline \\ \left(\left(CU \left(CU \left(C \right) \right) \right) \\ \left(\left(CU \left(CU \left(CU \left(C \right) \right) \right) \right) \\ \hline \\ \left(\left(CU \left(C$
		$\overline{2}$ 20	$\mathbf{A}^* + \mathbf{A}_{[2,-1]} + \mathbf{C}$	$E_6/(SU(6) \times U(1))$
				·
SU(6)	3n - r + 21	(2n+16+r)6	$\mathbf{A} + \mathbf{A}^6$	$SU(7)/(SU(6) \times U(1))$
		(n+2-r) 15	\mathbf{A}^{6} + B + C	$SO(12)/(SU(6) \times U(1))$
		$(3n \pm 16)$ 5	$\Lambda \perp \Lambda^5$	$SU(6)/(SU(5) \times U(1))$
SU(5)	5n + 36	(3n + 10) 3	$\mathbf{A} + \mathbf{A}$	•••••••••
		$(n+2){\bf 10}$	\mathbf{A}^5 + B + C	$SO(10)/(SU(5) \times U(1))$

For all (the "split" cases) the patterns of gauge symmetry breaking in the F/heterotic duality investigated by Bershadsky et.al., the six-dimensional charged matter content

corresponds to a homogeneous Kahler manifold of the relevant type Three new contributions in: "*F-theory Family Unification*" SM, JHEP 1407(2014) 018, arXiv:1403.7066 [hep-th]

2. Such a brane configuration can preserve N=1 sixdimensional SUSY, at least locally

Proof of supersymmetry

$$ds_4^2 = e^{\Phi} dz d\bar{z} + e^{\Psi} (dw + \xi dz) (d\bar{w} + \bar{\xi} d\bar{z}) \qquad w = x^{\dot{6}} + ix^{\dot{7}}$$
$$\tau = \tau(z, w)$$

 Φ,Ψ : real functions

 μ

 $\boldsymbol{\xi}$: complex function

Any hermitian metric can be written in this form

$$e_{\mu}^{\ \alpha} = \begin{pmatrix} e_{i}^{\ \alpha} & 0\\ 0 & e_{\overline{i}}^{\overline{a}} \end{pmatrix}$$

$$= i, \overline{i}; \ i = z, w; \ \overline{i} = \overline{z}, \overline{w}; \ \alpha = a, \overline{a}; \ a = 1, 2; \ \overline{a} = \overline{1}, \overline{2}$$

$$e_{i}^{\ \alpha} \equiv \begin{pmatrix} e_{i}^{\ 8} + ie_{i}^{\ 9} & e_{i}^{\ 6} + ie_{i}^{\ 7} \end{pmatrix} = \begin{pmatrix} e^{\frac{\Phi}{2}} & e^{\frac{\Psi}{2}}\xi\\ 0 & e^{\frac{\Psi}{2}} \end{pmatrix},$$

$$e_{\overline{i}}^{\overline{a}} \equiv \begin{pmatrix} e_{\overline{i}}^{\ 8} - ie_{\overline{i}}^{\ 9} & e_{\overline{i}}^{\ 6} - ie_{\overline{i}}^{\ 7} \end{pmatrix} = \begin{pmatrix} e^{\frac{\Phi}{2}} & e^{\frac{\Psi}{2}}\xi\\ 0 & e^{\frac{\Psi}{2}} \end{pmatrix},$$

$$\eta_{\alpha\beta} = \begin{pmatrix} \frac{1}{2}I\\ \frac{1}{2}I \end{pmatrix}, \ I = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

$$g_{\mu\nu} = e_{\mu}^{\ \alpha}\eta_{\alpha\beta}e^{\beta}_{\ \nu}, \ ds_{4} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

Choice of gamma matrices

$$\begin{split} \gamma^{1} &\equiv \gamma^{8} + i\gamma^{9} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \otimes I = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \\ \gamma^{\bar{1}} &\equiv \gamma^{8} - i\gamma^{9} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \otimes I = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \\ \gamma^{2} &\equiv \gamma^{6} + i\gamma^{7} = \sigma_{3} \otimes \begin{pmatrix} 2 \\ 0 \end{pmatrix} \otimes I = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \\ \gamma^{\bar{2}} &\equiv \gamma^{6} - i\gamma^{7} = \sigma_{3} \otimes \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \\ \gamma^{\bar{2}} &\equiv \gamma^{6} - i\gamma^{7} = \sigma_{3} \otimes \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \\ \gamma^{\bar{2}} &\equiv \gamma^{6} - i\gamma^{7} = \sigma_{3} \otimes \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \\ Due \text{ to the holomorphic assumption we have, again,} \\ P_{\bar{i}} = 0 \quad (\bar{i} = \bar{z}, \bar{w}). \end{split}$$

The dilatino variation thus reads $\delta\lambda \propto P_i e_a^{\ i} \gamma^a \epsilon^*$ Since the leftmost columns of γ^a (a = 1, 2) are zero, this vanishes for

$$\epsilon = \begin{pmatrix} \tilde{\epsilon} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Gravitino variation $\delta \psi_{\mu}$: Since the nonzero component of ϵ is only the first one, we are only concerned with the first columns of

$$\begin{split} \omega_{1\alpha\beta}\gamma^{\alpha\beta} &= \begin{pmatrix} -e^{-\frac{\Phi}{2}}(\partial_w\xi - \xi\partial_w\Phi + \partial_z\Phi) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 2e^{-\Phi - \frac{\Psi}{2}} \left(e^{\Psi}(\bar{\xi}\partial_{\bar{w}}\xi - \partial_{\bar{z}}\xi) + e^{\Phi}\partial_{\bar{w}}\Phi \right) & * & * & * \\ 2e^{-\Phi - \frac{\Psi}{2}} \left(e^{\Psi - \Phi}(\xi\partial_w\bar{\xi} - \partial_z\bar{\xi}) - \partial_w\Psi \right) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 2e^{-\frac{\Phi}{2}}(\partial_{\bar{w}}\bar{\xi} + \bar{\xi}\partial_{\bar{w}}\Psi - \partial_{\bar{z}}\Psi) & * & * & * \end{pmatrix}, \\ \omega_{\bar{1}\alpha\beta}\gamma^{\alpha\beta} &= \begin{pmatrix} -(\overline{(1,1)} \text{ component of } \omega_{1\alpha\beta}\gamma^{\alpha\beta}) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix}, \\ \omega_{\bar{2}\alpha\beta}\gamma^{\alpha\beta} &= \begin{pmatrix} -(\overline{(1,1)} \text{ component of } \omega_{2\alpha\beta}\gamma^{\alpha\beta}) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix}, \end{split}$$

Since the ``Bismut-like" connection contains, besides the spin connection, only Q_{μ} which is U(1), the gravitino variations vanish only if the off-diagonal components (of the first columns) do

SUSY transformations: $\delta \psi_{\mu} = \frac{1}{\kappa} \left(\partial_{\mu} - \frac{1}{4} \omega_{\mu\alpha\beta} \gamma^{\alpha\beta} - \frac{i}{2} Q_{\mu} \right) \epsilon$ $\delta \lambda = \frac{i}{\kappa} P_{\mu} \gamma^{\mu} \epsilon^{*}$

Since the "Bismut-like" connection contains, besides the spin connection, only Q_{μ} which is U(1), the gravitino variations vanish only if the off-diagonal components (of the first columns) do

$$e^{\Psi}(\xi\partial_w\bar{\xi} - \partial_z\bar{\xi}) + e^{\Phi}\partial_w\Phi = 0 \text{ and } (1)$$
$$\partial_w\xi + \xi\partial_w\Psi - \partial_z\Psi = 0 \quad (2)$$

They are equivalent to

$$\partial_w (e^{\Psi} \xi \bar{\xi} + e^{\Phi}) = \partial_z (e^{\Psi} \bar{\xi}) \text{ and}$$
$$\partial_w (e^{\Psi} \xi) = \partial_z e^{\Psi}$$
$$\partial_i g_{j\bar{i}} = \partial_j g_{i\bar{i}}, \quad \partial_{\bar{i}} g_{\bar{j}i} = \partial_{\bar{j}} g_{\bar{i}i}$$
Kähler

or

That the system of equations (1) (2) has a solution can be confirmed by expanding them in the coordinates and showing that the coefficients are determined order by order in this expansion Using the solutions Φ, Ψ and ξ satisfying (1)(2)

$$\omega_{i\alpha\beta}\gamma^{\alpha\beta} = \begin{pmatrix} -\partial_{i}(\Phi + \Psi) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix}, \quad \omega_{\bar{i}\alpha\beta}\gamma^{\alpha\beta} = \begin{pmatrix} +\partial_{\bar{i}}(\Phi + \Psi) & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix}$$
$$Q_{i} = -\frac{i}{2}\partial_{i}\log(\tau - \bar{\tau}),$$
$$Q_{\bar{i}} = -\frac{i}{2}\partial_{\bar{i}}\log(\tau - \bar{\tau}),$$

A Killing spinor exists if

$$\Phi + \Psi = \log(\tau - \bar{\tau}) + F(z^i) + \bar{F}(\bar{z}^i)$$

for some holomorphic functions

Three new contributions in: "*F-theory Family Unification*" SM, JHEP 1407(2014) 018, arXiv:1403.7066 [hep-th]

3. If one starts from the E_7 singularity, one obtains the same chiral matter content as the $E_7/$ (SU(5)xU(1)³) Kugo-Yanagida model yielding precisely three generations with an **UNPARALLEL** family structure!!!

Kugo-Yanagida in F-theory

E7

To get a 4D theory, we still need to compactify on T^2 and take an orbifold

"Large Lepton-flavor Mixings from E8 Kodaira Singularity" SM, arXiv:1407.1319[hep-th] Sato-Yanagida's scenario using the Frogatt-Nielsen mechanism Assume THREE PAIRS $s_i, \bar{s}_i (i = 0, 1, 2)$ of singlet scalar fields with particular U(1) charges in the $E_7/(SU(5)xU(1)^3)$ model

- Hierarchical Yukawa couplings for both the quark and lepton sectors, qualitatively in agreement
- Large lepton / small quark mixing angles

provided that
$$\frac{\langle s_1 \rangle}{\langle s_0 \rangle} \sim 0.05$$
, $\frac{\langle s_2 \rangle}{\langle s_1 \rangle} \sim 0.05$ and $\tan \theta \sim 1$

Sato-Yanagida's scenario is naturally realized in F-theory family unification!

Necessary Frogatt-Nielsen fields naturally arise if we consider the branching of E8 singularity!

5 SUMMARY

Summary

- We have shown that a certain local 7-brane system in F theory can realize, already at the level of six dimensions, the same quantum numbers as that of the SUSY nonlinear sigma model considered in family unification
- If half of the spectrum is projected out, then it becomes precisely what we observe in nature
- We considered a set of coalesced local 7-branes of a particular singularity type and allowed some of the branes to bend and separate from the rest
- The massless spectrum was studied by investigating string junctions near the intersection and shown to be the same as the sigma model