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1. Introduction



symmetry breaking in physics



spacetime symmetry breaking

condensed matter cosmology



# various phases of liquid crystal

nematic smectic A smectic C

# inhomogeneous chiral condensate (in QCD phase diagram?)

h ̄ i+ ih ̄i�5 i = �(z)

figs: wikipedia

chiral spiral (complex)

11

FIG. 7: Plot of the complex kink crystal condensate (4.12), for ν = 0.8 and θ = 3K(0.2)/2, illustrating how the kink winds
around zero each period, without the amplitude vanishing. The kink is the solid [red] line, and the surface is shown simply to
illustrate that both the amplitude and the phase are changing over each period.
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FIG. 8: Plots of the amplitude M(x) and phase χ(x) of the complex kink crystal condensate (4.12), for θ = 1.6 and ν = 0.95.

Here we used the quasi-periodicity property (11.2) of the σ function. Note that ϕ and η ≡ ζ(K) are real, and when
ν → 1, we have ϕ→ −θ/2. This crystalline complex kink is plotted in Figure 7 showing the winding of the kink over
a period.

It is also useful to visualize the condensate (4.12) in terms of its amplitude and phase: ∆ = M eiχ. The modulus
squared is a bounded periodic function, with period 2K/A:

M2 ≡ |∆(x)|2 = A2 (P (Ax + iK′) − P (iθ/2)) (4.16)

Here we used the quasi-periodicity property (11.2) of the σ function, together with the product identity (11.12)
relating the σ and P functions. The phase χ can be expressed as

χ(x) = A(−i ζ(iθ/2) + i ns(iθ/2))x +
i

2
ln

(

σ(Ax + iK′ + iθ/2)

σ(Ax + iK′ − iθ/2)

)

+
η3θ

2
(4.17)

The amplitude and phase are plotted in Figure 8. Note that the amplitude is periodic while the phase changes by 2ϕ
over each period.

The complex crystalline condensate in (4.12) satisfies the NLSE:

∆′′ − 2 |∆|2 ∆ − i (2A i ns(iθ/2))∆′ − A2
(

3P(iθ/2)− ns2(iθ/2)
)

∆ = 0 (4.18)

Comparing this equation with the NLSE (2.13) we can extract the functions a(E), b(E) and N (E) appearing in
(2.12), thereby determining the exact diagonal resolvent. To express these functions in a compact form, we define
some properties of the associated fermionic spectrum for the BdG equation (1.8). This spectrum has positive and
negative energy continua starting at E = ±m, together with a single bound band in the gap, as depicted in Figure 9.

fig: Basar Dunne ’08

real kink

-20 -10 10 20

-1.0

-0.5

0.5

1.0

�

z



# various phases of liquid crystal

nematic smectic A smectic C

# inhomogeneous chiral condensate (in QCD phase diagram?)

h ̄ i+ ih ̄i�5 i = �(z)

figs: wikipedia

chiral spiral (complex)

11

FIG. 7: Plot of the complex kink crystal condensate (4.12), for ν = 0.8 and θ = 3K(0.2)/2, illustrating how the kink winds
around zero each period, without the amplitude vanishing. The kink is the solid [red] line, and the surface is shown simply to
illustrate that both the amplitude and the phase are changing over each period.

-10 -5 5 10
x

0.2

0.4

0.6

0.8

1

!!!

-10 -5 5 10
x

-2

-1

1

2

Χ

FIG. 8: Plots of the amplitude M(x) and phase χ(x) of the complex kink crystal condensate (4.12), for θ = 1.6 and ν = 0.95.

Here we used the quasi-periodicity property (11.2) of the σ function. Note that ϕ and η ≡ ζ(K) are real, and when
ν → 1, we have ϕ→ −θ/2. This crystalline complex kink is plotted in Figure 7 showing the winding of the kink over
a period.

It is also useful to visualize the condensate (4.12) in terms of its amplitude and phase: ∆ = M eiχ. The modulus
squared is a bounded periodic function, with period 2K/A:

M2 ≡ |∆(x)|2 = A2 (P (Ax + iK′) − P (iθ/2)) (4.16)
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The amplitude and phase are plotted in Figure 8. Note that the amplitude is periodic while the phase changes by 2ϕ
over each period.

The complex crystalline condensate in (4.12) satisfies the NLSE:

∆′′ − 2 |∆|2 ∆ − i (2A i ns(iθ/2))∆′ − A2
(

3P(iθ/2)− ns2(iθ/2)
)

∆ = 0 (4.18)

Comparing this equation with the NLSE (2.13) we can extract the functions a(E), b(E) and N (E) appearing in
(2.12), thereby determining the exact diagonal resolvent. To express these functions in a compact form, we define
some properties of the associated fermionic spectrum for the BdG equation (1.8). This spectrum has positive and
negative energy continua starting at E = ±m, together with a single bound band in the gap, as depicted in Figure 9.
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would like to understand low-energy dynamics
- # of gapless modes? their dispersion relations?
- from (spacetime) symmetry point of view?



# cosmology

- cosmic expansion breaks time translation generically
- various models for inflation
ex. anisotropic inflation: rotation is also broken

ex. gaugeflation: internal SU(2) x rotation → diagonal SU(2)



# cosmology

- cosmic expansion breaks time translation generically
- various models for inflation
ex. anisotropic inflation: rotation is also broken

ex. gaugeflation: internal SU(2) x rotation → diagonal SU(2)

cosmological models from symmetry viewpoint
- curved background, gravitational theory
- massive fields with            are also relevantm . H



coset construction



＃ coset construction for internal symmetry breaking

⇡a- NG modes      = coordinates of G/H

with (broken symmetry)⌦ = e⇡
a(x)Ta Ta 2 a

- ingredients of effective action:

Maurer-Cartan one form Jµ = ⌦�1@µ⌦

- effective action is local right H invariant

g = h� a

(
h :

a :

residual symmetry
broken symmetry

※ coset construction provides general effective action

consider an internal symmetry breakingG ! H



＃ extension to spacetime symmetry breaking

ex. conformal symmetry breaking (conformal → Poincare)

- introduce two types of “NG modes”
: dilaton,� : spurious field to be removed⇠µ

- global symmetry picture leads to wrong NG mode counting

※ NG modes = local transformations of order parameters

- remove      by imposing the inverse Higgs constraints⇠µ

withMC form: Jµ = ⌦�1@µ⌦ ⌦ = ex
µ
Pµe�De⇠

µ
Kµ

broken symmetry: dilatation     and special conformalD Kµ



motivation
coset construction:
- has been applied to various condensed matter systems
- captures a certain aspects of spacetime symmetry breaking

however, its understanding seems not complete
- no proof that coset construction provides general action
- appearance of spurious NG mode may not be attractive

would like to have an approach
- without spurious NG mode from the beginning
- appropriate to curved spacetime & gravitational theory

→ effective theory based on a local symmetry picture



plan of my talk:

1. Introduction

3. Case study 1: scalar domain walls

2. Basic strategy

4. Case study 2: vector domain walls

✔

5. Summary and discussion



2. Basic strategy



coset construction from gauge symmetry breaking



effective action for massive gauge boson      :Aµ

with
Z

d

4
x tr


� 1

4g2
F

µ⌫
Fµ⌫ � v

2

2
Aaµ A

µ
a + . . .

�
Aaµ 2 a

-    : gauge coupling,    : order parameterg v

- NG modes are eaten by gauge boson (unitary gauge)

dynamical dof = gauge field only

Aµ ! A0
µ = ⌦�1Aµ⌦+ ⌦�1@µ⌦ ⌦ = e⇡

a(x)Tawith

introduce NG modes by Stuckelberg method:

Aµ ! Jµ = ⌦�1@µ⌦ in the unitary gauge effective action
Z

d

4
x tr


� 1

4g2
F

µ⌫
Fµ⌫ � v

2

2
Aaµ A

µ
a + . . .

�
!

Z
d

4
x tr


�v

2

2
Jaµ J

µ
a + . . .

�

※ global symmetry limit can be obtained by setting Aµ = 0



gauge field is the only dof in the unitary gauge

can be thought of as a proof for completeness of coset construction

unitary gauge is convenient to find general ingredients for EFT

the most careful way to construct the general effective action will be

1. gauge the (broken) global symmetry

2. write down the unitary gauge effective action

3. introduce NG modes by Stuckelberg method
    and decouple the gauge sector



local properties of spacetime symmetry



＃ local properties of spacetime symmetry

✏

µ(x) = ✏

µ(x⇤) + (x⌫ � x

⌫
⇤)r⌫✏

µ(x) + . . .

rµ✏
⌫ = �⌫µ�+ sµ

⌫ + !µ
⌫

its local properties around a point               can be read off asx

µ = x

µ
⇤

consider a spacetime symmetry associated with x0µ = x

µ � ✏

µ(x)

- 1st term: shift of coord. system (translation)
- 2nd term: deformations of coord. system

・trace part      : isotropic rescaling�

・antisymmetric        : Lorentz transformation!µ⌫

・symmetric traceless        : anisotropic rescalingsµ⌫

ex. special conformal on Minkowski space

locally, a combination of Poincare & isotropic rescaling

rµ✏
⌫ = 2�⌫µ(b · x) + 2(bµx

⌫ � b⌫x
µ)



relativistic symmetry diffeomorphism local Lorentz local Weyl

translation !
isometry ! !
conformal ! ! !

Table 1: Embedding of spacetime symmetry in relativistic systems.

nonrelativistic symmetry foliation preserving local rotation local anisotropic Weyl

translation !
Galilean ! !

Schrodinger ! ! !
Galilean conformal ! ! !

Table 2: Embedding of spacetime symmetry in nonrelativistic systems.

where G and H are the original and residual symmetry groups, respectively, and Ω(x) describes the

NG modes. In this picture, we can take the global symmetry limit smoothly to obtain the same

effective action constructed from the Maurer-Cartan one form (1.1). Since the massive gauge field is

the only dynamical degrees of freedom in the unitary gauge, the above argument can be thought of as

a proof for completeness of the coset construction. As this discussion suggests, the unitary gauge is

convenient to construct ingredients for the general effective action. Based on this observation, we apply

the following recipe of effective action construction to spacetime symmetry breaking in this paper:1

1. gauge the (broken) global symmetry,

2. write down the unitary gauge effective action,

3. introduce NG modes by the Stückelberg method and decouple the gauge sector.

Our starting point is that any spacetime symmetry can be locally generated by Poincaré transfor-

mations and isotropic/anisotropic rescalings. Correspondingly, we can embed any spacetime symmetry

transformation in diffeomorphisms (diffs), local Lorentz transformations, and local isotropic/anisotropic

Weyl transformations. See tables 1 and 2 for concrete embedding of global spacetime symmetry. We

then would like to gauge the original global symmetry to those local ones. First, diffeomorphisms and

local Lorentz invariance can be realized by introducing the curved spacetime action with the metric

1It should be noted that the use of the unitary gauge effective action for spacetime symmetry breaking itself is not
new. As we review in Sec 5.1, the EFT approach for inflation [2] is based on the unitary gauge discussion for example.
Since the universe is a gravitational system, we have the diffeomorphism invariance in cosmology and the time-dependent
inflaton background breaks the time-diffeomorphism invariance. In [2], the general effective action for single field inflation
was constructed based on the degrees of freedom and symmetry in the unitary gauge.

3

as the local decomposition suggests,
any spacetime symmetry transformation can be embedded
in diffeomorphism, local Lorentz, local (an)isotropic Weyl



gauging spacetime symmetry



＃ gauging spacetime symmetry

- diffeo & local Lorentz

Z
d

4
xL[�, @m�] !

Z
d

4
x

p
�gL[�, eµmrµ�]

can be gauged by introducing curved spacetime action

2global spacetime symmetry    diffeo x local Lorentz x local Weyl 

- Weyl symmetry

1. Ricci gauging (not necessarily possible)
introduce a local Weyl invariant curved spacetime action

2. Weyl gauging (always possible)
gauge global Weyl symmetry by introducing a gauge field Wµ



EFT recipe



diffeomorphism local Lorentz local Weyl internal gauge

spacetime dependence spin scaling dimension internal charge

metric gµν vierbein emµ Weyl gauge field Wµ gauge field Aµ

Table 3: Broken symmetries and the condensation patterns.

2.4 EFT recipe

As we have discussed, all the global symmetries can be embedded in diffeomorphisms, local Lorentz

symmetries, local isotropic/anisotropic Weyl symmetry, and internal gauge symmetries. We can also

gauge the global symmetry by the use of the procedure in the previous subsection. First, the symmetry

breaking patterns are classified by the condensation pattern of order parameters

〈
ΦA(x)

〉
= Φ̄A(x) . (2.25)

When the condensation of order parameters is spacetime dependent, diffeomorphism invariance is

broken. On the other hand, local Lorentz invariance, local isotropic/anisotropic Weyl invariance, and

internal gauge invariance are broken when the condensed order parameter has the Lorentz charge

(spin), scaling dimension, and internal charge, respectively. Once we identify the symmetry breaking

pattern, we construct the effective action based on the following recipe just as the case of internal

symmetry breaking discussed in section 2.1

1. gauge the (broken) global symmetry,

2. write down the unitary gauge effective action,

3. introduce NG modes by the Stückelberg method and decouple the gauge sector.

The first step can be performed by introducing gauge fields based on the procedure in subsection 2.3

(see also table 3). We then take the unitary gauge, where the NG modes do not fluctuate. Using the

dynamical degrees of freedom in the unitary gauge, we construct the general unitary gauge effective

action invariant under the residual symmetries. Finally, we perform the Stückelberg method to intro-

duce the NG modes and restore the full gauge symmetry. By decoupling the gauge sector, we obtain

the effective action for the NG modes. In the following sections, we apply this recipe to concrete

examples for spacetime symmetry breaking.

3 Warm-up examples

In this section we apply the general strategy to three illustrative examples for spacetime symmetry

breaking.

9

symmetry breaking pattern based on local symmetries:

can be classified by condensation patterns
⌦
�A(x)

↵
= �̄A(x)

1. gauge the (broken) global symmetry

2. write down the unitary gauge effective action

3. introduce NG modes by Stuckelberg method
    and decouple the gauge sector

once symmetry breaking patterns are given or identified,

we construct the effective action in the following way:



plan of my talk:

1. Introduction

3. Case study 1: scalar domain walls

2. Basic strategy

4. Case study 2: vector domain walls

✔

5. Summary and discussion

✔



3. Scalar domain-walls



＃ domain-wall configurations of a real scalar
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＃ domain-wall configurations of a real scalar

-20 -10 10 20

-1.0

-0.5

0.5

1.0

�

z

in global sense:
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translation and Lorentz invariance are broken

symmetry breaking

full diffeo → (1+2)-dim diffeo
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＃ domain-wall configurations of a real scalar

dof = metric       , residual symmetry = (1+2)-dim diffeogµ⌫

- unitary gauge action (cf. EFT for inflation [’07 Cheung et al.])

- action for NG modes

S =

Z
d

4
x

p
�g

⇥
↵(z) + �(z)gzz(x) + �(z)(gzz � 1)2 + . . .

⇤

1. Stuckelberg method: z ! z + ⇡(x)

2. decouple the gauge sector ⇔ to set gµ⌫ = ⌘µ⌫

3. background (bulk) eom → ↵(z) = �(z)

S =

Z
d

4
x [↵(z + ⇡) + �(z + ⇡)(1 + 2@z⇡ + @µ⇡@

µ
⇡)

+�(z + ⇡)(2@z⇡ + . . .)2 + . . .

⇤



＃ domain-wall configurations of a real scalar

dof = metric       , residual symmetry = (1+2)-dim diffeogµ⌫

- unitary gauge action (cf. EFT for inflation [’07 Cheung et al.])

- action for NG modes

S =

Z
d

4
x

p
�g

⇥
↵(z) + �(z)gzz(x) + �(z)(gzz � 1)2 + . . .

⇤

1. Stuckelberg method: z ! z + ⇡(x)

2. decouple the gauge sector ⇔ to set gµ⌫ = ⌘µ⌫

3. background (bulk) eom → ↵(z) = �(z)

S =

Z
d

4
x

⇥
↵(z)@µ⇡@

µ
⇡ + 4�(z)(@z⇡)

2 +O(⇡3)
⇤

+

Z
d

3
x

⇥
↵(z)⇡ +O(⇡2)

⇤z=1
z=�1



＃ domain-wall configurations of a real scalar
let us take a closer look at the obtained action

- free function        = domain-wall profile↵(z) ↵(z) ⇠ V (z)

S =

Z
d

4
x

⇥
↵(z)@µ⇡@

µ
⇡ + 4�(z)(@z⇡)

2 +O(⇡3)
⇤

+

Z
d

3
x

⇥
↵(z)⇡ +O(⇡2)

⇤z=1
z=�1
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no kinetic term outside the brane
 → NG mode does not propagate in the bulk

multiple domain wall:
nonvanishing         @ boundary
→ instability unless we impose
 ※           for stable backgrounds
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⇡(±1) = 0

↵ = 0



＃ domain-wall configurations of a real scalar
let us take a closer look at the obtained action

- free function        = domain-wall profile↵(z) ↵(z) ⇠ V (z)

S =

Z
d

4
x

⇥
↵(z)@µ⇡@

µ
⇡ + 4�(z)(@z⇡)

2 +O(⇡3)
⇤

+

Z
d

3
x

⇥
↵(z)⇡ +O(⇡2)

⇤z=1
z=�1
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|↵|
single domain wall:
no kinetic term outside the brane
 → NG mode does not propagate in the bulk

multiple domain wall:
nonvanishing         @ boundary
→ instability unless we impose
 ※           for stable backgrounds

↵(z)

⇡(±1) = 0

↵ = 0

applying a similar discussion in nonrelativistic systems,

we obtain the dispersion relations !2 ⇠ 0 · k2k + k4k + k2?

for NG modes in inhomogeneous chiral condensates

※ seem not manifest in standard coset construction



plan of my talk:

1. Introduction

3. Case study 1: scalar domain walls

2. Basic strategy

4. Case study 2: vector domain walls

✔

5. Summary and discussion

✔

✔



4. vector domain walls



＃ vector domain-wall

z

t, x, y

in global sense:

in local sense:

translation and Lorentz invariance are broken

symmetry breaking

z-diffeo &       local Lorentz are brokenz-µ

full diffeo x local Lorentz → (1+2)-dim diffeo x local Lorentz

※ introduce        and      to gauge spacetime symmetrygµ⌫ emµ

- minimal setup in the unitary gauge

dynamical dof: metric       , vierbeingµ⌫ emµ

residual symmetry: (1+2)-dim diffeo x local Lorentz



＃ vector domain-wall

S = SP + SL + SPLdecompose action schematically as

-       : breaks the local LorentzSL

SL =

Z
d

4
x

p
�g

h
↵1

�
rµ

e

3
µ

�2
+ ↵2

�
rµe

3
⌫ �r⌫e

3
µ

�2
+ ↵3

�
e

⌫
3r⌫e

3
µ

�2i



＃ vector domain-wall

S = SP + SL + SPLdecompose action schematically as

-       : breaks the local LorentzSL

SL =

Z
d

4
x


↵1

⇣
@

bµ
⇠bµ

⌘2
+ ↵2 (@bµ⇠b⌫ � @b⌫⇠bµ)

2 + (2↵2 + ↵3) (@z⇠bµ)
2
�

→ kinetic terms for Lorentz NG modes ⇠bµ (bµ = t, x, y)



＃ vector domain-wall

S = SP + SL + SPLdecompose action schematically as

SPL-         : breaks both of diffs & local Lorentz

nµ =
�zµp
gzz

with
SPL =

Z
d

4
x

p
�gm

2(eµ3nµ � 1)

-       : breaks the local LorentzSL

SL =

Z
d

4
x


↵1

⇣
@

bµ
⇠bµ

⌘2
+ ↵2 (@bµ⇠b⌫ � @b⌫⇠bµ)

2 + (2↵2 + ↵3) (@z⇠bµ)
2
�

→ kinetic terms for Lorentz NG modes ⇠bµ (bµ = t, x, y)



＃ vector domain-wall

S = SP + SL + SPLdecompose action schematically as

SPL-         : breaks both of diffs & local Lorentz

SPL =

Z
d

4
x

p
�gm

2(eµ3nµ � 1) !
Z

d

4
x


�m

2

2
(⇠bµ � @bµ⇡)

2 + . . .

�

※ ξ becomes massive

cf. inverse Higgs integrates out the ξ field also

※ at the energy scale E << m,

we obtain effective scalar interaction ↵i

⇣
@2
k⇡

⌘2

-       : breaks the local LorentzSL

SL =

Z
d

4
x


↵1

⇣
@

bµ
⇠bµ

⌘2
+ ↵2 (@bµ⇠b⌫ � @b⌫⇠bµ)

2 + (2↵2 + ↵3) (@z⇠bµ)
2
�

→ kinetic terms for Lorentz NG modes ⇠bµ (bµ = t, x, y)



＃ vector domain-wall

S = SP + SL + SPLdecompose action schematically as

SPL-         : breaks both of diffs & local Lorentz

SPL =

Z
d

4
x

p
�gm

2(eµ3nµ � 1) !
Z

d

4
x


�m

2

2
(⇠bµ � @bµ⇡)

2 + . . .

�

※ ξ becomes massive

cf. inverse Higgs integrates out the ξ field also

※ at the energy scale E << m,

we obtain effective scalar interaction ↵i

⇣
@2
k⇡

⌘2

-       : breaks the local LorentzSL

SL =

Z
d

4
x


↵1

⇣
@

bµ
⇠bµ

⌘2
+ ↵2 (@bµ⇠b⌫ � @b⌫⇠bµ)

2 + (2↵2 + ↵3) (@z⇠bµ)
2
�

→ kinetic terms for Lorentz NG modes ⇠bµ (bµ = t, x, y)
applying a similar discussion in nonrelativistic systems,

obtain effective action for smectic A phase of liquid crystal

!2 ⇠ 0 · k2k + k4k + k2?NG mode dispersion relations:



5. Summary and prospects



2

- from local symmetry picture

- spacetime symmetry    diffeo x local Lorentz x (an)isotropic Weyl

・EFT approach for spacetime symmetry breaking

- effective action from gauge symmetry breaking

# summary

・in this talk, I discussed domain walls of scalar and vector

- vector domain walls → massive Lorentz NG modes

- discussions on boundary linear term
  ex. application to inhomogeneous chiral condensation

ex. liquid crystal in smectic A phase at zero temperature

- classification of physical meaning of inverse Higgs constraints
※ beyond gapless modes cf. cosmological application

2



- relativistic → nonrelativistic (global Lorentz symmetry breaking)

- extension to gravitational systems on cosmological background

・other symmetry breaking patterns

- effective action from gauge symmetry breaking

# other results and prospects

・inclusion of SUSY, ...

・extension to gravitational systems on cosmological background

- application to inflation

- finite temperatures, finite densities, ...

・more on nonrelativistic case



Thank you!


