Effective Field Theory for Spacetime Symmetry Breaking

Toshifumi Noumi

(Math Phys Lab, RIKEN)

based on a paper in preparation with Y. Hidaka (RIKEN) and G. Shiu (HKUST)

@YITP workshop July 22nd 2014

1. Introduction

symmetry breaking in physics

spacetime symmetry breaking

condensed matter

cosmology

various phases of liquid crystal

various phases of liquid crystal

cosmology

- cosmic expansion breaks time translation generically
- various models for inflation

ex. anisotropic inflation: rotation is also broken

ex. gaugeflation: internal SU(2) x rotation \rightarrow diagonal SU(2)

cosmology

- cosmic expansion breaks time translation generically
- various models for inflation

ex. anisotropic inflation: rotation is also broken

ex. gaugeflation: internal SU(2) x rotation \rightarrow diagonal SU(2)

coset construction

coset construction for internal symmetry breaking

consider an internal symmetry breaking $G \to H$

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{a} \begin{cases} \mathfrak{h}: \text{ residual symmetry} \\ \mathfrak{a}: \text{ broken symmetry} \end{cases}$$

Γ

- NG modes π^a = coordinates of G/H

 $\Omega = e^{\pi^a(x)T_a}$ with $T_a \in \mathfrak{a}$ (broken symmetry)

- ingredients of effective action:

Maurer-Cartan one form $J_{\mu} = \Omega^{-1} \partial_{\mu} \Omega$

- effective action is local right H invariant

※ coset construction provides general effective action

extension to spacetime symmetry breaking

ex. conformal symmetry breaking (conformal \rightarrow Poincare) broken symmetry: dilatation D and special conformal K_{μ} MC form: $J_{\mu} = \Omega^{-1} \partial_{\mu} \Omega$ with $\Omega = e^{x^{\mu} P_{\mu}} e^{\phi D} e^{\xi^{\mu} K_{\mu}}$ - introduce two types of "NG modes" ϕ : dilaton, ξ^{μ} : spurious field to be removed - global symmetry picture leads to wrong NG mode counting \times NG modes = local transformations of order parameters - remove ξ^{μ} by imposing the inverse Higgs constraints

<u>motivation</u>

coset construction:

- has been applied to various condensed matter systems
- captures a certain aspects of spacetime symmetry breaking

however, its understanding seems not complete

- no proof that coset construction provides general action
- appearance of spurious NG mode may not be attractive

would like to have an approach

- without spurious NG mode from the beginning
- appropriate to curved spacetime & gravitational theory

 \rightarrow effective theory based on a local symmetry picture

plan of my talk:

- 1. Introduction \checkmark
- 2. Basic strategy
- 3. Case study 1: scalar domain walls
- 4. Case study 2: vector domain walls
- 5. Summary and discussion

2. Basic strategy

coset construction from gauge symmetry breaking

effective action for massive gauge boson A_{μ} :

$$\int d^4x \operatorname{tr} \left[-\frac{1}{4g^2} F^{\mu\nu} F_{\mu\nu} - \frac{v^2}{2} A_{\mathfrak{a}\,\mu} A^{\mu}_{\mathfrak{a}} + \dots \right] \text{ with } A_{\mathfrak{a}\mu} \in \mathfrak{a}$$

- g : gauge coupling, v : order parameter

- NG modes are eaten by gauge boson (unitary gauge)

dynamical dof = gauge field only

introduce NG modes by Stuckelberg method:

$$A_{\mu} o A'_{\mu} = \Omega^{-1} A_{\mu} \Omega + \Omega^{-1} \partial_{\mu} \Omega$$
 with $\Omega = e^{\pi^a (x) T_a}$

% global symmetry limit can be obtained by setting $A_{\mu}=0$

 $A_{\mu} \rightarrow J_{\mu} = \Omega^{-1} \partial_{\mu} \Omega$ in the unitary gauge effective action

$$\int d^4x \operatorname{tr} \left[-\frac{1}{4g^2} F^{\mu\nu} F_{\mu\nu} - \frac{v^2}{2} A_{\mathfrak{a}\,\mu} A^{\mu}_{\mathfrak{a}} + \dots \right] \to \int d^4x \operatorname{tr} \left[-\frac{v^2}{2} J_{\mathfrak{a}\,\mu} J^{\mu}_{\mathfrak{a}} + \dots \right]$$

unitary gauge is convenient to find general ingredients for EFT

the most careful way to construct the general effective action will be

1. gauge the (broken) global symmetry

- 2. write down the unitary gauge effective action
- 3. introduce NG modes by Stuckelberg method and decouple the gauge sector

local properties of spacetime symmetry

local properties of spacetime symmetry

consider a spacetime symmetry associated with $x'^{\mu} = x^{\mu} - \epsilon^{\mu}(x)$ its local properties around a point $x^{\mu} = x^{\mu}_{*}$ can be read off as

$$\epsilon^{\mu}(x) = \epsilon^{\mu}(x_*) + (x^{\nu} - x_*^{\nu})\nabla_{\nu}\epsilon^{\mu}(x) + \dots$$

- 1st term: shift of coord. system (translation)
- 2nd term: deformations of coord. system

 $\nabla_{\mu}\epsilon^{\nu} = \delta^{\nu}_{\mu}\lambda + s_{\mu}{}^{\nu} + \omega_{\mu}{}^{\nu}$

- \cdot trace part λ : isotropic rescaling
- \cdot symmetric traceless $s_{\mu
 u}$: anisotropic rescaling
- \cdot antisymmetric $\omega_{\mu
 u}$: Lorentz transformation

ex. special conformal on Minkowski space

$$\nabla_{\mu}\epsilon^{\nu} = 2\delta^{\nu}_{\mu}(b\cdot x) + 2(b_{\mu}x^{\nu} - b_{\nu}x^{\mu})$$

locally, a combination of Poincare & isotropic rescaling

relativistic symmetry	diffeomorphism	local Lorentz	local Weyl
translation	\checkmark		
isometry	\checkmark	\checkmark	
conformal	\checkmark	\checkmark	\checkmark

Table 1: Embedding of spacetime symmetry in relativistic systems.

nonrelativistic symmetry	foliation preserving	local rotation	local anisotropic Weyl
translation	\checkmark		
Galilean	\checkmark	\checkmark	
Schrodinger	\checkmark	\checkmark	\checkmark
Galilean conformal	\checkmark	\checkmark	\checkmark

Table 2: Embedding of spacetime symmetry in nonrelativistic systems.

as the local decomposition suggests,

any spacetime symmetry transformation can be embedded

in diffeomorphism, local Lorentz, local (an)isotropic Weyl

gauging spacetime symmetry

gauging spacetime symmetry

global spacetime symmetry \in diffeo x local Lorentz x local Weyl

- diffeo & local Lorentz

can be gauged by introducing curved spacetime action

$$\int d^4x \, \mathcal{L}[\Phi, \partial_m \Phi] \to \int d^4x \sqrt{-g} \, \mathcal{L}[\Phi, e_m^\mu \nabla_\mu \Phi]$$

- Weyl symmetry
 - 1. Ricci gauging (not necessarily possible)
 - introduce a local Weyl invariant curved spacetime action
- 2. Weyl gauging (always possible)

gauge global Weyl symmetry by introducing a gauge field W_{μ}

EFT recipe

T		1	т
diffeomorphism	local Lorentz	local Weyl	internal gauge
spacetime dependence	spin	scaling dimension	internal charge
metric $g_{\mu\nu}$	vierbein e^m_μ	Weyl gauge field W_{μ}	gauge field A_{μ}

symmetry breaking pattern based on local symmetries:

can be classified by condensation patterns $\langle \Phi^A(x) \rangle = \bar{\Phi}^A(x)$

once symmetry breaking patterns are given or identified,

we construct the effective action in the following way:

- 1. gauge the (broken) global symmetry
- 2. write down the unitary gauge effective action
- 3. introduce NG modes by Stuckelberg method

and decouple the gauge sector

plan of my talk:

- 1. Introduction \checkmark
- 2. Basic strategy 🖌
- 3. Case study 1: scalar domain walls
- 4. Case study 2: vector domain walls
- 5. Summary and discussion

3. Scalar domain-walls

symmetry breaking in global sense: translation and Lorentz invariance are broken in local sense: only z-diffeo is broken full diffeo \rightarrow (1+2)-dim diffeo

- unitary gauge action (cf. EFT for inflation ['07 Cheung et al.]) dof = metric $g_{\mu\nu}$, residual symmetry = (1+2)-dim diffeo

$$S = \int d^4x \sqrt{-g} \left[\alpha(z) + \beta(z)g^{zz}(x) + \gamma(z)(g^{zz}-1)^2 + \dots \right]$$

- action for NG modes
 - 1. Stuckelberg method: $z \to z + \pi(x)$
 - 2. decouple the gauge sector \Leftrightarrow to set $g_{\mu\nu} = \eta_{\mu\nu}$

$$S = \int d^4x \left[\alpha(z+\pi) + \beta(z+\pi)(1+2\partial_z\pi + \partial_\mu\pi\partial^\mu\pi) + \gamma(z+\pi)(2\partial_z\pi + \dots)^2 + \dots \right]$$

3. background (bulk) eom $\rightarrow \, \alpha(z) = \beta(z)$

- unitary gauge action (cf. EFT for inflation ['07 Cheung et al.]) dof = metric $g_{\mu\nu}$, residual symmetry = (1+2)-dim diffeo $S = \int d^4x \sqrt{-g} \left[\alpha(z) + \beta(z)g^{zz}(x) + \gamma(z)(g^{zz}-1)^2 + \ldots \right]$
- action for NG modes

3

- 1. Stuckelberg method: $z \to z + \pi(x)$
- 2. decouple the gauge sector \Leftrightarrow to set $g_{\mu\nu}=\eta_{\mu\nu}$

$$S = \int d^4x \left[\alpha(z) \partial_\mu \pi \partial^\mu \pi + 4\gamma(z) (\partial_z \pi)^2 + \mathcal{O}(\pi^3) \right] \\ + \int d^3x \left[\alpha(z) \pi + \mathcal{O}(\pi^2) \right]_{z=-\infty}^{z=\infty}$$

. background (bulk) eom $\to \alpha(z) = \beta(z)$

let us take a closer look at the obtained action

$$S = \int d^4x \left[\alpha(z) \partial_\mu \pi \partial^\mu \pi + 4\gamma(z) (\partial_z \pi)^2 + \mathcal{O}(\pi^3) \right] + \int d^3x \left[\alpha(z) \pi + \mathcal{O}(\pi^2) \right]_{z=-\infty}^{z=\infty}$$

- free function $\alpha(z) =$ domain-wall profile $\, \alpha(z) \sim V(z)$

single domain wall:

no kinetic term outside the brane

 \rightarrow NG mode does not propagate in the bulk

multiple domain wall:

nonvanishing $\alpha(z)$ @ boundary

 \rightarrow instability unless we impose $\pi(\pm\infty)=0$

 $\mbox{ \ensuremath{\mathbb{X}}} \ \alpha = 0 \ \mbox{for stable backgrounds} \label{eq:alpha}$

let us take a closer look at the obtained action

$$S = \int d^4x \left[\alpha(z) \partial_\mu \pi \partial^\mu \pi + 4\gamma(z) (\partial_z \pi)^2 + \mathcal{O}(\pi^3) \right]$$

applying a similar discussion in nonrelativistic systems,

we obtain the dispersion relations $\,\omega^2\sim 0\cdot k_{\parallel}^2+k_{\parallel}^4+k_{\perp}^2$

for NG modes in inhomogeneous chiral condensates

 $\ensuremath{\overset{\scriptstyle \ensuremath{\scriptstyle \times}}{\times}}$ seem not manifest in standard coset construction

bulk

multiple domain wall:

nonvanishing $\alpha(z)$ @ boundary

 \rightarrow instability unless we impose $\pi(\pm\infty)=0$

 $\mbox{ \ensuremath{\mathbb{X}}} \ \alpha = 0 \ \mbox{for stable backgrounds} \label{eq:alpha}$

plan of my talk:

- 1. Introduction \checkmark
- 2. Basic strategy 🖌
- 3. Case study 1: scalar domain walls 🖌
- 4. Case study 2: vector domain walls
- 5. Summary and discussion

4. vector domain walls

symmetry breaking

in global sense:

translation and Lorentz invariance are broken

in local sense:

z-diffeo & z- μ local Lorentz are broken

full diffeo x local Lorentz \rightarrow (1+2)-dim diffeo x local Lorentz \approx introduce $g_{\mu\nu}$ and e_{μ}^{m} to gauge spacetime symmetry - minimal setup in the unitary gauge dynamical dof: metric $g_{\mu\nu}$, vierbein e_{μ}^{m} residual symmetry: (1+2)-dim diffeo x local Lorentz

decompose action schematically as $S = S_P + S_L + S_{PL}$

- S_L : breaks the local Lorentz

$$S_{L} = \int d^{4}x \sqrt{-g} \left[\alpha_{1} \left(\nabla^{\mu} e_{\mu}^{3} \right)^{2} + \alpha_{2} \left(\nabla_{\mu} e_{\nu}^{3} - \nabla_{\nu} e_{\mu}^{3} \right)^{2} + \alpha_{3} \left(e_{3}^{\nu} \nabla_{\nu} e_{\mu}^{3} \right)^{2} \right]$$

decompose action schematically as $S = S_P + S_L + S_{PL}$

- S_L : breaks the local Lorentz

$$S_L = \int d^4x \left[\alpha_1 \left(\partial^{\widehat{\mu}} \xi_{\widehat{\mu}} \right)^2 + \alpha_2 \left(\partial_{\widehat{\mu}} \xi_{\widehat{\nu}} - \partial_{\widehat{\nu}} \xi_{\widehat{\mu}} \right)^2 + \left(2\alpha_2 + \alpha_3 \right) \left(\partial_z \xi_{\widehat{\mu}} \right)^2 \right]$$

 \rightarrow kinetic terms for Lorentz NG modes $\xi_{\widehat{\mu}}$ $(\widehat{\mu} = t, x, y)$

decompose action schematically as $S = S_P + S_L + S_{PL}$

- S_L : breaks the local Lorentz

$$S_L = \int d^4x \left[\alpha_1 \left(\partial^{\widehat{\mu}} \xi_{\widehat{\mu}} \right)^2 + \alpha_2 \left(\partial_{\widehat{\mu}} \xi_{\widehat{\nu}} - \partial_{\widehat{\nu}} \xi_{\widehat{\mu}} \right)^2 + \left(2\alpha_2 + \alpha_3 \right) \left(\partial_z \xi_{\widehat{\mu}} \right)^2 \right]$$

 \rightarrow kinetic terms for Lorentz NG modes $\xi_{\widehat{\mu}} ~(\widehat{\mu}=t,x,y)$

- S_{PL} : breaks both of diffs & local Lorentz

$$S_{PL} = \int d^4x \sqrt{-g} m^2 (e_3^{\mu} n_{\mu} - 1)$$
 with $n_{\mu} = \frac{\delta_{\mu}^z}{\sqrt{g^{zz}}}$

decompose action schematically as $S = S_P + S_L + S_{PL}$

- S_L : breaks the local Lorentz

$$S_L = \int d^4x \left[\alpha_1 \left(\partial^{\widehat{\mu}} \xi_{\widehat{\mu}} \right)^2 + \alpha_2 \left(\partial_{\widehat{\mu}} \xi_{\widehat{\nu}} - \partial_{\widehat{\nu}} \xi_{\widehat{\mu}} \right)^2 + \left(2\alpha_2 + \alpha_3 \right) \left(\partial_z \xi_{\widehat{\mu}} \right)^2 \right]$$

 \rightarrow kinetic terms for Lorentz NG modes $\xi_{\widehat{\mu}} ~(\widehat{\mu}=t,x,y)$

- S_{PL} : breaks both of diffs & local Lorentz $S_{PL} = \int d^4x \sqrt{-g} m^2 (e_3^{\mu} n_{\mu} - 1) \rightarrow \int d^4x \left[-\frac{m^2}{2} \left(\xi_{\widehat{\mu}} - \partial_{\widehat{\mu}} \pi \right)^2 + \dots \right]$

 $\times \xi$ becomes massive

% at the energy scale E << m,

we obtain effective scalar interaction $\alpha_i \left(\partial_{\parallel}^2 \pi\right)^2$

cf. inverse Higgs integrates out the ξ field also

decompose action schematically as $S = S_P + S_L + S_{PL}$

- S_L : breaks the local Lorentz

$$\frac{1}{2} \int \frac{1}{4\pi} \left[\frac{1}{2\pi} \left(2 + \frac{1}{2\pi} \left(2 + \frac{1}{2\pi} \left(2 + \frac{1}{2\pi} \left(2 + \frac{1}{2\pi} \right)^2 + \frac{1}{2\pi} \left(2 + \frac{1}{2\pi} \right)^2 \right)^2 \right]$$
applying a similar discussion in nonrelativistic systems,
obtain effective action for smectic A phase of liquid crystal
NG mode dispersion relations: $\omega^2 \sim 0 \cdot k_{\parallel}^2 + k_{\parallel}^4 + k_{\perp}^2$...

- \times ξ becomes massive
- % at the energy scale E << m,

we obtain effective scalar interaction $\alpha_i \left(\partial_{\parallel}^2 \pi \right)^2$

cf. inverse Higgs integrates out the ξ field also

5. Summary and prospects

summary

- EFT approach for spacetime symmetry breaking
- from local symmetry picture
- spacetime symmetry \in diffeo x local Lorentz x (an)isotropic Weyl
- effective action from gauge symmetry breaking
- · in this talk, I discussed domain walls of scalar and vector
- discussions on boundary linear term
 ex. application to inhomogeneous chiral condensation
- vector domain walls \rightarrow massive Lorentz NG modes ex. liquid crystal in smectic A phase at zero temperature
- classification of physical meaning of inverse Higgs constraints
 ※ beyond gapless modes cf. cosmological application

other results and prospects

- other symmetry breaking patterns
 - relativistic \rightarrow nonrelativistic (global Lorentz symmetry breaking)
 - extension to gravitational systems on cosmological background
- effective action from gauge symmetry breaking
- $\boldsymbol{\cdot}$ extension to gravitational systems on cosmological background
 - application to inflation
- more on nonrelativistic case
- finite temperatures, finite densities, ...
- inclusion of SUSY, ...

Thank you!