Holographic Schwinger effect in confining theories

Yoshiki Sato (Kyoto Univ.)

Based on PRD 89. 101901 (R) and work in progress in collaboration with D. Kawai & K. Yoshida (Kyoto Univ.)

Abstract : We study the Schwinger pair production in confining theories and obtain the production rate in an external electric field . There exist two kinds of critical values of the electric field. We argue the universal exponents associated with the critical behaviours.

Introduction

The Schwinger effect is pair creations of electron and positron in an external electric field.

[Schwinger, PR 82(1951) 664]

More generally, pair creations of particle and anti-particles in an external field.

It is interesting to consider the Schwinger effect in confining gauge theories as a new mechanism of deconfinement in QCD.

Note that the application of lattice gauge theories is difficult.

Recently, Semenoff and Zarembo proposed the holographic description of the Schwinger effect. [Semenoff-Zarembo, PRL 107 (2011) 171601]

The production rate is evaluated by (i) put a probe brane at a position between the horizon and the boundary

(ii) introducing NS-NS 2-form

(iii) caluclating the expectation value of a circular Wilson loop on a probe.

Production rate : $\Gamma \sim \mathrm{e}^{-S}$, $S = S_{\mathrm{NG}} + S_{B_2}$

$$\Gamma \sim \exp\left[-\frac{\sqrt{\lambda}}{2}\left(\sqrt{\frac{E_{\rm c}}{E}} - \sqrt{\frac{E}{E_{\rm c}}}\right)^2\right] \quad \text{where} \quad E_{\rm c} = \frac{2\pi m^2}{\sqrt{\lambda}}$$

$$x_1$$
 probe

Setup and Strategy of our computations

For simplicity, we concentrate on a D3-solton background. [Kawai-YS-Yoshida, PRD 89 (2014) 101901]

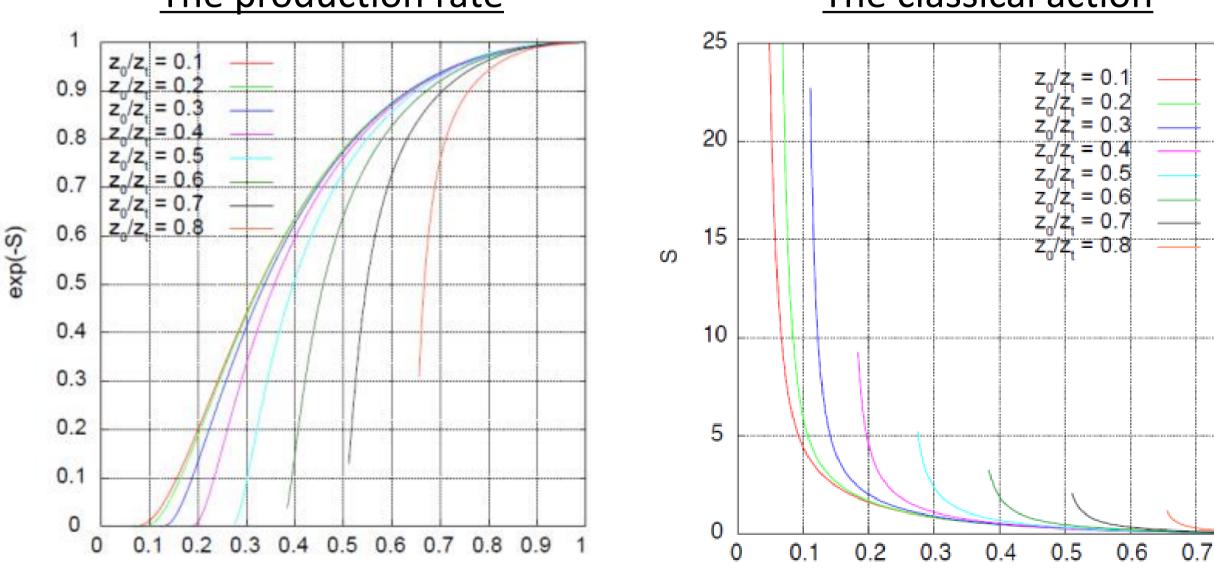
The metric (AdS-Soliton) :

The dual gauge theory is 1+2 dim. gauge theory with a confining string tension $T_{
m F}rac{L^2}{z^2}$.

boundary probe [Horowitz-Myers, PRD 59 (1998) 026005] $L^{2} = L^{2} \left[\begin{array}{ccc} 2 \\ (1 & 0)2 \\ \end{array} \right] + \frac{2}{2} \left[(1 & i)2 \\ \bigg] + \frac{2}{2} \left[(1$

$$ds^{2} = \frac{1}{z^{2}} \left[-(dx^{n})^{2} + f(z)(dx^{n})^{2} + f(z)(dx^{$$

confining string tension $z_{0}/z_{1} = 0.3$ $\frac{z_0}{z_0} = 0.4$ $z_0/z = 0.5$ 0.8 The production rate becomes nonzero at $\alpha = \alpha_{\rm s} \left(E = E_{\rm s} \right)$. $z_{0}/z = 0.6$ 0.7 $z_0/z_1 = 0.7$ The production rate is not exponentially suppressed at $\alpha = 1 (E = E_c)$. $0.6 | z_0/z = 0.8$



Critical behaviours at $\alpha = \alpha_s$ and $\alpha = 1$ are coincidence with the result of

potential analysisour previous work. [YS-Yoshida, JHEP 1309 (2013) 134 & JHEP 1312 (2013) 051]

$$E \to E_{\rm s}$$
 limit, $S = \frac{C(\alpha_{\rm s}) \alpha}{(\alpha - \alpha_{\rm s})^2} + \frac{D(\alpha_{\rm s})}{\alpha - \alpha_{\rm s}} + \text{the regular}$
Critical exponent $\gamma_{\rm s} = 2$

The exponents are the same for D4-soliton background. [Kawai-YS-Yoshida, work in progress]

 $E \to E_{\rm c}$ limit, $S = B(lpha_{\rm s})(1-lpha)^2 + \mathcal{O}ig((1-lpha)^3ig)$ $\gamma_{\rm c} = 2$

We argue that these exponents are universal.

α